
Communication Patterns Through the Looking Glass
of Session Types

Andi Bejleri
Imperial College London

Behavioural Types- April 21, 2011

  Intuitive, light-weight type annotation
◦  Syntax of simply names and arrows, no question marks or

bangs
◦  One type for n processes

  A mode of organising structured communications
from a global point of view
◦  Consequently, describe the order of communications (part

of programs logic)

  Efficient type-checking strategy of processes
through projection of global types onto participants

€

Buyer→ Store :<String> .
Store→Credit Agency :<Int> .

Credit Agency→ Store :
FAILED : Store→ Buyer : FAILED : End{
APPROVED : Store→ Buyer : APPROVED : Store→ Buyer :<String> .End{

⎧
⎨
⎪

⎩ ⎪

Buyer Store Credit Agency Buy(Product)
Check (Amount)

Failed

Approved Failed

Approved 
Product (Receipt)



Processes

Sequence diagram

Global type Message Causality

Branching Causality

Session

Shared names
a[1, 2, 3, 4]

keys = 1, 2, …

Global type

Process

Private channels
(ν s)

  Describe simple and elegant structured interactions
◦  Ring, Star, Tree, 2D-Mesh, Hypercube
◦  Used in: parallel algorithms, data exchange protocols, web

services

  Simulation of the n-body algorithm over the Ring
pattern

◦  First iteration: send particles to the neighbor on its left
and calculate forces exerted within their particles.
◦  i-th iteration: forward particles received in i-1 iteration,

calculate forces of them and receive the next particles set

0 1 n … n-1

  Communication patterns and global types describe
structured interactions
◦  Global types serve not only as a blue print of the system’s

architecture but also as a type system that guarantees
communication-safety

  Communication patterns describe structured
interactions of an arbitrary number of participants
◦  In the n-body algorithm (for another implementation)

ones needs 80 processes for 64 particles and 110 for 128
to obtain a good speed up.

  Unable to express sessions where the number of
participants is known only at run-time
◦  In parallel algorithms, the number of participants depends

on the size of the problem instance

1.  Parameterise participants
2.  Iterate over parameterised causalities that

abstract repetitive behavior of pattern
3.  Compose sequentially global types

Gödel’s R－ primitive recursive function
Encoded as an iterator, for (i=n-1; i>0; i--)G; G’

0 1 n …

 R n 0:<U>.end
 λi.λX.n-i-1 n-i:<U>.X

 n

n-1

R 2 0:<U>.end
 λi.λX.2-i-1 2-i:<U>.X

2

0 1:<U>.
1 2:<U>.
2 0:<U>.
end

iterate

Ring of length 3

  Blueprint that describes the nature of a communication
pattern and the behavior that all run-time processes will
share

  Concept similar to classes

€

public class Starter{
public Starter(int port_l, String host_r,int port_r){
//Set up the sockets for the pattern
...
Pr intWriter out = null;
BufferedReader = null;
try{

serverSocket = new ServerSocket(port _ l);
clientSocket = new Socket(host _ r, port _ r);
out = ... //Init. the output stream on clientSocket
in = ... // Init. the input stream on serverSocket
//Exchange messages with neighbors
out.pr int ln("1");
String m = in.readLine();
... //Close streams and sockets

}
}

In our calculus
(not complete):

In Java (not complete):

€

Starter = y!〈W [1],"1"〉;y ?〈W [n],x〉;R

Abstraction of neighbors

Communication abstraction
of processes/objects that will
be generated at runtime

0 1 n …

Starter Middle Last

  Efficient type-checking through projection of global
types onto the principals

€

G = R n→ 0 :<U> .end
λi.λX.n− i−1→ n−i :<U>.X n

€

W [0] = 〈W [1],U〉;?〈W [n],U〉;end
W [j +1] = ?〈W [j],U〉;!〈W [j + 2],U〉;end
W [n] = ?〈W [n −1],U〉;!〈W [0],U〉;end

Projection

Sort

Typecheck

Bound by lambda of function

€

λn:{n >1}.R

  Projection

  Ring pattern
◦  Middle worker () appear in both sides

…1 2:<U>.2 3:<U>…,

€

p→ p': 〈U〉.G↑q =

!〈 p'{p = q},U〉(p);?〈 p{p'= q},U〉(p');G↑q if C  p = q and C  p'= q
!〈 p'{p = q},U〉(p);G↑q if C  p = q
?〈 p{p'= q},U〉(p');G↑q if C  p'= q
G↑q otherwise

⎧

⎨
⎪
⎪

⎩
⎪
⎪

€

W [j +1]

€

1..n −1

€

n − i −1→ n − i

  From projection of the Ring global type on :

  Sort the sequence of actions on their appearance in G

  Sorting of the sequence of actions on the participants of
G who represent them,

Position where the
action appears

€

!〈W [j + 2],U〉(W [n − i −1]);?〈W [j],U〉(W [n − i])

€

!〈W [3],U〉;?〈W [1],U〉Instance of the above type for W[2]
€

W [j +1]

€

?〈W [1],U〉;!〈W [3],U〉

€

W [n − i −1],W [n − i]

  Values of parameters range over infinite sets of
parameters

€

λn:{n >1}.PFull computation power
of program (P) €

G = R n→ 0 :<U> .end
λi.λX.n− i−1→ n−i :<U>.X n

€

G = R end
λi.λX.i→ 2* i +1:<U>.

i→ 2* i + 2 :<U> .X 2n −1

€

OddLeaf = a[2*(2n−1+i−1) +1](y).y ?(2n−1+i−1, z);S

  Index calculation in global types is simpler than the
one in roles
◦  A direct advantage of the global representation of

interactions

Tree pattern

  A system that expresses sessions of an arbitrary
number of processes through the role idiom,
preserving:
◦  An intuitive, light-weight type annotation
◦  A global description of structured interactions
◦  Efficient type-checking strategy: projection of global types

onto participants and sorting of actions in the role types
◦  A non-conservative type system that allows parameters to

range over an infinite set of values

  Parameterised Session Types: Communication patterns
through the looking glass of session types. Dissertation
(To appear sometime in May-June)

◦  Practical Parameterised Session Types. ICFEM 2010
◦  Session-based Programming for Parallel Algorithms. PLACES

2009.
◦  Synchronous Multiparty Session Types. PLACES 2008.

http://www.doc.ic.ac.uk/~ab406/

