
Dynamics and probabilistic text entry

John Williamson1
1 Department of Computing Science,

University of Glasgow,
Glasgow G12 8QQ,

Scotland, UK.
jhw@dcs.gla.ac.uk

Roderick Murray-Smith1,2

2 Hamilton Institute,
National Univ. of Ireland, Maynooth,

Co. Kildare,
Ireland

rod@dcs.gla.ac.uk

June 11, 2003

Abstract

We present a gestural interface for entering text on a mobile device via continuous move-
ments, with control based on feedback from a probabilistic language model. Text is represented
by continuous trajectories over a hexagonal tessellation, and entry becomes a manual control
task. The language model is used to infer user intentions and provide predictions about future
actions, and the local dynamics adapt to reduce effort in entering probable text. This leads to
an interface with a stable layout, aiding user learning, but which appropriately supports the
user via the probability model. Experimental results demonstrate that the application of this
technique reduces variance in gesture trajectories, and is competitive in terms of throughput for
mobile devices. This paper provides a practical example of a user interface making uncertainty
explicit to the user, and probabilistic feedback from hypothesised goals has general application
in many gestural interfaces, and is well-suited to support multimodal interaction.

1 Introduction

Text entry is an important part of all human computer interfaces, and is particularly important for
communication between humans via computer. However, entry on mobile devices can be prob-
lematic compared to established keyboard-based desktop systems. The restricted size and reduced
processing power of mobile devices, and the changing contexts in which the devices are used are
all obstacles to efficient text entry. Current approaches include virtual keyboards (Kolsch and
Turk 2002), handwriting recognition (Plamondon and Srihari 2000), and gesture-based interfaces;
the latter is of interest here.

Various interfaces for gestural text entry have been devised, including fixed layout approaches
such as (Mankoff and Abowd 1998) and (Perlin 1998), and dynamic layout approaches, as in
Dasher (Wardet al.2000) and in (Bellman and MacKenzie 1998). Of these, only the latter systems

1

support a probabilistic model for increasing accuracy and throughput. Support for a probabilistic
model is vital for optimal performance; in particular the best use of the limited bandwidth available
can be made only if the uncertainty in language is adequately represented.

Systems that dynamically optimize letter layouts can impair learning, as the constantly chang-
ing interface lacks the stability needed to learn to perform automatic movements. Although initial
learning times may be very short, the transition from a novice to an expert user is often slow or
impossible. At the novice level, the user is totally dependent on feedback, while at an expert level,
control is more open-loop with rapid, learned responses producing desired control actions. If the
configuration changes significantly with varying contexts, learning and producing such automatic
high-speed responses is more difficult.

In this paper, we describe a system which uses continuous gestures to produce text. The han-
dling qualities of the system are dynamically altered according to a time-varying probability model.
The gestures for letter sequences remain stable, supporting user learning and high-speed, open-loop
gesturing. However, the changing control properties reduce the effort required to choose highly
probable sequences, and so there is a direct relation between the information content of a sequence
and the effort that must be expended by the user.

2 Design

2.1 Layout

Each symbol is coded as a pair of primitive gestures, these “gestures” being movements in one of
six directions, allowing thirty-six symbols. Such a division leads to a hexagonal layout, with two
stages: selecting a letter group and selecting a letter. As hexagons form a regular tiling, gestures
for letter sequences are represented as paths through such a plane (see Figure 1). Recognition
involves selecting points in space such that the Voronoi tessellation (using the L2 norm) is hexag-
onal. Crossing cell boundaries in this tessellation triggers transitions in a finite-state model, which
outputs symbols in response.

Figure 1: The hexagonal layout. Each letter is assigned to a group, within which it is associated
with a particular edge. In this example, producing “o” requires an upwards then up-right move-
ment.

2

(a) of (b) was (c) be (d) we

(e) little (f) am (g) take (h) side

Figure 2: Eight common English words, and paths through the hexagonal space that will produce
them. These paths are generated via cubic splines (see Section 2.5)
.

2.2 Control

The interface can be controlled with a number of input devices; mice and accelerometers are used
in the prototypes presented here. The tessellation must be effectively unbounded to permit all
combinations of symbols to be entered, and so input deflection is mapped to velocity allowing
apparently infinite range of movement. A nonlinear transfer function, with a dead-zone around
zero (see (Jagacinski and Flach 2003)) is used to help stabilize the control.

