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Logics and Types

Need to control the usage of (new) names in pi-calculus

Spatial Logic: suitable to
@ analyze properties of systems
@ describe the spatial structure of processes
@ reason on distribution and concurrency
Behavioral types: combines static analisys and model checking
@ abstract (the behavior of) processes
@ simplify the analysis of concurrent
message-passing processes
@ properties are checked against types
@ E.g. in [lgarashi,Kobayashi’'01]
@ processes = pi-calculus, types = CCS
e (global) invariant safety properties are considered




Our approach

Introduce a type system where
@ processes and types share the same “shallow” spatial structure
@ each block of declared names is annotated with a SL formula

@ type safety: restricted processes are guaranteed to satisfy
precise properties on bound names




Our approach

Introduce a type system where
@ processes and types share the same “shallow” spatial structure
@ each block of declared names is annotated with a SL formula

@ type safety: restricted processes are guaranteed to satisfy
precise properties on bound names

Benefits
@ properties not limited to safety invariants

@ compositionality: only relevant names are considered when
checking properties
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e Processes, types and formulae




Processes

Pi-calculus with replicated input and guarded summation:

Prefixes o == a(b) Input
| ab) Output
‘ T Silent prefix
Processes P = Y ,0,.P; Guarded summation
| PIP Parallel composition

| (vb)P Restriction

| la(b).P  Replicated input




Types

CCS with replicated input and guarded summation:

Prefixes u:=a } a ’ T

Process types T :=Y,u;.T; Guarded summation
| TIT Parallel composition
| (va)T Restriction
| laT Replicated input

Channel types t::= (X:1)T




Shallow Logic (SL): examples of formulae

shallow = input and output barbs are not followed by a continuation

Race freedom:

A =
NoRace(a) = O —H*(ala)
Unique receptiveness:
A
UniRec(a) = O° (aA-H*(ala))
Responsiveness:

Resp(a) = 007, ¢*(a)

Deadlock freedom:

DeadFree(a) 2 0] (@—H*(al0*a)) A (a— H*(a]¢*a)) ]




Well-annotated processes

Pu=-- | (va:t0)P with fn(¢)C3a

with ¢ a shallow logic formula

Definition (well-annotated processes)

A process P € P is well-annotated if whenever P = (Vb)(va: ¢)Q
then Q |= 0.
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Remark: a “weakening” property of SL

Lemma
In Shallow Logic VB withfn(B) =0: A=¢ < ABE 0 J

Necessary for soundness of scope extrusion

(va:0)P|Q=(va: 9)(P|Q) if a¢ Q

11|



Remark: a “weakening” property of SL

Lemma
In Shallow Logic VB withfn(B) =0: A=¢ < ABE 0 J

Necessary for soundness of scope extrusion
(va:9)P|Q=(va:0)(P|Q) if a¢ Q

In (Caires and Cardelli’s) Spatial Logic this does not hold. E.g.
® —(—0[-0)
o OT ‘

11|



Outline
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A “Local” Type System

Judgments: 'L P: T

Fa:t-P:T Tlz=0

Key rule: (T-RES): FI—( VAT 0P (va T

Local: in (T-RES) only the part of T depending on the restricted
names, T |y, is taken into account - the rest is hidden

Example: (a.b.a|(ve)(b.c|d|T)) la = at.a|(vc)(t.c|t|T)

13
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Judgments: 'L P: T

ra:irP:T TlEo

Key rule: (T-RES): FI—( VAT 0P (va T

Local: in (T-RES) only the part of T depending on the restricted
names, T |y, is taken into account - the rest is hidden

Example: (a.b.a|(ve)(b.c|d|T)) la= at.al(ve)(t.c|t|c)
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A “Local” Type System

Judgments: 'L P: T

Key rule: (T-RES): Frf—( ;{D ;I' T(jg)::ﬂq)_r

Local: in (T-RES) only the part of T depending on the restricted
names, T |y, is taken into account - the rest is hidden

Example: (a.b.a|(ve)(b.c|d|T)) la= at.al(ve)(t.c|t|c)

relevant names = newly created names

13




Definitions and Results

Definition (negative formulae)

In a negative formula each (—x)* is under an odd number of —

Note: no limitations on other modalities!

