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Summary

As a result of their good performance in practice and their desirable analytical

properties, Gaussian process regression models are becoming increasingly of interest in

engineering and other �elds. However, there are two major problems when the model

is applied to a large data-set with repeated measurements. One is the heterogeneity

among the di�erent replications, and the other is the requirement to invert a covari-

ance matrix which is involved in the implementation of the model. The dimension of

this matrix equals the sample size of the training data-set. In this paper, a mixture

regression model of Gaussian processes is proposed, and a hybrid Markov chain Monte

Carlo (MCMC) algorithm is used for the implementation. If we use this model and

algorithm, the computational burden decreases dramatically. A real application is used

to illustrate the mixture model and its implementation.
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1 Introduction

The theory of Gaussian processes has already been established. As a result of their good

performance in practice and their desirable analytical properties, Gaussian processes

have wide applications; for example, Wiener processes (a special case of a Gaussian

process) are used as a basic model in Brownian motion. Initially proposed in O'Hagan

(1978), Gaussian process priors have recently been used in regression, classi�cation and

other areas (see reviews by Williams, 1998, and MacKay, 1999). However, there are

two major problems when the Gaussian process regression model is applied to a large

data-set with repeated measurements. One is the heterogeneity among the di�erent

replications (or groups). For example, in the paraplegia data-set we discuss in this

paper, a few hundred data points are collected in each standing-up of a paraplegia

patient, the procedure being repeated several times for each of eight patients. Obvi-

ously, the mechanism for every standing-up is quite similar, but not the same, even

for the same patient. This results in heterogeneity among the replications. The other

problem is that the implementation of the model requires the inversion of a covariance

matrix, of which the dimension is N � N , where N is the sample size of the training

data. This takes time O(N3). Even though computing speed has rapidly increased and

some approximation methods have been proposed (see e.g. Gibbs and MacKay, 1996),

implementation is still time-consuming for a large training data-set.

For the data-set with repeated measurements discussed above, we can de�ne a model

with the following hierarchical structure: a lower-level model is applied separately to

each group to model the basic structure of the data; then the set of lower-level models

have similar structures but with some mutual heterogeneity, and a higher-level model is

used among groups to model the heterogeneity. In this paper, we �t a separate Gaussian

process regression model to the data corresponding to each group. Since the number

of unknown parameters involved in the Gaussian process regression model is generally

quite large, it is quite diÆcult to de�ne a parametric higher-level model. A mixture

model represents a good semi-parametric approach (see e.g. Titterington, Smith and

Makov, 1985) for modelling a large data-set with the above hierarchical structure, and

we therefore propose a hierarchical mixture model of Gaussian processes for regression

in this paper.

We use the Bayesian approach in this paper to analyze the above hierarchical struc-

ture. However, the posterior density function of the unknown parameters involves an

multi-dimensional integral, and it is natural to consider using a Gibbs sampler (Geman

and Geman, 1984) algorithm. We treat the indicator variable of the mixture model

as a latent variable. In each iteration, we consider the conditional distribution of un-

known parameters given the values of the latent indicator variables; then we consider
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the conditional distribution of the latent variables given the value of those unknown

parameters. Conditional on the latent indicator variables, we can treat the data-set

for each group separately, and it therefore just requires the inversion of a covariance

matrix corresponding to the size of a sub-sample of the training data for each group.

As a consequence, the computational burden decreases dramatically.

The problem of curve �tting with high dimensional input variables is diÆcult. Neu-

ral network models are often used in practice (see e.g. Cheng and Titterington, 1994).

However, our experience is that the Gaussian process regression model generally gives

a better �t than the neural network model; see Section 4. Some nonparametric ap-

proaches, such as spline smoothing, can also be used for curve �tting. However, the

implementation is very complicated if the dimension of the input variables is large.

The idea of a mixture model with Gaussian processes has been used on several dif-

ferent problems in the literature. For example, Lemm (1999) used mixtures of Gaussian

process priors to model data with arbitrary density and applied the model in image

analysis.

The paper is organized as follows. Section 2 gives a brief review of Gaussian process

models for regression. Section 3 proposes the hierarchical mixture model, and gives

details of the steps of the algorithm. Section 4 examines the performance of the model

and the algorithm on a numerical example. Some discussion and further development

are given in Section 5.