The handling qualities of the system are manipulated by simulating a nonlinear landscape on
the selection plane. The local system dynamics are altered by a vector force-field which is com-
puted from the current probabilities. This field is conditioned on the current context, where the
context may incude position, velocity, acceleration, and the probability of a letter given the current
prefix. Given the statex of the system, we have

ẋ = A(c)x + B(c)u (1)

3

whereu is the control action, andA(c) andB(c) are context-varying state and control matrices,
conditioned on the contextc.

The force vectors require greater control effort on the part of the user to move into low prob-
ability areas; this can be thought of as a system of hills and valleys guiding the user away from
improbable regions of the state space.

Given six discrete probabilities for each possible transition,p1, .., p6, the force at any point is
given by a function with squared-exponential decay from the vertices. Each force is applied from
the two vertices which form the boundary across which the transition can occur. The magnitude of
the force applied at each point is given by:

f =
k

2

∑
i,j

e
d(vi(j))

2

s pi (2)

whered(vi(j)) is the Euclidean distance from thejth (j = 1..2) vertex of theith (i = 1..6) edge,
k is a constant scaling the magnitude of the forces, ands is a constant specifiying the width of the
density around the vertex.

An example landscape is shown in Figure 3, after “q” has been entered, which shows the deep
valley towards the letter group containing “u”.

In addition to this field, fixed forces are applied at the vertices, repelling the user from these
points. This limits ambiguous transitions, and forces the user to make a conscious choice at these
decision points. These forces are applied as above, having squared exponential decay, but with
constant magnitude. The forces act along the direction from the user to the vertex, avoiding the
slingshot effect that would occur if the forces were normal to the density.

2.3 Probability model

A simple language model (based upon partial predictive matching, see (Cleary and Witten 1984,
Clearyet al.1995)) is used to producep(letter|prefix) (referred to asp(l|pr)) on a per-word basis.
A tree with probability information is generated from a corpus (in this case texts from Project
Gutenberg (Hart 2003)). For simplicity, no grammar or word-level model is used, although this
would be likely to improve performance significantly (Lesher and Rinkus 2002). More complex
language models can easily be incorporated in this framework.

The probability model is extended to include the dynamics of the cursor. The velocity and
acceleration of the cursor are numerically estimated. The probability of heading into a hexagon is
then given by

cos θ + 1

2
, (3)

whereθ is the angle between the movement vector and the center of the hexagon being tested. The
probability of each hexagon is given by

p(h) = p(h|pr)p(h|v)p(h|a) (4)

. If a transition into hexagonh represents a single letterlh then

p(h|pr) = p(lh|pr), (5)

4

0
20

40
60 0

20

40

60

−20

0

20

0 20 40 60
0

10

20

30

40

50

60

70

Figure 3: The vector field (right) produced after the letter “q” is entered, and its magnitude, shown
as the surface plot on the left. The group boundary leading to “u” is at the top of these diagrams.

otherwise

p(h|pr) =
6∑

i=1

p(lhi|pr), (6)

wherelhi is theith letter in the letter group selected by a transition intoh.

2.4 Autocompletion and prediction

Potential autocompletions can be predicted using Monte-Carlo sampling. Starting from the current
prefix a potential symbol is selected randomly, weighted according top(l). This letter is con-
catenated to the prefix, and the process repeated until the end-of-word symbol is produced. The
probability of the sequence is evaluated as a by-product of this process.

Each of these word/probability pairs is stored in a list ranked by probability. The sampling is
repeatedk times, withk ≈ 300 in the current implementations. The top autocompletion is then
presented, and the autocomplete action can be initiated either by a specific button press (in the case
of a mouse) or a simple shake gesture (for orientation sensors).

The display can show the path which would generate the current autocomplete possibilities.
Fitting a cubic spline through the medians (the centers of edges) of the hexagons gives a smooth
path which will generate a given letter sequence. Displaying these splines for the top autocompletes
shows the paths of possible completions, giving a background awareness of the “word density” at

5

any point in state space. It also facilitates the learning of smooth trajectories for words. We are
currently extending this feedback to an audio display, based on ideas we presented in (Williamson
and Murray-Smith 2002), where we describe a system for audio display of time-varying probabil-
ities. The use of audio is important for mobile devices, where screen space is at a premium, and
users visual load is often already high.

