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Abstract

Gaussian processes provide an approach to nonparametric modelling
which allows a straightforward combination of function and derivative
observations in an empirical model. This is of particular importance in
identification of nonlinear dynamic systems from experimental data. 1) It
allows us to combine derivative information, and associated uncertainty
with normal function observations into the learning and inference pro-
cess. This derivative information can be in the form of priors specified
by an expert or identified from perturbation data close to equilibrium. 2)
It allows a seamless fusion of multiple local linear models in a consis-
tent manner, inferring consistent models and ensuring that integrability
constraints are met. 3) It improves dramatically the computational ef-
ficiency of Gaussian process models for dynamic system identification,
by summarising large quantities of near-equilibrium data by a handful of
linearisations, reducing the training set size – traditionally a problem for
Gaussian process models.

1 Introduction

In many applications which involve modelling an unknown systemy = f(x) from ob-
served data, model accuracy could be improved by using not only observations ofy, but
also observations of derivatives e.g.@y=@xi. These derivative observations might be di-
rectly available from sensors which, for example, measure velocity or acceleration rather
than position, they might be prior linearisation models from historical experiments. A
further practical reason is related to the fact that the computational expense of Gaussian



processes increases rapidly (O(N3)) with training set sizeN . We may therefore wish to
use linearisations, which are cheap to estimate, to describe the system in those areas in
which they are sufficiently accurate, efficiently summarising a large subset of training data.
We focus on application of such models in modelling nonlinear dynamic systems from
experimental data.

2 Gaussian processes and derivative processes

2.1 Gaussian processes

Bayesian regression based on Gaussian processes is described by [1] and interest has grown
since publication of [2, 3, 4]. Assume a setS of input/output pairs,f(xi; yi)g are given,
wherexi 2 RD; yi 2 R; i = 1 : : :N: In the GP framework, the output valuesyi are
viewed as being drawn from a zero-mean multivariable Gaussian distribution whose co-
variance matrix is a function of the input vectorsxi: Namely the output distribution is

(y1; : : : ; yN jx1; : : : ;xN ) � N (0;�(S; S)):

A general model, which reflects the higher correlation between spatially close (in some
appropriate metric) points – a smoothness assumption in target systemf(x) – uses a co-
variance matrix with the following structure;

�ij(S; S) = � exp(�
1

2
kxi � xjk2�) + vÆi;j ; (1)

where the normk � k� is defined as

kuk� = (u0�u)
1

2 ; � = diag(1; : : : ; D):

TheD+2 variables,�; 1; : : : ; D; v are thehyper-parametersof the GP model, which are
constrained to be non-negative. In particularv is included to capture the noise component
of the covariance. The GP model can be used to calculate the distribution of an unknown
outputyN+1 corresponding to known inputxN+1 as

(yN+1jx1; : : : ;xN ;xN+1; y1; : : : ; yN ) � N (�; ��);

where

� = �(xN+1; S)��1(S; S)y; (2)
�� = �(xN+1;xN+1)� �(xN+1; S)��1(S; S)�(S;xN+1) (3)

andy = [y1; y2; : : : ; yN ]0:

The mean� of this distribution can be chosen as the maximum-likelihood prediction for
the output corresponding to the inputxN+1:

2.2 Gaussian process derivatives

Differentiation is a linear operation, so the derivative of a Gaussian process remains a
Gaussian process. The use of derivative observations in Gaussian processes is described in
[5, 6], and in engineering applications in [7, 8, 9]. Suppose we are given new sets of pairs
S0

j = f(xj;i; !j;i)g; j = 1; : : : ; D; i = 1; : : :K; eachS0

j corresponding to theK points
of jth partial derivative of the underlying functiony = f(x): In the noise-free setting this
corresponds to the relation

!j;i =
@f(x)

@xj
jx=xj;i ; i = 1; : : : ;K:



We now wish to find the joint probability of the vector ofy’s and!’s, which involves
calculation of the covariance between the function and the derivative observations as well
as the covariance among the derivative observations. Covariance functions are typically
differentiable, so the covariance between a derivative and function observation and the one
between two derivative points satisfy

cov(!j;m; yn) =
@

@xj
cov(ym; yn) and cov(!j;m; !i;n) =

@2

@xj@xi
cov(ym; yn):

The following identities give those relations necessary to form the full covariance matrix,
for the covariance function (1),

cov(ym; yn) = � exp(�
1

2
kxm � xnk2�) (4)

cov(!j;m; yn) = ��j(x
m
j � xnj ) exp(�

1

2
kxm � xnk2�); (5)

cov(!j;m; !i;n) = �j(Æj;i � i(x
m
j � xnj )(x

m
i � xni )) exp(�

1

2
kxm � xnk2�) (6)
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Figure 1: The covariance functions between function and derivative points in one dimen-
sion, with hyper-parameters1 = 1:5; � = 1. The functioncov(ym; yn) defines a co-
variance that decays monotonically as the distance between the corresponding input points
xm andxn increases. Covariancecov(!j;m; yn) between a derivative point and a function
point is an odd function, and does not decrease as fast due to the presence of the multiplica-
tive distance term.cov(!; !) illustrates the implicit assumption in the choice of the basic
covariance function, that gradients increase with and that the slopes of realisations will
tend to have highest negative correlation at a distance ofx =

p
3=, giving an indication

of the typical size of ‘wiggles’ in realisations of the corresponding Gaussian process .

