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Abstract. Gaussian Process prior models, as used in Bayesian non-parametric
statistical models methodology are applied to implement a nonlinear adaptive
control law. The expected value of a quadratic cost function is minimised, without
ignoring the variance of the model predictions. This leads to implicit regularisa-
tion of the control signal (caution) in areas of high uncertainty. As a consequence,
the controller has dual features, since it both tracks a reference signal and learns a
model of the system from observed responses. The general method and its unique
features are illustrated on simulation examples.

1 Introduction

Linear control algorithms have been successfully applied to control nonlinear systems,
since they can adapt their parameters to cope the nonlinear characteristics of real sys-
tems. However, their performance degrades as the system undergoes rapid and larger
changes in its operating point. Several authors have proposed the use of non-linear
models as a base to build nonlinear adaptive controllers. Agarwal and Seborg [1], for
instance, have proposed the use of known nonlinearities, capturing the main charac-
teristic of the process, to design a Generalized Minimum Variance type of self-tuning
controller. In many applications, however, these nonlinearities are not known, and non-
linear parameterisation must be used instead. A popular choice has been the use of
Artificial Neural Networks for estimating the nonlinearities of the system [2, 3, 4, 5].
All these works have adopted the certainty equivalence principle for designing the con-
trollers, where the model is used in the control law as if it were the true system. In order
to improve the performance of nonlinear adaptive controllers based on nonlinear mod-
els, the accuracy of the model predictions should also be taken into account. A common
approach to consider the uncertainty in the parameters, is to add an extra term in the
cost function of a Minimum Variance controller, which penalizes the uncertainty in the
parameters of the nonlinear approximation [6]. Another similar approach based on the
minimization of two separate cost functions, has been proposed in [7], the first one is
used to improve the parameter estimation and the second one to drive the system output
to follow a given reference signal. This approach is called bicriterial, and it has also
beeen extended to deal with nonlinear systems [8].
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Most of these engineering applications are still based on parametric models, where
the functional form is fully described by a finite number of parameters, often a lin-
ear function of the parameters. Even in the cases where flexible parametric models are
used, such as neural networks, spline-based models, multiple models etc, the uncer-
tainty is usually expressed as uncertainty of parameters (even though the parameters
often have no physical interpretation), and do not take into account uncertainty about
model structure, or distance of current prediction point from training data used to esti-
mate parameters.

Non-parametric models retain the available data and perform inference conditional
on the current state and local data (called ‘smoothing’ in some frameworks). As the
data are used directly in prediction, unlike the parametric methods more commonly
used in control contexts, non-parametric methods have advantages for off-equilibrium
regions, since normally in these regions the amount of data available for identification
is much smaller than that available in steady state. The uncertainty of model predictions
can be made dependent on local data density, and the model complexity automatically
related to the amount and distribution of available data (more complex models need
more evidence to make them likely). Both aspects are very useful in sparsely-populated
transient regimes. Moreover, since weaker prior assumptions are typically applied in a
non-parametric model, the bias is typically less than in parametric models.

Non-parametric models are also well-suited to initial data analysis and exploration,
as they are powerful models of the data, with robust behaviour despite few prior struc-
tural assumptions. This paper describes an approach based on Gaussian process priors,
as an example of a non-parametric model with particularly nice analytic properties.
This allow us to analytically obtain a control law which perfectly minimises the ex-
pected value of a quadratic cost function, which does not disregard the variance of
the model prediction as an element to be minimised. This leads naturally, and automati-
cally to a suitable combination of regularising caution in control behaviour in following
the reference trajectory, depending on model accuracy. This paper expands on previous
work [9] by making the cost function more flexible, introducing priors and investigating
modelling and control performance for nonlinear systems affine in control inputs.

The above ideas are closely related to the work done on dual adaptive control, where
the main effort has been concentrated on the analysis and design of adaptive controllers
based on the use of the uncertainty associated with parameters of models with fixed
structure [10, 11].

