
Plural and :
Protocols in Practice

Jonathan Aldrich

Workshop on Behavioral Types

April 2011

School of Computer Science

Empirical Study: Protocols in Java

• Object Protocol [Beckman, Kim, & A – to appear in ECOOP 2011]

– Finite set of abstract states, among which an object will transition

– Clients must be aware of the current state to use an object correctly

• Question: how commonly are protocols defined & used?

– Corpus study on 2 million LOC: Java standard library, open source

• Results

– 7% of all types define object protocols

• c.f. 2.5% of types define type parameters using Java Generics

– 13% of all classes act as object protocol clients

– 25% of these protocols are in classes designed for concurrent use

Plural and Plaid: Protocols in Practice 2

Empirical Study: Protocols in Java

• Empirically discovered “protocol design patterns”

– 28% Initialization before use – e.g. init(), open(), connect()

– 26% Deactivation – e.g. close()

– 16% Type Qualifier – marks a subset of objects with an interface, e.g.

immutable collections

– 8% Preparation – e.g. call mark() before reset() on a stream

– 8% Boundary check – e.g. hasNext()– 8% Boundary check – e.g. hasNext()

– 7% Non-redundancy – can only call a method once, e.g. setCause()

– 5% Domain Mode – one or more domain-specific modes can be

enabled and disabled, thereby enabling or disabling a group of

methods, e.g. compression modes for javax.imageio.ImageWriteParam

– 2% Others (lifecycle protocols, strict lock/unlock alternation)

Plural and Plaid: Protocols in Practice 3

Plural: Typestate Checking for Java
• Plural: static checking of object protocol use in Java [Bierhoff & A 2007]

– Checks which methods are available at each program point

– Similar goals to [Gay, Vasconcelos, Ravara, Gesbert, Caldeira 2010]
• but we focus only within a program, not on distributed systems

• Approach: type-like annotations
– Typestate formalism

• Vs. session types: named states, nominal subtyping

– Supports external and internal choice

– Verifies that implementation is safe with respect to interface– Verifies that implementation is safe with respect to interface

– Affine, not linear (can forget an object)

– Implementation in Eclipse: flow-sensitive static analysis based on type theory

• Distinguishing characteristics
– Hierarchical and compositional specification of state space

– Supports aliased objects through novel permission forms

– Supports re-entrant code

– Supports borrowing as well as internal uses of this

– Checks typestate in the presence of concurrency

Plural and Plaid: Protocols in Practice 4

Plural: Typestate in Java

Plural and Plaid: Protocols in Practice 5

API designers specify

API protocols

Automatically check

code against protocols

Interactive protocol violation warnings

Plural Case Studies

• JabRef, 74 kLOC multithreaded BibTeX tool

– APIs verified: Timers, sockets, readers, XML nodes, Tree data structures, 9 others…

– 4 bugs found

• JSpider, 9 kLOC multithreaded web robot

– Verified Task protocol with ownership transfer

– 2 bugs found

• PMD, 35 kLOC static analysis tool

– Verified iterator usage– Verified iterator usage

• JDBC, 10 kLOC database access interface

– Specified complex protocol: 838 annotations on 440 methods

• Apache Beehive, 2 kLOC resource access library

– Implements iterator interface in terms of JDBC

• Results

– Low false positive rate: approx 1 per 400 LOC

– Low annotation overhead: from 1/25 to 1/200 LOC (depends on protocol use)

– Covers all protocols we see in informal documentation, but more succinctly

Plural and Plaid: Protocols in Practice 6

Plural Case Study Observations

• Aliasing was common in our case studies

– Views or iterators over a collection in PMD

– Shared resources (e.g. JDBC interfaces in Beehive)

• Many protocols are not documented or dynamically enforced

• State tests are common

– hasNext(), isEmpty(), etc.– hasNext(), isEmpty(), etc.

• Intersection types for methods: A -> B & C -> D

• Many uses of type qualifiers (“marker” states)

• Borrowing is common

– Temporarily “capturing” a reference (e.g. iterators over a collection)

– Temporary use of values from getters

Plural and Plaid: Protocols in Practice 7

Queue, Racy Client Usage

final Queue<String> q = new Queue<String>();

(new Thread() {

public void run() {

while(!q.is_closed()) {

String s = q.dequeue();

System.out.println(“Got: ” + s);

}

Consumer Thread

Race!

8

}

}}).start();

for(int i=0;i<5;i++)

q.enqueue(“Object ” + i);

Thread.sleep(4000);

q.close();

Producer Thread

Race!

Plural and Plaid: Protocols in Practice

Plaid: a Typestate-Oriented Language

• What does typestate-oriented mean?

programs are made up of dynamically created objects,

each object has a typestate that is changeable

and each typestate has an interface, representation, and behavior.

• Why organize a language around typestate?• Why organize a language around typestate?

– Typestate is common and important!