2.5 Layout optimization

The layout used in preceding examples was chosen to aid learning , by grouping letters in a logical
manner (such as grouped vowels). Given a source corpus, it is possible to optimize the layout
to minimize some cost function, given a model of the user’s movement. The cost of a particular
layout is

ct =
n∑

i=1

p(wi)c(wi) (7)

wheren is the number of words in the dictionary, andc is the cost for each word. For the sake of
computational efficiency implemetations prune the cost evaluation, lettingn be the top ranked few
hundred words from the corpus.

The cost function used should minimize some aspect of effort on the part of the user; here we
penalize the sum of squaredj-th derivatives of the trajectory representing the word, i.e we have:

c(wi) =

∫ t

0

(
αj

(
djx

dtj

)2

+ βj

(
djy

dtj

)2
)

dt. (8)

In the implementations the third derivative is penalized. This is based on a minimum-jerk model
(Flash and Hogan 1985), in contrast to the linear-segment model proposed in (Isokoski 2001).
Finally, a model of the user’s movement is required; we approximate it with a cubic spline path.
This simple approximation is justified experimentally in Section 3.1. We then numerically optimize
the layout to minimizect.

2.6 Implemenations

The system has been implemented running on a desktop PC with a mouse and with an InterTrax
accelerometer, and on the PocketPC platform with an accelerometer (see Figure 4).

3 Results

In throughput testing, one of the authors achieved around 10–12 words per minute with earlier
versions of the system. This is the rate for perfect transcription of a hundred words of written text
(rather than groups of five characters per minute), including error-correction time. In this case,
the user had around 30 hours of use with the layout used for the test. Speeds of around 17wpm
are achievable with current versions, for free-form text entry. It should be borne in mind that the
layout used for these tests was not optimized (see Section 2.5).

6

Figure 4: The system running on Cassiopeia E115 with a minature accelerometer

3.1 Spatial effects

Figure 5 shows twenty trajectories for the word “hello”, as performed by one of the authors as
force model is adjusted. The four experimental conditions are: forces applied as previously de-
scribed; forces not applied; forces applied with double magnitude; forces applied as normal but
with probabilities inverted.

Also shown is a cubic spline fit through the medians of the hexagons. It is apparent that the
spline fit is a reasonable approximation; the cubic spline is within the distribution of points on
the trajectory for most of the path. Exceptions occur at significant decision points where the user
follows a less constrained path.

The intention of the force model is to increase accuracy and speed in performance. If the
hypothesis that accuracy would increase is to be verified, then the distribution of the trajectories
should be narrower for the cases where forces are present than when they are not. This can be
seen when comparing Figure 5(a) (no forces) with Figure 5(b) (with forces). Increasing the forces
should amplify these effects; this is apparent in Figure 5(c).

To illustrate the effect of the choice of language model on the performance of the system,
Figure 5(d) shows the result of inverting the probabilities in the language model (p becomes1−p).
This results in a significant increase in the deviation from the ideal path, particularly towards the
end when the model is confident of its predictions, and so is opposing most strongly. The vertex
and friction forces are as in the other tests, and so all changes of performance can be attributed to
the change in the language model.

7

(a) No forces applied

(b) Forces applied as described previously

(c) Forces with double magnitude

(d) Forces with probabilities inverted

Figure 5: Trajectories from twenty repetitions of the gesture for “hello” with varying forces. On
the left panel, dashed lines show measured trajectories, circles indicate the centers and medians
of the hexagons, and the solid line indicates a cubic spline fit through the medians. The right
panel shows a density plot produced by summing each of the data points, after convolving with
a smoothing window, onto a mesh (higher density areas are lighter). When velocity is lower the
local density will increase, assuming equal path density.

8

3.2 Temporal effects

The right-hand panel in Figure 5 shows the effect of the forces on the timing of the gesture. Without
forces applied (Figure 5(b)) the path is smooth, without any significant pauses or accelerations
(except at the start). The two runs with forces applied normally and at double strength show
a strongly periodic movement. This periodicity is significantly diminished in the example with
inverted forces, even though the forces are of the same magnitude as Figure 5(a). This enforced
periodicity may be due either to a change in the control strategy pursued by the human, or may
simply be a by-product of the changing system dynamics; more testing will be required to separate
these issues.

