On Global Types and Multi-Party Sessions

Joint work with Giuseppe Castagna and Luca Padovani

Workshop on Behavioural Type Systems, Lisbon, 19 April 2011

UNIVERSITÀ DEGLI STUDI DI TORINO

ALMA UNIVERSITAS TAURINENSIS

Outline

Global types and session types

Overview
Global types Session types

Outline

Global types and session types
Overview
Global types
Session types
Projections
Semantic projection
Algorithmic projection
Kleene star and recursion

Outline

Global types and session types
Overview
Global types
Session types
Projections
Semantic projection
Algorithmic projection
Kleene star and recursion
Related approaches
Sessions and Choreographies
Automata
Cryptographic protocols

Outline

Global types and session types
Overview
Global types
Session types
Projections
Semantic projection
Algorithmic projection
Kleene star and recursion
Related approaches
Sessions and Choreographies
Automata
Cryptographic protocols

```
Global types and session types

\section*{Global types, session types and processes}


\title{
Informal descriptions, global types and session types
}

Seller sends buyer a price and a description of the product; then buyer initiate a loop of zero or more interactions in which buyer sends an offer and then seller sends a price; then buyer sends seller acceptance or it quits the conversation.

\section*{Informal descriptions, global types and session types}

Seller sends buyer a price and a description of the product; then buyer initiate a loop of zero or more interactions in which buyer sends an offer and then seller sends a price; then buyer sends seller acceptance or it quits the conversation.
\[
\begin{aligned}
& (\text { seller } \xrightarrow{\text { descr }} \text { buyer } \wedge \text { seller } \xrightarrow{\text { price }} \text { buyer); } \\
& \text { (buyer } \xrightarrow{\text { offer }} \text { seller;seller } \xrightarrow{\text { price }} \text { buyer) }{ }^{*} ; \\
& \text { (buyer } \xrightarrow{\text { accept }} \text { sellerVbuyer } \xrightarrow{\text { quit }} \text { seller) }
\end{aligned}
\]

\title{
Informal descriptions, global types and session types
}
\[
\begin{aligned}
& (\text { seller } \xrightarrow{\text { descr }} \text { buyer } \wedge \text { seller } \xrightarrow{\text { price }} \text { buyer }) ; \\
& \text { (buyer } \xrightarrow{\text { offer }} \text { seller;seller } \xrightarrow{\text { price }} \text { buyer) }{ }^{*} ; \\
& \text { (buyer } \xrightarrow{\text { accept }} \text { sellerVbuyer } \xrightarrow{\text { quit }} \text { seller) }
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline & & \begin{tabular}{l}
buyer!descr.buyer!price.rec \(X\). \\
(buyer?offer.buyer!price. \(X+\) buyer?accept+buyer?quit)
\end{tabular} \\
\hline buyer & \(\mapsto\) & \begin{tabular}{l}
seller?descr.seller?price.rec \(Y\) (seller!offer.seller?price. \(Y \oplus\) \\
seller!accept \(\oplus\) seller!quit)
\end{tabular} \\
\hline
\end{tabular}

\title{
Informal descriptions, global types and session types
}
\[
\begin{aligned}
& (\text { seller } \xrightarrow{\text { descr }} \text { buyer } \wedge \text { seller } \xrightarrow{\text { price }} \text { buyer }) ; \\
& \text { (buyer } \xrightarrow{\text { offer }} \text { seller;seller } \xrightarrow{\text { price }} \text { buyer) }{ }^{*} ; \\
& \text { (buyer } \xrightarrow{\text { accept }} \text { sellerVbuyer } \xrightarrow{\text { quit }} \text { seller) }
\end{aligned}
\]
\(\left.\begin{array}{rlrl}\text { seller } \mapsto & \text { buyer!price.buyer!descr.rec } X . \\ & & \begin{array}{l}\text { (buyer?offer.buyer!price. } X+\end{array} \\ & \text { buyer?accept + buyer?quit) }\end{array}\right\}\)

\section*{Properties of projections}
1. Sequentiality: an implementation in which buyer may send accept before receiving price violates the specification.

\section*{Properties of projections}
1. Sequentiality: an implementation in which buyer may send accept before receiving price violates the specification.
2. Alternativeness: an implementation in which buyer emits both accept and quit (or none of them) in the same execution violates the specification.

\section*{Properties of projections}
1. Sequentiality: an implementation in which buyer may send accept before receiving price violates the specification.
2. Alternativeness: an implementation in which buyer emits both accept and quit (or none of them) in the same execution violates the specification.
3. Shuffling: an implementation in which seller emits price without emitting descr violates the specification.

\section*{Properties of projections}
1. Sequentiality: an implementation in which buyer may send accept before receiving price violates the specification.
2. Alternativeness: an implementation in which buyer emits both accept and quit (or none of them) in the same execution violates the specification.
3. Shuffling: an implementation in which seller emits price without emitting descr violates the specification.
4. Fitness: an implementation in which seller sends buyer any message other than price and descr violates the specification.

\section*{Properties of projections}
1. Sequentiality: an implementation in which buyer may send accept before receiving price violates the specification.
2. Alternativeness: an implementation in which buyer emits both accept and quit (or none of them) in the same execution violates the specification.
3. Shuffling: an implementation in which seller emits price without emitting descr violates the specification.
4. Fitness: an implementation in which seller sends buyer any message other than price and descr violates the specification.
5. Exhaustivity: an implementation in which no execution of buyer emits accept violates the specification.

\title{
Flawed global types
}

\section*{no covert channel}

\section*{Flawed global types}

\section*{no covert channel}
- No sequentiality: some sequentiality constraint between independent interactions
\[
(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s})
\]

\section*{Flawed global types}

\section*{no covert channel}
- No sequentiality: some sequentiality constraint between independent interactions
\[
(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s})
\]
- No knowledge for choice: some participant must behave in different ways in accordance with some choice it is unaware of
\[
(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{q} \xrightarrow{a} \mathrm{r} ; \mathrm{r} \xrightarrow{a} \mathrm{p}) \quad \vee \quad(\mathrm{p} \xrightarrow{b} \mathrm{q} ; \mathrm{q} \xrightarrow{a} \mathrm{r} ; \mathrm{r} \xrightarrow{b} \mathrm{p})
\]

\section*{Flawed global types}

\section*{no covert channel}
- No sequentiality: some sequentiality constraint between independent interactions
\[
(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s})
\]
- No knowledge for choice: some participant must behave in different ways in accordance with some choice it is unaware of
\[
(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{q} \xrightarrow{a} \mathrm{r} ; \mathrm{r} \xrightarrow{a} \mathrm{p}) \quad \vee \quad(\mathrm{p} \xrightarrow{b} \mathrm{q} ; \mathrm{q} \xrightarrow{a} \mathrm{r} ; \mathrm{r} \xrightarrow{b} \mathrm{p})
\]
- No knowledge, no choice: incompatible behaviours such as performing and input or an output in mutual exclusion \(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{q} \xrightarrow{b} \mathrm{p}\)

\section*{Syntax of global types}
\(\mathscr{G} \quad::=\)
Global Type

\section*{Syntax of global types}
\(\mathscr{G}\) ::=

Global Type (skip)
```