2 Gaussian process priors for regression

We are given N data points of training data fyn;xn; n = 1; � � � ; Ng, where x is a

Q-dimensional vector of inputs (independent variables), and y is the output (depen-

dent variable, target). A Gaussian process is de�ned in such a way that y(x) has

a Gaussian prior distribution with zero mean and covariance function C(xi;xj) =

Cov(Y (xi); Y (xj)). An example of such a covariance function is

C(xi;xj) = C(xi;xj; �)

= v0 exp

0
@�1

2

QX
q=1

wq(xiq � xjq)
2

1
A+ a0 + a1

QX
q=1

xiqxjq + Æij�
2
v ; (1)

where � = (w1; � � � ; wQ; v0; a0; a1; �
2
v), and Æij = 1 if i = j and 0 otherwise. This

covariance function is often used in practice. The �rst term recognises high correlation

between the outputs of cases with nearby inputs, while the rest are a bias term, a

linear regression term and a noise term respectively; see O'Hagan (1978) and Williams

and Rasmussen (1996) among others. More discussion about the choice of covariance

function can be found in MacKay (1999).
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Given a covariance function and a set of training data y = (y1; � � � ; yN)T , the log-
likelihood is

L(�) = �1

2
log j	j � 1

2
yT	�1y � N

2
log 2�; (2)

where 	 = 	(�) is the covariance matrix of y with dimension N � N . The maxi-

mum likelihood estimate (MLE) of � can be calculated by maximizing the above log-

likelihood. An iterative optimization method, such as the conjugate gradient method,

can be applied. It requires the evaluation of 	�1, which takes time O(N3). EÆcient

implementation with particular reference to approximation of the matrix inversion has

been well developed; see for example Gibbs (1997) and MacKay (1999). However, it

still becomes time-consuming for large sets of training data.

If prior information is to be incorporated, a Bayesian approach is generally used.

Let p(�) be the prior density function of � and let D = fy;xg be the training data.

Then the posterior density of � given the training data is

p(�jD) / p(�)p(yjx; �); (3)

where p(yjx; �) is the density function of an N -dimensional multivariate normal dis-

tribution with zero mean and covariance matrix 	(�), such as is de�ned by (1). Since

the form of the covariance function is complicated in terms of �, it is infeasible to do

any analytical inference based on the above posterior distribution. A Markov chain

Monte Carlo approach is generally used; see Neal (1997) and MacKay (1999).

One major goal in engineering and other �elds is to predict an output based on the

training data. This problem can be solved thanks to the attractive analytical properties

of Gaussian processes. Let x� be the test inputs and y� be the output. The predictive

distribution is the conditional distribution of y� given x� and training data D, which
is also a Gaussian distribution with mean and variance given by

ŷ� =  T (x�)	�1y; (4)

�̂�2 = C(x�;x�)�  T (x�)	�1 (x�); (5)

where	 is the covariance matrix of (y1; � � � ; yN),  (x�) = (C(x�;x1); � � � ; C(x�;xN))T .
The mean (4), evaluated at the MLE of �, is generally used as a prediction of y�.

3 Hierarchical mixture models

3.1 The hierarchical models

In many areas of empirical modelling we are faced with repeated experiments on similar

objects and processes. However, those data may come from di�erent sources. For the
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paraplegia data discussed in this paper, the data come from 8 patients, of whom the

ages range from 17 to 57 years, the weights range from 58 to 95kg, and the heights

range from 159 to 185cm. Therefore, a simple model, such as the single Gaussian

process regression model discussed in last section, may not �t the data well. A mixture

model is a natural choice for modelling a large data-set collected from di�erent sources.

A mixture model can be de�ned to �t the data collected in such experiments.

Suppose that there areM di�erent groups of data (replications). In the mth group, Nm

observations are collected. Let the observations be ymn; m = 1; � � � ;M; n = 1; � � � ; Nm.

A mixture model of Gaussian process regression can be de�ned as follows:

ym = (ym1; � � � ; ymNm) �
KX
k=1

�kGPk(�k) (6)

independently for m = 1; � � � ;M , where GPk(�k) stands for the density function of a

Gaussian process regression model GPk(�k), as de�ned in the last section. A special

case corresponds to GPk(�k) = GP (�k), i.e. the di�erent GPk(�) have exactly the

same structure, but with di�erent values of the parameter �k. K is the number of

components of the mixture model. We assume that K has a �xed given value in this

paper.