Theorem (run-time soundness)

Suppose that I - P : T and that P is decorated with negative
formulae of the form (J*¢. Then P —* P’ implies that P’ is
well-annotated.

14



Definitions and Results

Definition (negative formulae)

In a negative formula each (—x)* is under an odd number of —

Note: no limitations on other modalities!

Theorem (run-time soundness)

Suppose that I - P : T and that P is decorated with negative
formulae of the form (J*¢. Then P —* P’ implies that P’ is
well-annotated.

Race Freedom and Unique Receptiveness are negative

14




A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like Resp(a)
and DeadFree(a)
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A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like Resp(a)
and DeadFree(a)

- R = (va; Resp(a))(c.ala)
is well-typed for suitable I'. Indeed
lalpcala:cala
and
(c.ala) 2= t.ala = Resp(a)

but
c.ala [~ Resp(a)

15




A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like Resp(a)
and DeadFree(a)

E.g.:
R = (va; Resp(a))(c.ala)
is well-typed for suitable I'. Indeed
lalpcala:cala

and
(c.ala) 2= t.ala = Resp(a)
but
c.ala %= Resp(a)

Problem: Resp on a also depends on a “global” name ¢

15




A “Global” Type System

Main change:

1z replaced by |} 3

where T |} keeps the names in x and the causes of X in T

(plus some bookkeeping on names)

16




A “Global” Type System

Main change:

1z replaced by |} 3

where T |} keeps the names in x and the causes of X in T

(plus some bookkeeping on names)

E.g.:
(c.ala) |a= c.ala [~ Resp(a)
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A “Global” Type System

Main change:

1z replaced by |} 3

where T |} keeps the names in x and the causes of X in T

(plus some bookkeeping on names)

E.g.:
(c.ala) |a= c.ala [~ Resp(a)

relevant names = new names + causally related free names

16




Definitions and Results

Consider ¢ of the form

@ either (I*y with negation not occurring underneath any (—)" in
1
Q or nyo*\p’ , With negation not occurring in .

Theorem (run-time soundness)

Suppose that I =g P : T and that P is decorated with formulae of the
form (1) or (2) above. Then P —* P’ implies that P’ is well-annotated.

17




Definitions and Results

Consider ¢ of the form

@ either (I*y with negation not occurring underneath any (—)" in
1
Q or nyo*\v’ , With negation not occurring in .

Theorem (run-time soundness)

Suppose that I =g P : T and that P is decorated with formulae of the
form (1) or (2) above. Then P —* P’ implies that P’ is well-annotated.

Responsiveness and Deadlock Freedom are of the form (2) and (1)
respectively

17
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Decidability of the type system

The type system is decidable provided that:
@ = is decidable
@ = is decidable
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Decidability of the type system

The type system is decidable provided that:
@ = is decidable
@ = is decidable

1) = is decidable
From [Engelfriet & Gelsema 2004] J
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Decidability of the type system

The type system is decidable provided that:
@ = is decidable
@ = is decidable

1) = is decidable
From [Engelfriet & Gelsema 2004]

2) |= is decidable (?)
The idea is to extend the approach in [BGZ04] for the decidability of
weak barbs on CCS to handle SL
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WSTS techniques for deciding “|="

Given a (decidable) preorder < on types in T’

Theorem ([Finkel and Schnoebelen’01])

Under certain conditions for each | C T it is possible to compute a
finite X such that

1+ X = Pred*(/) (finite basis of Pred*(/))

Since [[$*¢]] = Pred*([[¢]]), to check T = $* ¢
Q set /= [[¢]] above
@ checkif 3S€ Xst. S<T

Pred(s)={s'|s = s}  Pred*(s)={s'|s =" s}

20




Conditions [Finkel and Schnoebelen’01]

@ 7 forms a WSTS w.r.t. (a decidable) <
@ VT € 7 itis possible to compute a finite Y s.t.

