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Logics and Types

Need to control the usage of (new) names in pi-calculus

Spatial Logic: suitable to

analyze properties of systems
describe the spatial structure of processes
reason on distribution and concurrency

Behavioral types: combines static analisys and model checking

abstract (the behavior of) processes
simplify the analysis of concurrent
message-passing processes
properties are checked against types
E.g. in [Igarashi,Kobayashi’01]

processes = pi-calculus, types = CCS

(global) invariant safety properties are considered
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Our approach

Introduce a type system where

processes and types share the same “shallow” spatial structure

each block of declared names is annotated with a SL formula

type safety: restricted processes are guaranteed to satisfy
precise properties on bound names

Benefits

properties not limited to safety invariants

compositionality: only relevant names are considered when
checking properties
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Processes

Pi-calculus with replicated input and guarded summation:

Prefixes α ::= a(b̃) Input∣∣ a〈b̃〉 Output∣∣ τ Silent prefix

Processes P ::= ∑i∈I αi .Pi Guarded summation∣∣ P|P Parallel composition∣∣ (νb̃)P Restriction∣∣ !a(b̃).P Replicated input
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Types

CCS with replicated input and guarded summation:

Prefixes µ ::= a
∣∣ a
∣∣ τ

Process types T ::= ∑i µi .Ti Guarded summation∣∣ T|T Parallel composition∣∣ (νã)T Restriction∣∣ !a.T Replicated input

Channel types t ::= (x̃ : t̃)T
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Shallow Logic (SL): examples of formulae

shallow = input and output barbs are not followed by a continuation

Race freedom:

NoRace(a)
4
= �∗ ¬H∗(a|a)

Unique receptiveness:

UniRec(a)
4
= �∗

(
a∧¬H∗(a|a)

)
Responsiveness:

Resp(a)
4
= �∗−a ♦∗〈a〉

Deadlock freedom:

DeadFree(a)
4
= �∗

[ (
a→ H∗(a|♦∗ a)

)
∧
(
a→ H∗(a|♦∗ a)

)]
9



Well-annotated processes

P ::= · · ·
∣∣ (νã : t̃; φ)P with fn(φ)⊆ ã

with φ a shallow logic formula

Definition (well-annotated processes)

A process P ∈ P is well-annotated if whenever P ≡ (ν̃b̃)(νã : φ)Q
then Q |= φ.
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Remark: a “weakening” property of SL

Lemma
In Shallow Logic ∀B with fn(B) = /0: A |= φ⇔ A|B |= φ

Necessary for soundness of scope extrusion

(νã : φ)P |Q ≡ (νã : φ)(P |Q) if ã /∈ Q

In (Caires and Cardelli’s) Spatial Logic this does not hold. E.g.

¬(¬0 |¬0)

♦T
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A “Local” Type System

Judgments: Γ `L P : T

Key rule: (T-RES):
Γ, ã : t̃ ` P : T T ↓ã|= φ

Γ ` (νã : t̃ ; φ)P : (νã : t̃)T

Local: in (T-RES) only the part of T depending on the restricted
names, T ↓x̃ , is taken into account - the rest is hidden

Example:
(
a.b.a |(νc)(b.c |d |c)

)
↓a = a.τ.a |(νc)(τ.c |τ |c)

relevant names = newly created names
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Definitions and Results

Definition (negative formulae)

In a negative formula each 〈−x̃〉∗ is under an odd number of ¬

Note: no limitations on other modalities!

Theorem (run-time soundness)
Suppose that Γ `L P : T and that P is decorated with negative
formulae of the form �∗φ. Then P →∗ P ′ implies that P ′ is
well-annotated.

Race Freedom and Unique Receptiveness are negative

14



Definitions and Results

Definition (negative formulae)

In a negative formula each 〈−x̃〉∗ is under an odd number of ¬

Note: no limitations on other modalities!

Theorem (run-time soundness)
Suppose that Γ `L P : T and that P is decorated with negative
formulae of the form �∗φ. Then P →∗ P ′ implies that P ′ is
well-annotated.

Race Freedom and Unique Receptiveness are negative

14



A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like Resp(a)
and DeadFree(a)

E.g.:
R = (νa;Resp(a))(c.a|a)

is well-typed for suitable Γ. Indeed

Γ,a `L c.a|a : c.a|a

and
(c.a|a) ↓a = τ.a|a |= Resp(a)

but
c.a|a 6|= Resp(a)

Problem: Resp on a also depends on a “global” name c
15
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A “Global” Type System

Main change:

↓x̃ replaced by ⇓x̃

where T ⇓x̃ keeps the names in x̃ and the causes of x̃ in T

(plus some bookkeeping on names)

E.g.:
(c.a|a) ⇓a = c.a|a 6|= Resp(a)

relevant names = new names + causally related free names
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Definitions and Results

Consider φ of the form
1 either �∗ψ with negation not occurring underneath any 〈−ỹ〉∗ in

ψ

2 or �∗−ỹ♦
∗ψ′ , with negation not occurring in ψ′.