– Cleaner typestate specification and verification

– Expressive object model

– Cleaner invariant checking

Plural and Plaid: Protocols in Practice 9

Plaid: a Typestate-Oriented Language

state File {

val String filename;

}

state ClosedFile = File with {

method void open() [ClosedFile>>OpenFile];

}

State

transition

open closed

close()

read()

open()

}

state OpenFile = File with {

private val CFile fileResource;

method int read();

method void close() [OpenFile>>ClosedFile];

}

Plural and Plaid: Protocols in Practice 10

Different

representation
New methods

Implementing Typestate Changes

method void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

fileResource = fopen(filename);

}

}

Typestate change

primitive – like

Smalltalk become

Values must be

Plural and Plaid: Protocols in Practice 11

:

Values must be

specified for

each new field

Java Database Connectivity (JDBC) Library State Space

State Protocols are Complex

open
closed

forward

Only

scrollable

scrolling

begin validread
noUpdate

Statistics

Plural and Plaid: Protocols in Practice 12

readOnly

updatable
inserting

insert inserted

end
notYet

Read

noUpdate

pending

Java Database Connectivity (JDBC) Library State Space

State Protocols are Complex

open
closed

forward

Only

scrollable

scrolling

begin validread
noUpdate

33 unique states

69 simple state transitions

82 state transitions that depend on the

Statistics

Plural and Plaid: Protocols in Practice 13

readOnly

updatable
inserting

insert inserted

end
notYet

Read

noUpdate

pending

82 state transitions that depend on the

initial state

11 methods whose result tests the state

18 methods that require a particular state

7 methods that return a result that depends

on the ResultSet remaining in a state

0 methods where state does not matter

Modeling JDBC in Plaid

state ResultSet = …

state Open case of ResultSet =

Direction with Status with Action

state Closed case of ResultSet;

state Direction;

state ForwardOnly case of Direction;

Open
Closed

Forward

Only

Scrollable

ReadOnly

Updatable

scrolling

inserting

insert inserted

begi

n

end

valid
read

notYet

Read

noUpdate

pending

state ForwardOnly case of Direction;

state Scrollable case of Direction

state Status …

Plural and Plaid: Protocols in Practice 14

insert inserted

case of hierarchies model alternatives (OR-states)

state composition (“with”) models orthogonal state spaces (AND-states)

Typestate Permissions
• unique OpenFile

– File is open; no aliases exist

– Default for mutable objects

• immutable OpenFile
– Cannot change the File

• Cannot close it

• Cannot write to it, or change the position

– Aliases may exist but do not matter

– Default for immutable objects

File

ClosedFile OpenFile

NotEOF EOF

[Chan et al. ’98]

– Default for immutable objects

• shared OpenFile@NotEOF [OOPSLA ’07]

– File is aliased

– File is currently not at EOF
• Any function call could change that, due to aliasing

– It is forbidden to close the File
• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• full – like shared but is the exclusive writer

• pure – like shared but cannot write

Plural and Plaid: Protocols in Practice 15

Typestate Permissions
• unique OpenFile

– File is open; no aliases exist

– Default for mutable objects

• immutable OpenFile
– Cannot change the File

• Cannot close it

• Cannot write to it, or change the position

– Aliases may exist but do not matter

– Default for immutable objects

File

ClosedFile OpenFile

NotEOF EOF

[Chan et al. ’98]

pure resource-based

programming

pure functional

programming

– Default for immutable objects

• shared OpenFile@NotEOF [OOPSLA ’07]

– File is aliased

– File is currently not at EOF
• Any function call could change that, due to aliasing

– It is forbidden to close the File
• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• full – like shared but is the exclusive writer

• pure – like shared but cannot write

Plural and Plaid: Protocols in Practice 16

shared OpenFile@OpenFile

is (almost) traditional object-

oriented programming

Key innovations vs. prior work

(c.f. Fugue, Boyland, Haskell

monads, separation logic, etc.)

Permission Splitting

• Permissions may not be duplicated

– No aliases to a unique object!

• Splitting that follows permission semantics is allowed, however

– unique � full

– unique � shared

– unique � immutable– unique � immutable

– shared ���� shared, shared

– immutable ���� immutable, immutable

– X � X, pure // for any non-unique permission X

• How do we get unique back?

– borrowing, fractions, or a dynamic test

Plural and Plaid: Protocols in Practice 17

Packing/Unpacking

• How to store a linear object in a non-linear object?

void operateOnMe() {

// unpack object here, get field permissions

uniqueField.doSomething();

store(anotherUniqueField);

anotherUniqueField = new UniqueObject();

// pack object here, re-verify field permissions

finishOperation(this);

}

• Re-entrancy

– Permitted, but must ensure we do not unpack the same object twice

• e.g. in a call back from doSomething()

– Static check (e.g. with ownership) or dynamic check

Plural and Plaid: Protocols in Practice 18

Other (Eventual) Features of Plaid

• Concurrency by Default

– Uses permissions to infer dataflow dependencies

– Executes program in parallel subject to dependencies

• Dynamic state tests via pattern matching

• Recover unique via casts

– supported via reference counting– supported via reference counting

• Gradual types

– state-based modeling useful even if states are checked dynamically

• First-class state objects, trait-like composition operators

• Good support for functional programming

• Strong information hiding guarantees

Plural and Plaid: Protocols in Practice 19

Try (dynamic) Plaid!

Plural and Plaid: Protocols in Practice 20

Plural and Plaid: Protocols in Practice

• Empirical evidence regarding object protocols
– Protocols are common – 7% define, 13% use

– Fall into common patterns, useful for evaluating specifiers and checkers

• Challenging but real requirements for effective static checking
– Object aliasing – temporary and permanent

– Hierarchical state spaces

– State tests

– Concurrent sharing of protocol-defining objects (≥25% of cases)– Concurrent sharing of protocol-defining objects (≥25% of cases)

– Reentrant code

– Linear objects stored in nonlinear objects

• Plaid: native integration of state into the object model
– First-class abstractions for characterizing state change

– Use permission flow to infer concurrent execution

– Practical mix of static & dynamic checking

http://www.plaid-lang.org/
21Plural and Plaid: Protocols in Practice