TY=1Pred(T T) (effective pred-basis)
Q VI(=¢]) itis possible to compute a finite Z s.t.

TZ=1(=[o]) (finite basis)

21




Conditions [Finkel and Schnoebelen’01]

@ 7 forms a WSTS w.r.t. (a decidable) <
@ VT € 7 itis possible to compute a finite Y s.t.

TY=1Pred(T T) (effective pred-basis)
Q VI(=¢]) itis possible to compute a finite Z s.t.

TZ=1(=[o]) (finite basis)

Our task:
Find a preorder satisfying the three conditions above

Our approach:
Viewing types as forests and defining a preorder similar to Kruskal’s
tree-preorder

21




Preliminary definition

Fix an initial type Ty
Definition (F)

A
F = the set of all terms:
@ containing only subterms and restrictions of Ty

@ having nesting depth smaller than Ty’s

(va)(a.b|bla.b) € F

E.g. To = (va)(a.ba.b):
(va)(va)(a.b) ¢ F

22




WSTS I: types as forests

@ Make types a WSTS J

We consider types as forests where:

internal nodes = restrictions
leaves = prefix-guarded terms

E.g. T = (va)(a.bla.b) | (ve)((vd)e.d|c.f)

23




WSTS II: decidable <

@ Make types a WSTS

Defining the preorder

(vay (Vo)
ab (V4 <
c.d
(va)
pd
a.b a.b

< = rooted tree embedding

(ve)

\.f

(va)

\

ap  (vd)

c.d

)

(va
b

a. a.b ‘
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WSTS lll: (F,—.<) isa WSTS

Theorem
(i) < is a well-quasi order over F and (i) (F ,—,<) is a WSTS

Proof idea: (i) by induction on the nesting depth of restrictions of
terms in # and by using the Higman’s lemma. The base
case (height = 0) relies on finiteness of guarded
subterms in Ty. The inductive step relies on the fact that
each forest can be decomposed into a finite number of
subforests with smaller height

(i) (F,—, <) is a finitely branching transition system and
< is easily proved to be a computable simulation
relation in F

25




WSTS Il: (F.—,<) is a WSTS

Theorem
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subforests wi height
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WSTS Il: (F.—,<) is a WSTS

Theorem
(i) < is a well-quasi order over F and (i) {(F ,—,<) is a WSTS J

Proof idea: (i) by induction on the nesting depth of restrictions of
terms in # and by using the Hi 's lemma. The base
case (height = 0) relies on in&of guarded
subterms in Ty. The in e Step relies on the fact that
each forest can be g€ osed into a finite number of
subforests wi height
(i) (F,—, <) is a Naltely branching transition system and

< is easily proved to be a computable simulation
relation in F

contrary in pi-calculus (vb)a(b) | (ve)a(x).x.c — (vb)(vc)b.c

NB: in CCS reductions cannot increase the nesting depth, on the J ‘
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Effective Pred-basis: pb(T7)

@ VT € 7 itis possible to compute a finite Y s.t. 1T Y =1 Pred(t T)J

T

A
T. 2/ \Ta
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Effective Pred-basis: pb(T7)

@ VT € 7 itis possible to compute a finite Y s.t. 1T Y =1 Pred(t T)J

AN
AN

T2 T3 []
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Effective Pred-basis: pb(T7)

@ VT € 7 itis possible to compute a finite Y s.t. 1T Y =1 Pred(t T)J

VAN \ /\
AN

Gy, Go = prefix-guarded processes (leaves) ‘
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Effective Pred-basis: pb(T7)

@ VT € 7 itis possible to compute a finite Y s.t. 1T Y =1 Pred(t T)J

T Cr[Gi, G2

VAN

A SN

T> T3 Go

Gy, Go = prefix-guarded processes (leaves) ‘
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Effective Pred-basis: pb(T7)

