Parameterised Session Types

Communication Patterns Through the Looking Glass
of Session Types

Andi Bejleri
Imperial College London
Behavioural Types- April 21,201 |

Session Types:What do they offer

e Intuitive, light-weight type annotation

> Syntax of simply names and arrows, no question marks or
bangs

> One type for n processes
e A mode of organising structured communications
from a global point of view

> Consequently, describe the order of communications (part
of programs logic)

* Efficient type-checking strategy of processes
through projection of global types onto participants

Example: Buyer-Store-Credit Agency

Buyer Store Credit Agenc
Sequence diagram Check (Amount)
Faled T2 }
Fe e €77 ppproved _ _ ==
&~ Approvcid_ o ="
&c=-=-"""" .
Product (ReceiPt)
é—

Global type

Buyer — Store <String>. <&

Message Causality

Store — Credit Agency <Int> .

Branching Causality == Credit Agency — Store:

FAILED: Store = Buyer : {FAILED: End
APPROVED: Store — Buyer : {APPROVED : Store — Buyer <String> .End

Processes

Session

Process

Private chanéhels

(¥ s)

Global type

Shared namé
a[l,2,3,4]

keys = 1,2, .

.o

A chatting room

Semantics

—F—Z';'—f
& =
G |

#

Communication patterns

e Describe simple and elegant structured interactions

> Ring, Star, Tree, 2D-Mesh, Hypercube

> Used in: parallel algorithms, data exchange protocols, web
services

e Simulation of the n-body algorithm over the Ring
pattern

O m | |/ ... —2 n-| | n

° First iteration: send particles to the neighbor on its left
and calculate forces exerted within their particles.

° i-th iteration: forward particles received in i-1 iteration,
calculate forces of them and receive the next particles set

Guaranteeing communication-safety
for communication patterns |

 Communication patterns and global types describe
structured interactions
> Global types serve not only as a blue print of the system’s

architecture but also as a type system that guarantees
communication-safety

Guaranteeing communication-safety
for communication patterns |

o Communication patterns describe structured
interactions of an arbitrary number of participants

° |n the n-body algorithm (for another implementation)
ones needs 80 processes for 64 particles and |10 for 128
to obtain a good speed up.

e Unable to express sessions where the number of
participants is known only at run-time

° In parallel algorithms, the number of participants depends
on the size of the problem instance

Parameterised Session Types

|. Parameterise participants

2. Iterate over parameterised causalities that
abstract repetitive behavior of pattern

3. Compose sequentially global types

Godel’'s R— primitive recursive function

Encoded as an iterator, for (i=n-1;i>0;i--)G; G’

The Ring communication pattern

R n— 0:<U>.end
Ai. A X.n-i-1 — n-i:<U>.X
n

Ring of length 3

R 2 —0:<U>.end iterate ,\ 00— I:<U>.

i _i- i | —> 2:<U>.

Ai. A X 2-i-1 — 2-i:<U>.X o oen
end

2

Roles

 Blueprint that describes the nature of a communication
pattern and the behavior that all run-time processes will
share

* Concept similar to classes

Starter Middle Last

Starter role of the Ring pattern _ ° [[

In our calculus In Java (not complete):
(not complete):

public class Starter{
/>public Starter(int port_L, String host_r,int port_r){

Starter = y(W[1],"1"); y XW [n],x);R

1

e sockets for the pattern

. g

Communication abstraction
of processes/objects that will
be generated at runtime

Print Writer out = null;
BufferedRe ader = null,

try{

serverSocket = new ServerSocket(port _I);
clientSocket = new Socket(host _r, port _r);
out = ...//Init. the output stream on clientSocket

in = ...//Init.the input stream on serverSocket

/I Exchange messages with neighbors
Abstraction of neighbors out.println("1"):;

String m = inreadLine();

.../IClose streams and sockets

Static type system

o Efficient type-checking through projection of global
types onto the principals

G=Rn—0<U> end
”,—J7

Bound by lambda of function — MAXn—i—-1—n-i <U>X n

Projection

\

Sort
0] = (WIILUYLAW [n],Uend

J+ U =XWI[jLUKWI[j+2],U);end
n]=AWI[n-1,U)KW[0],U);end

= =

=

Typecheck

Anin >1} R

Projection

* Projection

((p'{p=at.UNp):Xp{p'=q}.UNP):Glq if Cdp=qandC<p'=q
p{p=q}.U)p)Glqg if C<ap=gq

Ap{p'=q}.UNp)Glq if C<p'=gq

G 1q otherwise

p—p:(U)G1lq=,

* Ring pattern

> Middle worker W[j+1] (1..n-1) appear in both sides n-i-1—=n-i
2 2<U>2—3:<U>..

9

Sorting

e From projection of the Ring global type on W[+1]:

Position where the ‘<W [] + 2] 9U>(W[n T I — 1])a()<W[]] 3U>(W[’1(- l])

action appears

Instance of the above type for W/[2] ‘<W [3] ,U>,?<W [1] ,U>

* Sort the sequence of actions on their appearance in G
AWI,U);XW[3],U)

e Sorting of the sequence of actions on the participants of
G who represent them, W[n —-i-1],W[n -i]

Static type system

e Values of parameters range over infinite sets of
parameters

G=Rn—0:<U> end
MAXn—i—-1—n—i<U>X n

Full computation power >)\J’l:{n > 1} P

of program (P)

Control index calculation in MPI

 Index calculation in global types is simpler than the
one in roles

> A direct advantage of the global representation of
interactions

Tree pattern

G =R end
MAXI—=2%[+1:<U>.
[—2%(+2:<U> X 2" -1

OddLeaf = a[252"'+i=1) + 1](y).y 22" '+i-1, 2);S

Final remarks

* A system that expresses sessions of an arbitrary
number of processes through the role idiom,
preserving:
> An intuitive, light-weight type annotation
> A global description of structured interactions

o Efficient type-checking strategy: projection of global types
onto participants and sorting of actions in the role types

> A non-conservative type system that allows parameters to
range over an infinite set of values

References

* Parameterised Session Types: Communication patterns

through the looking glass of session types. Dissertation
(To appear sometime in May-June)

° Practical Parameterised Session Types. ICFEM 2010

o Session-based Programming for Parallel Algorithms. PLACES
2009.

o Synchronous Multiparty Session Types. PLACES 2008.

http://www.doc.ic.ac.uk/~ab406/