2.3 Derivative observations from identified linearisations

Given perturbation dataxÆ = x�x0, around an equilibrium pointxi;0; y0, we can identify
a linearisationŷ = [1 xÆ ]�i, the parameters�i;2 : : : �i;D+1 of which can be viewed as
observations of derivatives!i;1 : : : !i;D, and the bias term from the linearisation can be
used as a function ‘observation’, i.e.�i;1 = ŷ0. We use standard linear regression solutions,
to estimate the derivatives with a prior ofP on the covariance matrix

�i = (xT
i
xi +P

�1)�1xT
i
yi; (7)



�2
i

=
1

N
(yi � xi�

T
i )

2; (8)

��i = �2i
�
xTi xi + P�1

��1
; (9)

�i can be viewed as ‘observations’ which have uncertainty specified by the a(D + 1) �
(D + 1) covariance matrix��i for the ith derivative observations, and their associated
linearisation point.

With a suitable ordering of the observations (e.g.
�
y1!1;1 : : : !D;1y2!1;2 : : : !D;2

�T
), the

associated noise covariance matrix�, which is added to the covariance matrix calculated
using (4)-(6), will be block diagonal, where the blocks are the��1 : : :��K matrices. Use
of numerical estimates from linearisations makes it easy to use the full covariance ma-
trix, including off-diagonal elements. This would be much more involved if� were to be
estimated simultaneously with other covariance function hyperparameters.

In a one-dimensional case, given zero noise on observations then two function observations
close together give exactly the same information, and constrain the model in the same
way as a derivative observation with zero uncertainty. Data is, however, rarely noise-free,
and the fact that we can so easily include knowledge of derivative or function observation
uncertainty is a major benefit of the Gaussian process prior approach.

The identified derivative and function observation, and their covariance matrix can locally
summarise the large number of perturbation training points, leading to a significant reduc-
tion in data needed during Gaussian process inference. We can, however, choose to improve
robustness by retaining any data in the training set from the equilibrium region which have
a low likelihood given the GP model based only on the linearisations (e.g. responses three
standard deviations away from the mean).

In this paper we choose the hyper-parameters that maximise the likelihood of the occur-
rence of the data in the setsS; S0

1; : : : ; S
0

D:, using standard optimisation software. Given
the data setsS; S0

1; : : : ; S
0

D and the hyper-parameters the Gaussian process can be used to
infer the conditional distribution of the output as well as its partial derivatives for a given
input. The ability to predict not only the mean function response, and derivatives but also
to be able to predict the input-dependent variance of the function response and derivatives
has great utility in the many engineering applications including optimisation and control
which depend on derivative information.

2.4 Derivative and prediction uncertainty

Figure 2(c) gives intuitive insight into the constraining effect of function observations,
and function+derivative observations on realisations drawn from a Gaussian process prior.
To further illustrate the effect of knowledge of derivative information on prediction un-
certainty. We consider a simple example with a single pair of function observations
(x = 0; y = 1) and a single derivative pair(x = 0; ! = 0): Hyper-parameters are fixed at
� = 1; 1 = 1; v = 0:01: Figure 2(a) plots the standard deviation� from models resulting
from variations of function and derivatives observations. The four cases considered are

1. a single function observation,

2. a single function observation + a derivative observation, noise-free, i.e.�! = 0;

3. 150 noisy function observations with std. dev.�y = 0:02.

4. a single function observation + uncertain derivative observation (identified
from the 150 noisy function observations above, with�! = 0:2936, � =
[0:9983 0:0845]).
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(c) Examples of realisations drawn from a Gaussian process with� = 1 = 1, left – no
data, middle, showing the constraining effect of function observations (crosses), and right the
effect of function & derivative observations (lines).

Figure 2: Variance effects of derivative information.

Note that the addition of a derivative point does not have an effect on the mean prediction in
any of the cases, because the function derivative is zero. The striking effect of the derivative
is on the uncertainty. In the case of prediction using function data the uncertainty increases
as we move away from the function observation. Addition of a noise-free derivative ob-
servation does not affect uncertainty atx = 0, but it does mean that uncertainty increases
more slowly as we move away from 0, but if uncertainty on the derivative increases, then
there is less of an impact on variance. The model based on the single derivative observa-
tion identified from the 150 noisy function observations is almost indistinguishable from
the model with all 150 function observations.