The above model is equivalent to the model with the following hierarchical structure:

a lower-level model is assumed for the data corresponding to each replication (i.e.

within a group) separately, and the structures of those models are similar but with

some mutual heterogeneity; a higher-level model is de�ned to model the heterogeneity

among di�erent replications (groups). In this paper, a hierarchical mixture model of

Gaussian processes regression has the following structure:

ymjzm = k � GPk(�k); (7)

where zm is an unobservable latent indicator variable. The model for group m is a

Gaussian process regression model GPk(�k) if zm = k is given. The association among

the di�erent groups is introduced by the latent variable zm, for which

P (zm = k) = �k; k = 1; � � � ; K; (8)

for each m. There are several advantages of using this hierarchical model. First, it is

easy to extend it to some more general model. For example, the distribution of the

latent indicator variable z may depend on some information related to the particular

group such as the age, sex and height of the patient in our paraplegia data. Therefore,

an allocation model zm � F (um) may be used as a higher-level model in (8). Research

along this line is currently in progress. Secondly, the latent indicator variable can be

used in implementation; see the discussion in the rest of this section.
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3.2 Bayesian inference and priors

We adopt the Bayesian approach in this paper. For convenience of presentation, we as-

sume that GPk(�k) = GP (�k) for each k; they have the same covariance function, such

as (1), but with di�erent parameter vectors �k. It will be seen that the approach dis-

cussed in this section can be extended to more general models without any substantial

diÆculty.

Let � = (�1; � � � ; �K) and � = (�1; � � � ; �K), and let D be the collection of training

data. The posterior density of the unknown parameters is given by

p(�;�jD) / p(�;�)p(Dj�;�); (9)

where

p(Dj�;�) =
MY
m=1

KX
k=1

�kp(ymj�k;xm):

We assume that, a priori, � and � are independent, and the �k are independent and

identically distributed, so that

p(�;�) = p(�)
KY
k=1

p(�k):

We will use the covariance function de�ned in (1), and adopt the priors given in Ras-

mussen (1996); see also Neal (1997). Each wi has an inverse Gamma distribution:

w�1 � Ga(
�

2
;
�

2�
):

Note that E(w�1) = � and that small values of � produce vague priors. The hyperpa-

rameter �may take the value �0Q
2=� with � = 1; �0 = 1 (Rasmussen, 1996). The priors

on the log of �2v and a0 and a1 may be taken as Gaussian, N(�3; 32), corresponding to
fairly vague priors; and the prior on log(v0) is N(�1; 1).

As in the general setting of mixture models, we assume that (�1; � � � ; �K) has a

Dirichlet distribution, i.e.

p(�1; � � � ; �k) � D(Æ; � � � ; Æ);

with Æ = 1, for example.

Obviously, it is very diÆcult to do analytical posterior analysis for (9). A hybrid

MCMC algorithm is therefore proposed in this paper. The details are given in the next

subsection.
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3.3 The implementation

From (9), the density of (�;�) = f�k; �k; k = 1; � � � ; Kg has a very complicated form.

It is very diÆcult to do inference based on this posterior density directly. We therefore

use the Gibbs sampler (Geman and Geman, 1984). Instead of generating a sample of

(�;�) from its posterior density (9), we found from our study that the implementation

is much more simple and eÆcient if the latent variable z = (z1; � � � ; zM) is augmented

with the unknown parameter �. Inference about � can be easily obtained through z

by model (8). The detailed description of one sweep of this procedure based on the

Gibbs sampler is de�ned as follows:

(a) update z from p(zj�;D) given the current value of �; and

(b) update � from p(�jz;D) given the current value of z.

In step (a), Z = (z1; � � � ; zm) and p(z1; � � � ; zmjy;�) has a still quite complicated form.

A Gibbs subalgorithm is therefore used in this step. We present the details in the

Appendix.