Whichever is the case, it is a potentially powerful feature. A periodic interface allows for
task interleaving; this is important for mobile devices where interaction may be occurring while
occasional attention is required elsewhere. The periodicity of motion may be a useful metric for
estimating performance in an adaptive system – it seems possible that confident users will produce
more regularly timed movements than users who are relying more heavily on feedback control.
Rhythmic movement can also be of use in feedback presentation, particularly in the audio modality,
allowing for structured output which requires less constant attention.

4 Conclusions

We have created a text entry system based on continuous gestures performed on a regular tessel-
lation, and demonstrated how dynamically altering the handling qualities of the system given a
probabilistic model of context can improve performance. Testing shows that the variance of trajec-
tories for probable sequences can be reduced using this method. Further systematic user trials will
be required to establish the effects at the various stages of learning.

This control-based approach supports users without constraining them, resisting low probabil-
ity actions but not preventing them. This creates a correspondence between the information content
of a sequence and the expenditure of energy on the part of the user. It also facilitates a smooth tran-
sition from unskilled, feedback-dependent users, to skilled users performing automatic, open-loop
movements.

Our system uses the probability of the hypothesised goals compatible with the current context,
to provide feedback directly to the user or by adapting the local dynamics of interaction. This is a
general technique of interest to the whole area of gesture-interface design, improving throughput
and supporting exploration and learning in new users.

Acknowlegements

Both authors are grateful for support from EPSRC grant Modern statistical approaches to off-
equilibrium modelling for nonlinear system control GR/M76379/01, and Audioclouds: three-
dimensional auditory and gestural interfaces for mobile and wearable computers GR/R98105/01.
The Multi-Agent Control Research Training Network EC TMR grant HPRN-CT-1999-00107. We
thank Xsens for the use of the P3C accelerometer.

9

References

Bellman, T. and I. S. MacKenzie (1998). A probabilistic character layout strategy for mobile text entry. In:
Proceedings of Graphics Interface ’98. pp. 168–176.

Cleary, J.G and I.H. Witten (1984). Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communications32(4), 396–402.

Cleary, J.G., W.J. Teahan and I. H. Witten (1995). Unbounded length contexts for ppm. In:Proceedings
DCC’95. pp. 52–61.

Flash, T. and H. Hogan (1985). The coordination of arm movements: an experimentally confirmed mathe-
matical model.Journal of Neuroscience5(7), 1688–1703.

Hart, M. (2003). Project gutenberg. Available at http://promo.net/pg/.

Isokoski, P. (2001). Model for unistroke writing time. In:CHI. pp. 357–364.

Jagacinski, R.J. and J.M. Flach (2003).Control theory for humans : quantitative approaches to modeling
performance. L. Erlbaum Associates. Mahwah, N.J.

Kolsch, M. and M. Turk (2002). Keyboards without keyboards: A survey of virtual keyboard implemena-
tions. In:Proceedings of Sensing and Input for Media-centric Systems.

Lesher, G.W. and G.J. Rinkus (2002). Leveraging word prediction to improve character prediction in a
scanning configuration.. In:Proceedings of the RESNA 2002 Annual Conference.

Mankoff, J. and G. D. Abowd (1998). Cirrin: A word-level unistroke keyboard for pen input. In:ACM
Symposium on User Interface Software and Technology. pp. 213–214.

Perlin, K. (1998). Quikwriting: Continuous stylus-based text entry. In:ACM Symposium on User Interface
Software and Technology. pp. 215–216.

Plamondon, R. and S. N. Srihari (2000). On-line and off-line handwriting recognition: A comprehensive
survey.IEEE Transactions on Pattern Analysis and Machine Intelligence22(1), 63–84.

Ward, D. J, A. F. Blackwell and D. J. C. MacKay (2000). Dasher - a data entry interface using continuous
gestures and language models. In:UIST’00. pp. 129–137.

Williamson, J. and R. Murray-Smith (2002). Audio feedback for gesture recognition. Technical Report TR-
2002-127. Dept. Computing Science, University of Glasgow.

10