@ VT € 7 itis possible to compute a finite Y s.t. 1T Y =1 Pred(t T)J

T Cr[Gi,G2]

VA AN
A\ N

Tz T3 Go

Theorem
VT € T : pb(T) is effective and 1 pb(T) =1 Pred(T T) J
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Finite-basis: 1 ib(¢) = [¢o]| N F

Q VI(=[o]) itis possible to compute a finite Zs.t. 1 Z = I(= [[q)]])J

(G = prefix-guarded process (leaf) — D = context of parallel and restrictions)

Definition (fb(¢))

o(a) = {D[G] € F | G \ua}

27




Finite-basis: 1 0(0) = [[o]| N F

Q VI(=[d]) itis possible to compute a finite Zs.t. 1 Z = /(= [[q)]])J

(G = prefix-guarded process (leaf) — D = context of parallel and restrictions)

Definition (fb(¢))

A (va)
fb(a) {DlG] € ¥ | G\ua}
fo(H" (91102)) 2 Us, em(o) {DIG1, Ge] € F | Gj = leaves(S;) } )/ \
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Finite-basis: 1 0(0) = [[o]| N F

Q VI(=[d]) itis possible to compute a finite Zs.t. 1 Z = /(= [[q)]])J

(G = prefix-guarded process (leaf) — D = context of parallel and restrictions)

Definition (fb(¢))

A (va)
m(a)={D[G] € F | G \ua}
fo(H* (1 |¢2))éUSfefb(¢;) {DIG1,Ge] € F | G; = leaves(S)) }

(vb)
Gz Gi Gs
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Finite-basis: 1 0(0) = [[o]| N F

Q VI(=[o]) itis possible to compute a finite Zs.t. 1 Z = I(= [[q)]])J

(G = prefix-guarded process (leaf) — D = context of parallel and restrictions)

Definition (fb(¢))
t(a)2{D[G] € F | G \ua}
fo(H" (91 |¢2))éUs,-efb(¢,-) {D[Gy,Go] € F | Gi = leaves(S;) }
(01 02) = 6(01) U fb(02)

27




Finite-basis: 1 0(0) = [[o]| N F

Q VI(=[o]) itis possible to compute a finite Zs.t. 1 Z = I(= [[q)]])J

(G = prefix-guarded process (leaf) — D = context of parallel and restrictions)

Definition (fb(¢))

b(a) 2 {D[G] € F | G \ua}
(H (91102)) 2 Us (o) { DIG1. Gl € F | G = leaves(S))}
(01 V 92) = 16(01) U tb(02)
(O*0)2X st 1 X = Pred*(b(0))

27




What about fb(¢1 A ¢2)?

Idea:

S1 € (1)
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What about fb(¢1 A ¢2)?

Idea:

Sz € 1b(92)
St € (1)

28




What about fb(¢1 A ¢2)?

Idea:

S

Sz € 1b(92)
St € (1)

S = “least common multiple” of S; and S,

E.g. Si =alb, S; =blc = S=alblc
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Main results

Definition (monotone, anti-monotone and plain formulae)
@ ¢ is monotone if it does not contain occurrences of —
@ anti-monotone if it is of the form —y, with y monotone

@ ¢ is plain if it does not contain {* underneath H*

Theorem (decidability on types and processes)
For any ¢ plain and (anti-)monotone
@ () is a computable finite basis for [[¢]] N F
Q T = 0 is decidable for any T
© P = 0 is decidable for any P well-typed

29




Examples of decidable formulae

Never two concurrent outputs on a:

NoRace(a) 2 -{O*H*(al a)

Communication on a never occurs more than once:

Linear(a) 2 —$ (@) (a)

Resource a never acquired in presence of the lock /:

Lock(a,1) £ ~¢*H* (/| (a))

30
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Further and related works

Further:

@ Decidability: relax some constraints? Difficult:
Known result: {*(aA —b) is undecidable [Zavattaro’09]