Theorem (run-time soundness)
Suppose that Γ `G P : T and that P is decorated with formulae of the
form (1) or (2) above. Then P →∗ P ′ implies that P ′ is well-annotated.

Responsiveness and Deadlock Freedom are of the form (2) and (1)
respectively
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Decidability of the type system

The type system is decidable provided that:
1 ≡ is decidable
2 |= is decidable

1) ≡ is decidable
From [Engelfriet & Gelsema 2004]

2) |= is decidable (?)

The idea is to extend the approach in [BGZ04] for the decidability of
weak barbs on CCS to handle SL
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WSTS techniques for deciding “|=”

Given a (decidable) preorder ≤ on types in T

Theorem ([Finkel and Schnoebelen’01])

Under certain conditions for each I ⊆ T it is possible to compute a
finite X such that

↑ X = Pred∗(I) (finite basis of Pred∗(I))

Since [[♦∗φ]] = Pred∗([[φ]]), to check T |=♦∗φ
1 set I = [[φ]] above
2 check if ∃S ∈ X s.t. S ≤ T

Pred(s) = {s′
∣∣ s′→ s} Pred∗(s) = {s′

∣∣ s′→∗ s}
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Conditions [Finkel and Schnoebelen’01]

1 T forms a WSTS w.r.t. (a decidable) ≤
2 ∀T ∈ T it is possible to compute a finite Y s.t.

↑ Y =↑ Pred(↑ T ) (effective pred-basis)

3 ∀I (= [[φ]]) it is possible to compute a finite Z s.t.

↑ Z = I (= [[φ]]) (finite basis)

Our task:
Find a preorder satisfying the three conditions above

Our approach:
Viewing types as forests and defining a preorder similar to Kruskal’s
tree-preorder
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Preliminary definition

Fix an initial type T0

Definition (F )

F 4
= the set of all terms:

containing only subterms and restrictions of T0

having nesting depth smaller than T0’s

E.g. T0 = (νa)
(
a.b|a.b

)
:

 (νa)
(
a.b |b |a.b

)
∈ F

(νa)(νa)(a.b) /∈ F
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WSTS I: types as forests

1 Make types a WSTS

We consider types as forests where:

internal nodes = restrictions
leaves = prefix-guarded terms

E.g. T = (νa)
(
a.b|a.b

)
|(νc)

(
(νd)c.d |c.f

)
(νa)

a.b a.b

(νc)

(νd)

c.d

c.f
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WSTS II: decidable ≤

1 Make types a WSTS

Defining the preorder ≤ = rooted tree embedding

(νa)

a.b

(νc)

(νd)

c.d

≤

(νa)

a.b a.b

(νc)

(νd)

c.d

c.f

(νa)

a.b a.b

6≤

(νa)

a.b a.b
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WSTS III: 〈F ,→,≤〉 is a WSTS

Theorem
(i) ≤ is a well-quasi order over F and (ii) 〈F ,→,≤〉 is a WSTS

Proof idea: (i) by induction on the nesting depth of restrictions of
terms in F and by using the Higman’s lemma. The base
case (height = 0) relies on finiteness of guarded
subterms in T0. The inductive step relies on the fact that
each forest can be decomposed into a finite number of
subforests with smaller height

(ii) 〈F ,→,≤〉 is a finitely branching transition system and
≤ is easily proved to be a computable simulation
relation in F

NB: in CCS reductions cannot increase the nesting depth, on the
contrary in pi-calculus (νb)a〈b〉 |(νc)a(x).x .c → (νb)(νc)b.c
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Effective Pred-basis: pb(T )

2 ∀T ∈ T it is possible to compute a finite Y s.t. ↑ Y =↑ Pred(↑ T )

T

;

•

T1 •

T2 T3

; CT [G1,G2]

•

G1 •

T2 T3 G2

G1,G2 = prefix-guarded processes (leaves)
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T2 T3
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CT [G1,G2]
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G1 •

T2 T3 G2

Theorem
∀T ∈ T : pb(T ) is effective and ↑ pb(T ) =↑ Pred(↑ T )
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Finite-basis: ↑ fb(φ) = [[φ]]∩F

3 ∀I (= [[φ]]) it is possible to compute a finite Z s.t. ↑ Z = I (= [[φ]])

(G = prefix-guarded process (leaf) – D = context of parallel and restrictions)

Definition (fb(φ))

fb(a)
4
={D[G] ∈ F

∣∣ G↘a}

fb(H∗(φ1|φ2))
4
=

⋃
Si∈fb(φi )

{
D[G̃1, G̃2] ∈ F

∣∣ G̃i = leaves(Si )
}

fb(φ1∨φ2)
4
= fb(φ1)∪ fb(φ2)

fb(♦∗φ)
4
=X s.t. ↑ X = Pred∗(fb(φ))

· · ·

(νa)

...

G
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What about fb(φ1∧φ2)?