In step (b), if we assume that, a priori, the �k are independent for k = 1; � � � ; K,

then the conditional density function of � is

p(�jD; z) =
KY
k=1

p(�kjD; z)

with

p(�kjD; z) / p(�k)
Y

m2fzm=kg

p(ymj�k): (10)

Thus �k; k = 1; � � � ; K; are conditionally independent given (z1; � � � ; zM), and we can

deal with each �k separately. Note that the right-hand side of (10) involves a product

of p(ymj�k), which just requires the inversion of a covariance matrix of dimension Nm,

which is generally much less than the total sample size N = N1 + � � � + NM . As a

consequence, the computational burden is much less than that incurred by modelling

the data-set by a single Gaussian process regression model.

However, the dimension of �k is Q + 4 for the covariance function de�ned in (1),

where Q may vary from one to a few dozen. Moreover, the above conditional density

function may have a complex form, and may be multi-modal. It is still quite a chal-

lenging topic in statistics to simulate from such a density function. In this paper, we

adopt the Hybrid MC method (Duane, Kennedy and Roweth, 1987). The discussion in

Rasmussen (1996) and Neal (1997) indicates that this is a good method for sampling

from the above conditional distribution. The details will be given in Appendix.
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Therefore, the algorithm used for the hierarchical mixtures of Gaussian process

regression includes two steps; a Gibbs subalgorithm is used in Step (a) and a Hybrid

Monte Carlo algorithm is used in Step (b). This algorithm still converges to the correct

stationary distribution provided the chains from the subalgorithms are aperiodic and

irreducible; see for example x5.4.4 in Carlin and Louis (2000). This algorithm is referred

to as Hybrid Markov chain Monte Carlo (Hybrid MCMC).

Using the algorithm discussed above, we generate samples of the parameters of

interest � and the latent indicator variables z from their posterior distribution. De-

note the set of samples by f�(t)1 ; � � � ; �(t)K ; z(t); t = 1; � � � ; Tg. The idea of the Bayesian

sampling-based approach is to use this set of samples to do posterior inference. We use

this approach to do prediction, which is a major objective in system control.

Suppose x� is a test input, known to come from themth group, so that the predictive

density of the corresponding output is approximated by

p(y�jD;x�) =
Z
p(y�jD;x�; �; zm)p(�; zmjD)d�dzm

' 1

T

TX
t=1

p(y�jD;x�; �(t); z(t)m ): (11)

The predictive distribution p(y�jD;x�; �(t); z(t)m ) is Gaussian with mean (4) and variance

(5). In general, we use the predictive mean as a prediction, calculated by

ŷ�m = (ŷ�(1)m + � � �+ ŷ�(T )m )=T; (12)

where ŷ�(t)m is given by (4) for the particular value �(t). The variance associated with

the prediction can be calculated similarly:

�̂�2m =
1

T

TX
t=1

�̂�2(t)m +
1

T

TX
t=1

(ŷ�(t)m )2 � (ŷ�m)
2; (13)

where �̂�2(t)m is given by (5).

If there is no information about the particular group to which the test input x�

belongs, we may suppose that this test point is in the mth group with probabilityM�1

for all m = 1; � � � ;M . Therefore, the prediction is

ŷ� =
MX
m=1

ŷ�m=M (14)

and the variance is

�̂�2 =
MX
m=1

�̂�2m =M +
MX
m=1

ŷ�2m =M � ŷ�2; (15)

where ŷ�m and �̂�2m are given by (12) and (13) respectively. Note that �̂�2 is larger than

the average of the variances,
PM

m=1 �̂
�2
m =M .
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4 Application to the modelling of standing-up ma-

noeuvres

We analyzed data related to FES-assisted standing-up manoeuvres by paraplegic pa-

tients. The acronym `FES' stands for `Functional Electrical Stimulation'; patients

stand up with the help of an arm support along with electrical stimulation of their

lower paralyzed extremities. The Functional Electrical Stimulation arti�cially invokes

muscle contractions and thus obtains torques in the body joints. In the case of stand-

ing up, the knee joint extensor muscles, the quadriceps group, are stimulated by two

surface electrodes on each leg. In the experiments, the stimulation was constant and

triggered by the user via push-buttons; for more details see Kamnik, Bajd and Kralj

(1999). The supportive forces are considered as a potential feedback source. To use the

supportive force feedback information, we need a model relating the supportive forces

and output trajectory. In this paper, as our illustrative example, we select as output

the horizontal (comy) and vertical (comz) trajectories of the body COM (centre of

mass), and select 14 input variables, such as the forces and torques under the patient's

feet, under the arm support handle and under the seat while the body is in contact

with it. In one standing-up, output and inputs are recorded for a few hundred time

steps. The experiment was repeated several times for one patient, and there are total

of 8 patients involved in this project. The data are standardized by height and weight

of the patient (see the details in Kamnik, Shi, Murray-Smith and Bajd, 2002).