@ Quantitative behavioural types? Ongoing work

Related:

Behavioural types: Acciai and Boreale’08; Chaki et al.02; Igarashi
and Kobayashi’01;

Decidability results in CCS: Valencia et al.09; Busi et al.04
Spatial logics: Caires’04
Undecidability results: Kobayashi and Suto 2007
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Type system

MNa: (x:HT fm@Eun(T)\¥=a, Ix:TFP:TT x¢n(T)

(T-InP) Mea(x).P:a"1T

MN-a:(x:H)T TFb:T TvdashP:S

(T-Our) — —
r+ab).p:a(T[b/x]|S)
3 Ma:tHP:T a=fn(t) : r-P:T FrQ:s
(TRES) T (va )P (va")T (T-PAR) =T 71$
I|#1 Viel: TFo.Pi:y.T; Me-a(x).P:aT
T-Sum | L T-REP) =t —
( ) re Ziea”P’ . Zie/'“"'T" ( ) rHla(x).P:1a®T

- r=EP:7T T=8 - r=p,:T
(TEQ) - ps (TTA0) P pinT
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Example: Unique Receptiveness (a liveness property)

= Local Type System
UniRec(a) Sauk (aA—H*(ala))

P=(va,b,c;UniRec(a))Q
Q=((c(a) | a+ b(x).x)|c(y)-b(y))

34




Example: Unique Receptiveness (a liveness property)

= Local Type System

UniRec(a) Sauk (aA—H*(ala))

P=(va,b,c;UniRec(a))Q
Q=((c(a) | a+b(x).x) | c(y)-b(y))
is well-typed. Indeed, for a suitable I':

MabckLQ:T éE.B.a\a+b|c
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Example: Unique Receptiveness (a liveness property)

= Local Type System

UniRec(a) Sauk (aA—H*(ala))

P=(va,b,c;UniRec(a))Q
Q=((c(a) | a+b(x).x) | c(y)-b(y))
is well-typed. Indeed, for a suitable I':

MabckLQ:T 2 tha la+b|c
with
Tlapc=T = UniRec(a)

hence well-typed by (T-RES)
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Example: Responsiveness

= Global Type System
A * *
Resp(a) = O ,$*(a)

P=(va: Resp(a))(c(a))|Q
Q="c(x).(x|x)|c(b)

35




Example: Responsiveness

= Global Type System
A * *
Resp(a) = 0 ,¢"(a)

P=(va: Resp(a))(c(a))|Q
Q="c(x).(x|x)|c(b)

is well-typed. Indeed, for a suitable I':

Mg ela)|Q:c.(3a)lc/e.(Blb) 2 T
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Example: Responsiveness

= Global Type System
A * *
Resp(a) = 0~ ,$"(a)

P=(va: Resp(a))(c(a))|Q
Q="c(x).(x|x)|c(b)
is well-typed. Indeed, for a suitable I':
Mg ela)|Q:c.(3a)lc/e.(Blb) 2 T

and
Tla=rc.(ala)|'c|c.(t|t) = Resp(a)

hence well-typed by (T-RES)
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Shallow Logic (SL)

0:=T
| =0
| OV
| 970

| a
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Shallow Logic (SL)

0:

= [M=u

= [-¢] = U\ [0]
| oV [91 V2]l = [01] U [¢2]]
| OND [91 A 02] = [01] M [02]

| a [a] = {A| AN }

| a [a] = {A|ANa }

| 00 [01/02]] = {A|FA1, A2 - A= Aq|Az, A € [04]], Az € [[02]]}
| H*0 [[H*cb]] {A|38,B: A= (Va)B, a#¢, B< 0]}

| (a0 [[< = {A[38: 4 % B B[]}

REN q)]]_{A\ac,B.A = B, N\ &40, B [0]}

| (—8)"¢ [[<—é>*¢1] ={A|30,B: A > B, a#oc, Be 0]}
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