The paper is organised as follows: section 2 describes the characteristics of non-
parametric models. Section 3 introduces Gaussian Process priors. Section 4 illustrates
how to design controllers based on the above representation. In section 5, we illustrate
the control behaviour via simulation. Finally, some conclusions and future directions
are outlined.

2 Controller Design

The objective of this paper is to control a multi-input, single-output, affine nonlinear
system of the form,

y(t+ 1) = f(x(t)) + g(x(t))u(t) + ε(t+ 1), (1)
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where x(t) is the state vector at a discrete time t, which in this paper will be defined
as x(t) = [y(t), . . . , y(t − n), u(t − 1), . . . , u(t −m)], y(t + 1) the output, u(t) the
current control vector, f and g are unknown smooth nonlinear functions. We also as-
sume that g is bounded away from zero. In addition, it is also assumed that the system is
minimum phase, as defined in [4]. For notational simplicity we consider single control
input systems, but extending the presentation to vector u(t) is trivial. The noise term
ε(t) is assumed zero mean Gaussian, but with unknown variance σ2

n. The control strat-
egy consists in choosing a control variable u(t) so as to minimize the following cost
function:

J = E{(yd(t+ 1) − y(t+ 1))2} + (R(q−1)u(t))2, (2)

where yd(t) is a bounded reference signal, the polynomialR(q−1) is defined as:

R(q−1) = r0 + r1q
−1 + . . .+ rnrq

−nr (3)

where q−1 is a unit backward shift operator. The polynomial coefficients can be used as
tuning parameters.

Using the fact that Var{y} = E{y2}−µ2
y, where µy = E{y}, the cost function can

be written as:

J = (yd(t+ 1) − E{y(t+ 1)})2 + Var{y(t+ 1)} + (R(q−1)u(t))2. (4)

Note that we have not ‘added’ the model uncertainty term, Var{y(t+1)}, to the classical
quadratic cost function – most conventional work has ‘ignored’ it, or have added extra
terms to the cost function [10, 11].

Since f and g are unknown, it will be necessary to use a model to predict the output
of the system.

3 Non-parametric Models: Gaussian Process Priors

In a Bayesian framework the model must be based on a prior distribution over the
infinite-dimensional space of functions. As illustrated in [12], such priors can be defined
as Gaussian processes. These models have attracted a great deal of interest recently, in
for example reviews such as [13]. Rasmussen [14] showed empirically that Gaussian
processes were extremely competitive with leading nonlinear identification methods
on a range of benchmark examples. The further advantage that they provide analytic
predictions of model uncertainty makes them very interesting for control applications.
Use of GPs in a control systems context is discussed in [15, 16]. A variation which can
include ARMA noise models is described in [17]. k-step ahead prediction with GP’s
is described in [18] and integration of prior information in the form of state or control
linearisations is presented in [19].

Let’s assume a model y(i) = h(φ(i))+ε(i), where φ(i) ∈ R
p is the input vector,ε(i)

is a noise term, and y(i) ∈ R is the corresponding output. Instead of parameterizing
h(φ(i)) as a parametric model, we obtain an inference of function h(φ(i)) by computing
the distribution P (h(φ(i))|D, φ(i)) of the scalar output h(φ(i)), given the input vector
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φ(i) and a set of N training data points D = {(φ(i), y(i)) i = 1, 2, .., N}. The given
N data pairs used for identification are stacked in matrices ΦN and yN . The vector
with the stacked values of the function is defined as hN . A Gaussian process represents
the simplest form of prior over functions and introduces a set of N stochastic variables
H(1)...H(N), for modelling the function at the corresponding inputs φ(1)...φ(N) [14].
Then, a multivariable prior distribution with zero mean4 and covariance function KN

is assumed for these variables:

P (h(1)...h(N)|ΦN ) ∝ exp[−1
2
(hT

NK−1
N hN )], (5)

this prior specifies the joint distribution of the function values given the inputs. On
the other hand, the likelihood relates the underlying function which is modeled by the
function h(φ(i)) to the observed outputs y(i), i = 1, .., N . If the noise is assumed
to be Gaussian with some unknown variance σ2

n, then by combining the prior and the
likelihood the distribution of the observed data will simply be:

P (yN |ΦN ) ∝ exp[−1
2
(yT

NC−1
N yN )], (6)

where CN = KN + σ2
nI. The prediction y(N + 1) given the data D and a new input

vector φ(N + 1) can be calculated by obtaining the following conditioned Gaussian
distribution :

P (y(N + 1)|D, φ(N + 1)) =
P (yN+1|ΦN , φ(N + 1))

P (yN |ΦN )

∝ exp[−1
2
(yT

N+1CN+1yN+1 − yT
NCNyN )] (7)

where CN+1 can be partitioned as:

CN+1 =
[
CN k
kT κ

]
. (8)

The partitioned form (8) can be used, as it is illustrated in [21], to obtain the parameters
of the conditioned Gaussian distribution:

P (y(N + 1)|D, φ(N + 1)) =
1

(2πσ̂2
y)

1
2

exp[− (y(t+ 1) − µ̂y)2

2σ̂2
y

],

where the mean and variance are:

µ̂y = kT C−1
N yN , (9)

Var{y} = σ̂2
y = κ− kT C−1

N k. (10)

We can use µ̂y(φ(N + 1)) as the expected model output, with a variance of σ̂(φ(N +
1))2. Thus the dynamical system (1) can be modelled under this framework by consider-
ing the input vector as φ(i) = [x(t) u(t)] and the corresponding output y(i) = y(t+1).

4 Note, as explained in [20] the zero mean assumption does not mean that we expect the regres-
sion function to be spread equally on either side of zero. If a covariance function had a large
constant term the actual function could be always positive or always negative over the range
of interest. The zero mean reflects or ignorance as to what that sign will be. There are good
numerical computational reasons for transforming data to be zero mean.
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3.1 The Covariance Function

The Normal assumption may seem strangely restrictive initially, but represents a pow-
erful tool since the model’s prior expectations can be adapted to a given application by
altering the covariance function. The choice of this function is only constrained in that
it must always generate a non-negative definite covariance matrix for any inputs Φ, so
we can represent a spectrum of systems from very local nonlinear models, to standard
linear models using the same framework. The covariance function will also often be
viewed as being the combination of a covariance function due to the underlying model
K and one due to measurement noise Cn. The entries ij of this matrix are then:

CNij = K(ΦNi , ΦNj ;Θ) + Cn(ΦNi , ΦNj ;Θn) (11)

where Θ denotes a set of parameters, which in the GP framework are also called hy-
perparameters. As pointed out in [14] it is convenient to specify priors in terms of the
hyperparameters, which then can be adapted as the model is fit to the identification data.
The covariance associated to the noise Cn() could be δijN (ΦN ;Θn), which would be
adding a noise model N to the diagonal entries of CN . This framework allows the use
of different noise models, as discussed in [17], where ARMA noise models were used.

Since the output is an affine function of the control input, it is reasonable to propose
a covariance function with a contribution from the control inputs as an affine function
as well:

K(φ(i), φ(j);Θ) = Cx(x(i),x(j);Θx) + u(i)Cx(x(i),x(j);Θu)u(j) (12)

where the first term represents the contribution of the state vector and the second one
the contribution of the input signal. The covariance function Cu can be parameterised
in any suitable way. Here, we use the same structure as in Cx above, but with different
set of hyperparameters,Θu, to those used in Cx.