First we study a data-set of 5 standings-up for one patient. A few hundred data

points are recorded for each standing-up. The trajectories of the body COM for the �ve

standings-up are presented in Figure 1, which shows that the basic model structure for

the �ve standings-up should be the same, while there is heterogeneity among di�erent

standings-up. Thus, the hierarchical mixture model of Gaussian processes discussed in

the last section seems a good choice of model for this data-set. From the whole data-

set, we randomly select about half of the data points from the �rst three standings-up

as training data; the rest are used as test data. The sample sizes of the training data

are 101, 76 and 91 respectively for the three groups. We apply the hierarchical mixture

model de�ned by (7) and (8). For each mixture component, we use the same covariance

function (1), but with di�erent values of the parameter �k.
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Figure 1. Paraplegia Data for one patient: trajectory of the body COM for �ve standings-

up for one patient, where comy and comz represent horizontal and vertical position respec-

tively.

We assume that the number of components is two, and use the hybrid MCMC

algorithm to generate samples from the relevant posterior distribution. The algorithm

converges very quickly. On the basis of the values of the log-likelihood and other criteria

(see, e.g. Gelman, 1996), the algorithm tends to stabilise after about 1000 iterations.

After the algorithm has converged, we select one sample from each 20 iterations, and a

total of 100 samples are selected. Those 100 samples are approximately independently

and identically distributed according to the related posterior distribution. They are

used to do posterior inference, such as predicting test data.

To measure the performance of the model and the algorithm, the actual output

values of the test data are compared with the predictions. The results are plotted in

Figure 2 and presented in Table 1, where rmse is root mean squared error between the

prediction and the true test value, and r is the related correlation coeÆcient. There

are two kinds of test data. One is the other half of the data points in the �rst three

standings-up. We expect that in this case the predictions should be very close to the

true data. The numerical results in Table 1 and Figure 2 con�rm this expectation. This

result is important in practice, since it helps us to determine how many data points

should be recorded in an experiment. The other batch of test data comes from the

last two standings-up. We use the training data from the �rst three standings-up to

simulate those two manoeuvres; this is one of the major objectives of this engineering

project. The results are also presented in Table 1 and Figure 2. The values of rmse
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are 0.0097 and 0.0052, and the sample correlation coeÆcients are 0.9638 and 0.9963

for comy and comz respectively. From those summary statistics and from Figure 2,

the �t is very good. The method is also compared with neural network models. The

results obtained from the Gaussian process mixture model are much better than those

achieved by the neural network model, for example, the vlaue of rmse by the former

model for the �rst three standings-up in Figure 2 is about half of the value by the

latter model; see the details in Kamnik et al (2002).

Table 1. rmse and correlation coeÆcient (r)
Training data: half of �rst three standings-up
Model: GP regression mixture model with two components

comy comz
test data rmse r rmse r
�rst three standings-up 0.0023 0.9967 0.0012 0.9994
last two standings-up 0.0097 0.9638 0.0052 0.9963
Training data: half of �rst three standings-up for 5 patients
Model: GP regression mixture model with four components

comy comz
test data rmse r rmse r
Five standings-up for new patient 0.0195 0.4596 0.0291 0.9269
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Figure 2. Paraplegia Data for one patient: the true test data (points), the predictions

and the 95% con�dence intervals (lines).

We have discussed how to predict a new standing-up manoeuvre using data from

the same patient. A more interesting problem is to simulate a standing-up manoeuvre

11



for a new patient using data from others. To illustrate this, we use a training data-

set that includes half the data points for the �rst three standings-up for �ve patients.

There are a total of 15 groups. We use a Gaussian process regression mixture model

with four mixture components to build a predictor that we apply to a new patient. The

�nal results are presented in Table 1 and Figure 3. Though the results are not as good

as the prediction by the data from the same patient (see the last two standings-up in

Figure 2), as expected, if we bear in mind the complexity of the problem and compare

the results with those of other approaches, the overall performance is quite good; see

the detailed discussion in Kamnik et al (2002).
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Figure 3. Prediction for standing-up manoeuvre for a new patient based on training data

from �ve others: the true test data (points), the predictions and the 95% con�dence intervals

(lines).