Idea:

•
S1 ∈ fb(φ1)

•
S2 ∈ fb(φ2)

S = “least common multiple” of S1 and S2

E.g. S1 = a|b, S2 = b|c =⇒ S = a|b|c

28
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Main results

Definition (monotone, anti-monotone and plain formulae)
φ is monotone if it does not contain occurrences of ¬
anti-monotone if it is of the form ¬ψ, with ψ monotone

φ is plain if it does not contain ♦∗ underneath H∗

Theorem (decidability on types and processes)
For any φ plain and (anti-)monotone

1 fb(φ) is a computable finite basis for [[φ]]∩F
2 T |= φ is decidable for any T
3 P |= φ is decidable for any P well-typed

29



Examples of decidable formulae

Never two concurrent outputs on a:

NoRace(a)
4
= ¬♦∗H∗(a |a)

Communication on a never occurs more than once:

Linear(a)
4
= ¬♦∗〈a〉♦∗〈a〉

Resource a never acquired in presence of the lock l :

Lock(a, l)
4
= ¬♦∗H∗(l | 〈a〉)

30
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Further and related works

Further:

Decidability: relax some constraints? Difficult:
Known result: ♦∗(a∧¬b) is undecidable [Zavattaro’09]

Quantitative behavioural types? Ongoing work

Related:

Behavioural types: Acciai and Boreale’08; Chaki et al.’02; Igarashi
and Kobayashi’01;

Decidability results in CCS: Valencia et al.’09; Busi et al.’04

Spatial logics: Caires’04

Undecidability results: Kobayashi and Suto 2007

32



Type system

(T-INP)
Γ ` a : (x̃ : t̃)T fn(̃t)∪ fn(T)\ x̃ = a, Γ, x̃ : t̃ ` P : T|T′ x̃ /∈ fn(T′)

Γ ` a(x̃).P : aa.T′

(T-OUT)
Γ ` a : (x̃ : t̃)T Γ ` b̃ : t̃ ΓvdashP : S

Γ ` a〈b̃〉.P : a.(T[b̃/̃x ] |S)

(T-RES)
Γ,a : t ` P : T a = fn(t)

Γ ` (νa : t)P : (νaa)T
(T-PAR) Γ ` P : T Γ ` Q : S

Γ ` P|Q : T|S

(T-SUM)
|I| 6= 1 ∀i ∈ I : Γ ` αi .Pi : µi .Ti

Γ `∑i∈αi .Pi : ∑i∈Iµi .Ti
(T-REP)

Γ ` a(x̃).P : aa.T
Γ `!a(x̃).P :!aa.T

(T-EQ) Γ ` P : T T≡ S
Γ ` P : S (T-TAU) Γ ` P : T

Γ ` τ.P : τ.T
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Example: Unique Receptiveness (a liveness property)

⇒ Local Type System

UniRec(a)
4
= �∗

(
a∧¬H∗(a|a)

)
P =(νa,b,c ;UniRec(a))Q

Q =
(

(c〈a〉 | a + b(x).x) |c(y).b〈y〉
)

is well-typed. Indeed, for a suitable Γ:

Γ,a,b,c `L Q : T
4
= c.b.a | a + b | c

with
T ↓a,b,c= T |= UniRec(a)

hence well-typed by (T-RES)
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Example: Responsiveness

⇒ Global Type System

Resp(a)
4
= �∗−a♦∗〈a〉

P = (νa : Resp(a))(c〈a〉)|Q

Q = !c(x).(x |x)|c〈b〉

is well-typed. Indeed, for a suitable Γ:

Γ `G c〈a〉|Q : c.(a|a)|!c|c.(b|b)
4
= T

and
T ⇓a= c.(a|a)|!c|c.(τ|τ) |= Resp(a)

hence well-typed by (T-RES)
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Shallow Logic (SL)

φ ::=T∣∣ ¬φ∣∣ φ∨φ∣∣ φ∧φ∣∣ a∣∣ a∣∣ φ|φ∣∣ H∗φ∣∣ 〈a〉φ∣∣ 〈ã〉∗φ∣∣ 〈−ã〉∗φ

[[T]] = U

[[¬φ]] = U \ [[φ]]

[[φ1∨φ2]] = [[φ1]]∪ [[φ2]]

[[φ1∧φ2]] = [[φ1]]∩ [[φ2]]

[[a]] =
{

A
∣∣A↘a

}
[[a]] =

{
A
∣∣A↘a

}
[[φ1|φ2]] =

{
A
∣∣∃A1,A2 : A≡ A1|A2, A1 ∈ [[φ1]], A2 ∈ [[φ2]]

}
[[H∗φ]] =

{
A
∣∣∃ã,B : A≡ (ν̃ã)B, ã#φ, B ∈ [[φ]]

}
[[〈a〉φ]] =

{
A
∣∣∃B : A

〈a〉−→ B, B ∈ [[φ]]
}

[[〈ã〉∗φ]] =
{

A
∣∣∃σ,B : A

σ−→ B, N \ ã#σ, B ∈ [[φ]]
}

[[〈−ã〉∗φ]] =
{

A
∣∣∃σ,B : A

σ−→ B, ã#σ, B ∈ [[φ]]
}
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