The covariance function for Cx represents a straightforward covariance function
proposed by [14], which has demonstrated to work well in practice:

Cx(x(i),x(j);Θ) = v0ρ(|x(i) − x(j)|, α) +
p∑

k=1

akxk(i)xk(j) + a0, (13)

so that the parameter vector Θ = log[v0, α1,..p, a0]T (the log is applied elementwise)
and p is the dimension of vector x . The parameters are defined to be the log of the
variable in equation (13) since these are positive scale-parameters. The function ρ(d) is
a function of a distance measure d, which should be one at d = 0 and which should be
a monotonically decreasing function of d. The one used here was

ρ(|x(i) − x(j)|, α) = e−
1
2

∑ p
k=1 αk(xk(i)−xk(j))2 . (14)

The αk’s determine how quickly the function varies in dimension k. This estimates
the relative smoothness of different input dimensions, and can therefore be viewed as
an automatic relevance detection (ARD) tool [22], which helps weight the importance
of different input dimensions. Other bases which included a nonlinear transformation of
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x, like the RBF neural networks used in [6], could be put into this framework. The prior
associated with this covariance function states that outputs associated with φ’s closer
together should have higher covariance than points further apart.

The Gaussian Process approach to regression is simple and elegant, and can model
nonlinear problems in a probabilistic framework. There tend also to be far fewer param-
eters to identify in the Gaussian Process approach than for competing approaches (such
as e.g. artificial neural networks). The disadvantage is its computational complexity,
as estimating the mean µ̂y requires a matrix inversion of the N × N covariance ma-
trix, which becomes problematic for identification data where N > 1000. In transient
regimes, however, we have very few data points and we wish to make robust estimates
of model behaviour, which are now possible. This suggests that a multiple-model style
partitioning of the state-space could make GPs more feasible in many applications [23].

Adapting the Covariance Function Parameters The hyperparameter vector Θ pro-
vides flexibility to define a family of covariance functions which provide suitable prior
distributions over functions. In most cases we will only have uncertain knowledge ofΘ.
Given unknown hyperparameters we can use numerical methods such as Markov-Chain
Monte Carlo (MCMC) to integrate over hyperparameters, or use maximum likelihood
methods, with standard gradient-based optimisation tools to optimise hyperparameters.
The log-likelihood l of the training data can be calculated analytically as [13]:

l = −1
2

log detCN − 1
2
yT

NC−1
N yN − n

2
log 2π. (15)

The partial derivative of the log likelihood with respect to the hyperparameters is:

∂l

∂θi
= −1

2
tr

[
C−1

N

∂CN

∂θi

]
+

1
2
yT

NC−1
N

∂CN

∂θi
C−1

N yN . (16)

Given l and its derivative with respect to θi it is straightforward to use an efficient
optimization program in order to obtain a local maximum of the likelihood.

In parametric models the parameters must to be updated each sampling time, but in
the nonparametric framework this is not necessary, as it will be illustrated in section 5,
since the model also relies on the data contained in the identification data set.

Hierarchical Priors The hyperparameters of the covariance function will rarely be
known exactly in advance, so they are usually given a vague prior distribution, such as
a gamma prior [20].

p(φ) =
(a/2ω)a/2

Γ (a/2)
ψ((a/2)−1) exp

(
−ψa

2ω

)
(17)

where ψ = θ−2 for a hyperparameter θ. a is a positive shape parameter and ω is the
mean of ψ. Large values of a produce priors for θ concentrated near ω−2 and small val-
ues lead to vague priors. Each hyperparameter of the covariance function can be given
an independent prior distribution. If prior distributions on the hyperparameters, such
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as equation (17) are used then obviously these are included in the likelihood equations
and the derivative terms. The use of gamma priors does not add significant complexity
to the optimisation, and if used appropriately makes the model behaviour more robust
with small numbers of training data.