We now discuss some problems in the selection of the model and its implementation.

The �rst issue is the number of mixture components, which is related to the number

of 'clusters' among the di�erent groups. We use an empirical method to choose this

number. Biomechanics research has shown that patients usually use the following

three ways of standing up: the static manner, meaning that they bring their upper

body forward prior to rising and then they rise primarily in the vertical direction; the

dynamical manner, meaning that the manoeuvre is fast and consists of two phases,

namely forward motion with which they pull their upper body forward and vertical

motion when they rise vertically; and in the third way patients stand up primarily
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with the help of their arm support. Bearing in mind the di�erences among di�erent

patients, we use a mixture model with four mixture components when we work on the

training data from �ve patients. We have also tried the model with three components;

the �nal results are almost the same as the results in Table 1. For the case when

the training data come from the same patient, since the heterogeneity among the

di�erent standings-up is not very substantial, we choose the model with two mixture

components.

The version of the hybrid MCMC algorithm used in this paper is quite eÆcient and

converges very quickly. For the mixture model, since the dimension of the covariance

matrix that requires to be inverted is the sample size of each group, the CPU time for

running one iteration on our SPARC station 20 is just a few seconds in this example.

The approach is also quite robust. When we choose di�erent values of the hyperpa-

rameters in the prior distribution, the �nal results are almost the same; the sample

size is generally quite large for these engineering problems, so the data dominate the

prior.

If the number of input variables is large, the number of the unknown parameters

is also large. We should choose the starting point carefully to avoid divergence of

the algorithm, especially when the number of mixture components and the number

of groups are also large. One way is to choose the means of the prior distribution as

the starting points. For some complicated problems, we may consider the following

approach. We divide the whole groups into several 'clusters' by the knowledge and

information obtained in collecting data such as the di�erent ways of standing up . We

then use a single GP regression model in each cluster separately. The estimates from

this single model are used as the starting point of the �nal mixture model and the

starting values of the indicator variables are related to those clusters. Both approaches

were used in our example. Both sets of the �nal results were good and were very

similar.

5 Discussion

In this paper we propose a hierarchical mixture regression model of Gaussian processes

(7) and (8) for a large data-set with repeated measurements. The model has the fol-

lowing two important features. First, the heterogeneity among groups is modelled by a

mixture model, and the approach is very 
exible because few assumptions are required.

Secondly, the observations ym = fym1; � � � ; ymNmg in every group are independent for

di�erent m, given zm. The dependence among the di�erent groups is introduced by the

latent variable zm. The vector ym is a Nm-dimensional Gaussian process. Thus, all the
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inference is based on dimension Nm, instead of dimension equal to the size of the total

sample N = N1+� � �+NM . The computational burden for the mixture model decreases

dramatically compared with the conventional Gaussian process regression model.

We have assumed that the number of mixture components K is �xed, and we use an

empirical approach to determine this number. There is much literature concerning the

selection of K. For the Bayesian approach discussed in this paper, a possible approach

is to maximize the scoring function P (D; K) = p(K)p(DjK), where

p(DjK) =
Z
p(Dj�K; K)p(�KjK)d�K:

Since in general the dimension of�K is large, this integral is intractable. It is therefore

of interest to �nd an approximation to the above integral or an alternative approach

to model selection. Ideally we would wish to tackle the problems of assessing the

value of K and parameter estimation simultaneously using methods such as those

in Richardson and Green (1997) and Stephens (2000). Research along these lines is

currently in progress.

In our application, the output trajectory and the input supportive forces are all

functions of time. Functional data analysis (Ramsay and Silverman, 1997) is an ideal

alternative approach for modelling this complex relationship. However, implementa-

tion is very diÆcult even for the functional linear model when output response and the

input covariates are all treated as functions. It therefore requires further research to

develop some eÆcient algorithms and study the functional nonlinear models.
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Appendix: Hybrid MCMC algorithm

The details of the subalgorithms for the Hybrid MCMC algorithm discussed in Section

3.3 are as follows.

Step (a) Sampling from p(z1; � � � ; zmjy;�)

14



Let ck be the number of observations for which zm = k, over all m = 1; � � � ;M .