To further illustrate the effect of adding derivative information, consider the pairs of noise-
free observations ofy = sin(x). The hyper-parameters of the model are obtained through
a training involving large amounts of data, but we then perform inference using only points
at�2; 0; 2. For illustration, the function point atx = 0 is replaced with a derivative point
at the same location, and the results shown in Figure 2(b).



3 Nonlinear dynamics example

As an example of a situation where we wish to integrate derivative and function observa-
tions we look at a discrete-time nonlinear dynamic system

xk+1 = xk � 0:1x3k + 0:1uk; (10)

yk+1 = xk + �k; (11)
wherexk is the system state at timek, yk is the observed output,uk is the control input
and noise term�k � N (0; �2). A standard starting point for identification is to find linear
dynamic models at various points on the manifold of equilibria. In the first part of the exper-
iment, we wish to acquire training data by stimulating the system inputu to take the system
through a wide range of conditions along the manifold of equilibria, shown in Figure 3(a).
The linearisations are each identified from 200 function observations(xi;yi) obtained by
starting a simulation atx0 and perturbing the control signal aboutu0 byN (0; 0:004).

We infer the system response, and the derivative response at various points along the man-
ifold of equilibria, and plot these in Figure 4. The quadratic derivative@y=@x from the
cubic true function is clearly visible in Figure 4(c), and is smooth, despite the presence of
several derivative observations with significant errors, because of the appropriate estimates
of derivative uncertainty. The@y=@u is close to constant0:1 in Figure 4(c). Note that the
function ‘observations’ derived from the linearisations have much lower uncertainty than
the individual function observations.

As a second part of the experiment as shown in Figure 3(b), we now add some off-
equilibrium function observations to the training set, by applying large control perturba-
tions to the system, taking it through transient regions. We perform a new hyper-parameter
optimisation using the using the combination of the transient, off-equilibrium observations
and the derivative observations already available. The model incorporates both groups
of data and has reduced variance in the off-equilibrium areas. A comparison of simulation
runs from the two models with the true data is shown in Figure 5(a), shows the improvement
in performance brought by the combination of equilibrium derivatives and off-equilibrium
observations over equilibrium information alone. The combined model is almost identical
in response to the true system response.

4 Conclusions

Engineers are used to interpreting linearisations, and find them a natural way of expressing
prior knowledge, or constraints that a data-driven model should conform to. Derivative
observations in the form of system linearisations are frequently used in control engineering,
and many nonlinear identification campaigns will have linearisations of different operating
regions as prior information. Acquiring perturbation data close to equilibrium is relatively
easy, and the large amounts of data mean that equilibrium linearisations can be made very
accurate. While in many cases we will be able to have accurate derivative observations,
they will rarely be noise-free, and the fact that we can so easily include knowledge of
derivative or function observation uncertainty is a major benefit of the Gaussian process
prior approach. In this paper we used numerical estimates of the full covariance matrix
for each linearisation, which were different for every linearisation. The analytic inference
of derivative information from a model, and importantly, its uncertainty is potentially of
great importance to control engineers designing or validating robust control laws, e.g. [8].
Other applications of models which base decisions on model derivatives will have similar
potential benefits.

Local linearisation models around equilibrium conditions are, however, not sufficient for
specifying global dynamics. We need observations away from equilibrium in transient re-
gions, which tend to be much sparser as they are more difficult to obtain experimentally,



and the system behaviour tends to be more complex away from equilibrium. Gaussian pro-
cesses, with robust inference, and input-dependent uncertainty predictions, are especially
interesting in sparsely populated off-equilibrium regions. Summarising the large quantities
of near-equilibrium data by derivative ‘observations’ should signficantly reduce the com-
putational problems associated with Gaussian processes in modelling dynamic systems.

We have demonstrated with a simulation of an example nonlinear system that Gaussian
process priors can combine derivative and function observations in a principled manner
which is highly applicable in nonlinear dynamic systems modelling tasks. Any smoothing
procedure involving linearisations needs to satisfy an integrability constraint, which has
not been solved in a satisfactory fashion in other widely-used approaches (e.g. multiple
model [10], or Takagi-Sugeno fuzzy methods [11]), but which is inherently solved within
the Gaussian process formulation. The method scales to higher input dimensionsD well,
adding only an extraD derivative observations + one function observation for each lin-
earisation. In fact the real benefits may become more obvious in higher dimensions, with
increased quantities of training data which can be efficiently summarised by linearisations,
and more severe problems in blending local linearisations together consistently.
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Figure 3: The manifold of equilibria on the true function. Circles indicate points at which
a derivative observation is made. Crosses indicate a function observation
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Figure 5: Modelling results