4 Derivation of Control Law

Given the cost function (4), and observations to time t, if we wish to find the optimal
u(t), we need the derivative of J ,

∂J

∂u(t)
= −2 (yd(t+ 1) − µy)

∂µy

∂u(t)
+
∂Var{y(t+ 1)}

∂u(t)
+ 2r0R(q−1)u(t). (18)

With most models, estimation of Var{y}, or ∂Var{y}
∂u(t) would be difficult, but with the

Gaussian process prior (assuming smooth, differentiable covariance functions – see
[24]) the following straightforward analytic solutions can be obtained:

∂µy

∂u(t)
=

∂kT

∂u(t)
C−1

N yN (19)

∂Var{y}
∂u(t)

=
∂κ

∂u(t)
− 2kTC−1

N

∂k
∂u(t)

. (20)

The covariance matrix k and κ can be expressed in terms of the independent control
variable u(t) as follows:

k = Ω1 + u(t)Ω2 (21)

κ = Ω3 +Ω4u(t)2, (22)

where Ω1 = Cx(x(t), ΦN , Θx), Ω2 = Cx(x(t), ΦN , Θu). ∗ UN , where UN is a vec-
tor with all the values of u(t) contained in the identification data set, and .∗ indicates
elementwise multiplication of two matrices. Ω3 = Cx(x(t),x(t), Θx), and Ω4 =
Cx(x(t),x(t), Θu). The final expressions for µy and Var{y} are:

µy = Ω1C−1
N yN +Ω2C−1

N yNu(t), (23)

Var{y} = Ω3 +Ω4u(t)2 − (Ω1 + u(t)Ω2)C−1
N (Ω1 + u(t)Ω2)T . (24)

Taking the partial derivatives of the variance and the mean expressions and replacing
their values in (18), it follows:

∂J

∂u(t)
= −2

(
yd(t+ 1) −Ω1C−1

N yN −Ω2C−1
N yNu(t)

)
(Ω2C−1

N yN )T

+2Ω4u(t) − 2Ω1C−1
N ΩT

2 − 2u(t)Ω2C−1
N ΩT

2 ) + 2r0R(q−1)u(t). (25)

At ∂J
∂u(t) = 0, the optimal control signal is obtained as:

u(t) =
(yd(t + 1) − Ω1C

−1
N yN)(Ω2C

−1
N yN)T + Ω1C

−1
N ΩT

2 − r0(R(q−1) − r0)u(t)

r2
0 + Ω4 − Ω2C

−1
N ΩT

2 + Ω2C
−1
N yN(Ω2C

−1
N yN)T

. (26)
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Note that equation (26) can also be presented as

u(t) =
(yd(t + 1) − Ω1C

−1
N yN )(Ω2C

−1
N yN)T + α(t) − r0(R(q−1) − r0)u(t)

r2
0 + β(t) + Ω2C

−1
N yN(Ω2C

−1
N yN)T

. (27)

where α(t) = Ω1C−1
N ΩT

2 , and β(t) = Ω4 − Ω2C−1
N ΩT

2 . If we had not included the
variance term in cost function (2), or if we were in a region of the state-space where the
variance was zero, the optimal control law would be equation (27) with α = β = 0.
We can therefore see that analysing the values of α and β is a promising approach to
gaining insight into the behaviour of the new form of controller. These terms make a
control effort penalty constant, or regulariser unnecessary in many applications.

4.1 Adapting Control Behaviour with New Data

After u(t) has been calculated, applied, and the output observed, we add the information
x(t), u(t), y(t+1) to the training set, and the new CN increases in size toN+1×N+1.
Obviously, given the expense of inverting CN for large N , this naive approach will
only work for relatively small data sets. For a more general solution, we can potentially
incorporate elements of Relevance Vector Machines [25], or use heuristics for selection
of data for use in an active training set, as in e.g. [26].

We can then choose to optimise the hyperparameters of the covariance function to
further refine the model, or keep the covariance function fixed, and just use the extra
data points to improve model performance. In the next section, will be illustrated the
performance obtained with both strategies.