Then

p(z1; � � � ; zM j�1; � � � ; �K) =
KY
k=1

�ckk ;

and

p(z1; � � � ; zM) =
Z
p(z1; � � � ; zM j�1; � � � ; �K)p(�1; � � � ; �K)d�1 � � �d�K

=
�(KÆ)

�(M +KÆ)

KY
k=1

�(ck + Æ)

�(Æ)
:

The conditional density function of zm is

p(zm = kjz�m) = c�m;k + Æ

M � 1 +KÆ
;

where the subscript �m indicates all indices except m and c�m;k is the number of

observations for which zi = k for all i 6= m. A Gibbs subalgorithm is used to update

zm by sampling from the following density:

p(zm = kjz�m;y;�) / p(zm = kjz�m)p(yj�; z)

/ p(zm = kjz�m)p(ymj�k):

We used the fact that p(ymj�; zm) is the density function of the Gaussian distribution

with zero mean and covariance matrix 	(�k) if zm = k.

An alternative approach is to treat (�1; � � � ; �K) as missing variables as well. One

sweep of the procedure for sampling z and � is as follows:

(i) sample zm from p(zm = kjy;�;�) / �kp(ymj�k);

(ii) sample (�1; � � � ; �K) from p(�1; � � � ; �K) � D(Æ + c1; � � � ; Æ + cK).

In this approach, a sample of � is also generated.

Step (b) Sampling from p(�jD; z) / p(�k) in (10).

We write p(�kjD; z) / exp(�E), where E is called potential energy. If we assume

that, a priori, the �k are independent for k = 1; � � � ; K, then the conditional density

function of � is

p(�jD; z) =
KY
k=1

p(�kjD; z)

with

p(�kjD; z) / p(�k)
Y

m2fzm=kg

p(ymj�k):
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Thus �k; k = 1; � � � ; K; are conditionally independent given (z1; � � � ; zM), and we can

deal with each �k separately. The dimension of �k is Q + 4 for the covariance func-

tion de�ned in (1), where Q may vary from one to a few dozen. Moreover, the above

conditional density function may have a complex form, and may be multi-modal. The

discussion in Rasmussen (1996) and Neal (1997) indicates that the Hybrid MC method

(Duane, Kennedy and Roweth, 1987) is a good method for sampling from the above

conditional distribution. The idea of the Hybrid MC method (Duane, Kennedy and

Roweth, 1987) is to create a �ctitious dynamical system where the parameter vector

� of interest, called the position variables, is augmented by a set of latent variables

�, called the momentum variables, with the same dimension as that of �. The ki-

netic energy is a de�ned as a function of the associated momenta: K(�) = 1
2

P
�i=�.

The momentum variables are therefore independent and Gaussian with zero mean and

variance �. The total energy H of the system is the sum of the kinetic energy K and

the potential energy E . The Hybrid MC samples are drawn from the joint distribu-

tion p(�;�jD; z) / exp(�H) = exp(�E � K). The discussion in Rasmussen (1996)

and Neal (1997) indicates that the Hybrid MC method is a good method for sampling

from a conditional density function with complex form, possibly multi-modal and with

large-dimensional �.

One sweep of a variation of the Hybrid MC Algorithm (Horowitz (1991), see also

Neal, 1993 and Rasmussen, 1996) is as follows.

(i) Starting from the current state (�;�), calculate the new state (�(�);�(�)) by the

following `Leapfrog' steps with step size �:

�i(
�

2
) = �i � �

2

@E
@�i

(�);

�i(�) = �i + ��i(
�

2
)=�;

�i(�) = �i(
�

2
)� �

2

@E
@�i

(�(�));

where @E(�)=@�i is the �rst derivative of E evaluated at �.

(ii) The new state (��;��) is such that

(��;��) =
�
(�(�);�(�)) with probability min(1; p(�;�)=p(�(�);�(�)))
(�;��) otherwise;

where p(�;�)=p(�(�);�(�)) = exp[H(�(�);�(�))�H(�;�)].

(iii) Generate vi from the standard Gaussian distribution, and update �i to ���i +p
1� �2vi.

Rasmussen (1996) suggests setting � = 0:5N�1=2
m , � = 1 and � = 0:95.
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