5 Simulation Results

To illustrate the feasibility of the approach we used it to control several target plants
based on noisy observed responses. We start off with only two training points, and add
subsequent data to the model during operation. The model has had no prior adaptation
to the system before the experiment. A gamma distribution was used for all hyperpa-
rameters, with ω set equal to the initial condition for each variable and shape parameter
a = 3, indicating vague knowledge about the variable. The noise term σn, was given a
tighter distribution, with a = 5. The covariance functions chosen are the same for all
the experiments.

5.1 Non-linear System 1

Let non-linear system 1 be:

y(t+ 1) = f(x(t)) + g(x(t))u(t) + ε(t+ 1)

where x(t) = y(t), f(x(t)) = sin(y(t)) + cos(3y(t)) and g(x(t)) = 2 + cos(y(t)),
subject to noise with variance σ2

n = 0.001 [6]. Model hyperparameters are adapted after
each iteration using conjugate gradient descent optmisation algorithm.
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Fig. 1. Simulation results for nonlinear system 1, showing modelling accuracy, control
signals, tracking behaviour and levels of α and β at each stage.

Note how in Figure 1 β is large in the early stages of learning, but decreasing with
the decrease in variance, showing how the regularising effect enforces caution in the
face of uncertainty, but reduces caution as the model accuracy increases. In terms of
the hyperparameters, most hyperparameters have converged by about 30 data points.
The noise parameter σn decreases with increasing levels of training data. After this
point the control signal u is also fairly smooth, despite the noisy nature of the data.
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Fig. 2. Simulation results on nonlinear system 1, without including the α and β terms
linked to the model variance in the control law. Data shows modelling accuracy, control
signals and tracking behaviour.

α can be seen to be larger in higher variance regions, essentially adding an excitatory
component which decreases with the decrease in model uncertainty, and in this example
plays almost no role after about iteration 30.

Figure 2 shows control performance on the same system where the variance part of
the cost function is ignored (i.e. α and β are removed from the control law. In order
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to achieve any reasonable control behaviour, we set r0 = 0.5. As can be seen in the
figure, the system still tracks the trajectory, and after iteration 30 there is little visible
difference between the two control laws, but ignoring the variance does lead to the use
of greater control effort, with larger model uncertainty in the early stages of learning.
The hyperparameter estimates also fluctuate much more in the early stages of learning,
when variance is not considered, although both systems converge on similar values
after the initial stages. The constant nature of r0 as a regularising term, as opposed to
the dynamically changing α(t), β(t) makes controller design more difficult, as we can
see that in early stages of learning it tends to be too small, reducing robustness, while
later it is larger than α(t), β(t) damaging performance.

We now plot the nonlinear mappings involved in non-linear system 1, to give the
reader a clearer impression of the adaptation of the system. The surfaces in figure 4
show the development in the mean mapping from x(t), u(t) to y(t + 1) as the system
acquires data, taken from the simulation shown in figure 1 at t = 3, 20, 99. For compar-
ison, figure 5.1 shows the true mapping. Examining the surfaces in figure 4 we can see
how the nonlinear mapping adapts gradually given increasing numbers of data points,
but we also see that the standard deviation of the mapping also evolves in an appropri-
ate manner, indicating clearly at each stage of adaptation the model uncertainty over the
state-space. In the final plot, Figure 4(f) we can see a uniformly low uncertainty in the
areas covered by data, but a rapid increase in uncertainty as we move beyond that in the
x-axis. Note that the uncertainty grows much more slowly in the u-axis because of the
affine assumption inherent in the covariance function, which constrains the freedom of
the model.
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Fig. 3. True surface (mesh) of nonlinear system 1, y(t+ 1) = sin(y(t)) + cos(3y(t))+
(2 + cos(y(t)))u(t), over the space y × u.
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Fig. 4. Left-hand figures show mean surface (mesh) y(t + 1) = f(x(t), u(t)) of non-
linear system 1 over the space x×u during the learning process. These can be compared
to the true mapping in Figure 5.1. Right-hand figures show condition standard deviation
σ(x(t), u(t)) surfaces. Each figure also shows the available data at that point in the
learning process.
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5.2 Non-linear System 2

The second nonlinear example considers the following non-linear functions:

f(x(t)) =
y(t)y(t− 1)y(t− 2)u(t− 1)(y(t− 2) − 1)

1 + y(t− 1)2 + y(t− 2)2

g(x(t)) =
1

1 + y(t− 1)2 + y(t− 2)2
,

where x =
[
y(t) y(t− 1) y(t− 2) u(t− 1)

]T
[2]. The system noise has a variance

σ2
n = 0.001, and we had 6 initial data points. The results are shown in Figure 5. Again,

the trend of decreasing α and β can be seen, although they do increase in magnitude
following changes in the system state towards higher uncertainty regions, showing that
the control signal will be appropriately damped when the system moves to a less well-
modelled area of the state-space. The hyperparameters in Figure 5(c) make few rapid
changes, seeming well-behaved during learning.

Figure 6 illustrates the effect of keeping constant the initial set of hyperparameters.
As it can be seen in the figure, even with this set of paramaters, which have values very
far away from the optimal ones, the system is capable of controlling the system.

The next example illustrates the use of the polynomial R(q−1) for shaping the
closed loop response. In this example, it was selected as R(q−1) = ro − roq

−1, so
as to weight the control signal deviations for tuning the speed of response without in-
troducing steady state errors, the associated cost function is:

J = E{(yd(t+ 1) − y(t+ 1))2} + (r0(u(t) − u(t− 1))2. (28)

The response obtained for a r0 = 0.6 is illustrated in Figure 7, where as we expected
the speed of response is much slower that the case of having no control weighting.

6 Conclusions

This work has presented a novel adaptive controller based on non-parametric models.
The control design is based on the expected value of a quadratic cost function, leading
to a controller that not only will minimise the squared difference between the reference
signal and the expected value of the output, but will also try to minimise the variance
of the output, based on analytical estimates of model uncertainty. This leads to a robust
control action during adaptation, and when extended to multi-step ahead prediction,
forms the basis of full dual control with implicit excitatory components. Simulation
results, considering linear and non-linear systems, demonstrate the interesting charac-
teristics of this type of adaptive control algorithm.

The GP models are capable of high performance, with or without priors being
placed on their hyperparameters. Use of gamma prior distributions led to increased
robustness and higher performance in the early stages of adaptation with very few data
points, but the relative advantage decreases with the amount of initial data available, as
would be expected. Since the predictions are do not only rely on the hyperparameters,
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(c) Covariance function hyperparameters

Fig. 5. Simulation results for nonlinear system 2, showing modelling accuracy, control
signals, tracking behaviour and levels of α and β at each stage.

but also on the training data set, their on-line adaptation can be carried out at a sampling
interval much bigger than the one used for controlling the system.

The additional polynomial term in the cost function can be used to shape the closed
loop response without introducing steady state error.

GP’s have been successfully adopted from their statistics origins by the neural net-
work community [13]. This paper is intended to bring the GP approach to the attention
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Fig. 6. Simulation results for nonlinear system 2 without adapting the hyperparameters,
showing modelling accuracy, control signals, tracking behaviour and levels of α and β
at each stage.
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Fig. 7. Simulation results for nonlinear system 2 with ro = 0.6, r1 = −0.6, showing
modelling accuracy, control signals, tracking behaviour and levels of α and β at each
stage.
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of the control community, and to show that the basic approach is a competitive approach
for modelling and control of nonlinear dynamic systems, even when little attempt has
been made to analyse the designer’s prior knowledge of the system – there is much more
that can be taken from the Bayesian approach to use in the dual control and nonlinear
control areas.

Further work is underway to address the control of multivariable systems, non-
minimum-phase systems and implementation efficiency issues. The robust inference
of the GP approach in sparsely populated spaces makes it particularly promising in
multivariable and high-order systems.
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