Global types and session types

Syntax of global types

\mathscr{G} ::=

Global Type (skip)
(interaction) multiple senders

Syntax of global types

\mathscr{G} ::=
$\underset{\mathscr{G} ; \mathscr{G}}{\stackrel{\text { skip }}{\underset{a}{a}} \mathrm{p}}$

Global Type (skip)
(interaction)
(sequence)

Syntax of global types

\mathscr{G} ::=

Global Type (skip)
(interaction)
(sequence)
(both)

```
Global types and session types

\section*{Syntax of global types}
\(\mathscr{G}\) ::=
\begin{tabular}{|c|}
\hline skip \\
\hline \(\mathscr{G} ; \mathscr{G}\) \\
\hline \(\mathscr{G} \wedge \mathscr{G}\) \\
\hline \(\mathscr{G} \vee \mathscr{G}\) \\
\hline
\end{tabular}

Global Type (skip)
(interaction)
(sequence)
(both)
(either)

\section*{Syntax of global types}
\(\mathscr{G} \quad::=\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\(\stackrel{\text { skip }}{\pi \xrightarrow{\text { a }}}\)} \\
\hline \\
\hline \(\mathscr{G} ; \mathscr{G}\) \\
\hline \(\mathscr{G} \wedge \mathscr{G}\) \\
\hline \(\mathscr{G} \vee \mathscr{G}\) \\
\hline \(\mathscr{G}^{*}\) \\
\hline
\end{tabular}

Global Type (skip)
(interaction)
(sequence)
(both)
(either)
(star) fairness

\section*{Syntax of global types}
\begin{tabular}{ccll}
\(\mathscr{G} \quad:=\) & & Global Type \\
& & skip & (skip) \\
& \(\pi \xrightarrow{a} \mathrm{p}\) & (interaction) \\
& \(\mathscr{G} ; \mathscr{G}\) & (sequence) \\
& \(\mathscr{G} \wedge \mathscr{G}\) & (both) \\
& \(\mathscr{G} \vee \mathscr{G}\) & (either) \\
& \(\mathscr{G}^{*}\) & (star)
\end{tabular}
\(\pi \xrightarrow{a}\left\{\mathrm{p}_{i}\right\}_{i \in I}\) can be encoded as \(\bigwedge_{i \in I}\left(\pi \xrightarrow{a} \mathrm{p}_{i}\right)\)

\section*{Examples}
join
(seller \(\xrightarrow{\text { price }}\) buyer \(1 \wedge\) bank \(\xrightarrow{\text { mortgage }}\) buyer2);
(\{buyer1, buyer2 \(\} \xrightarrow{\text { accept }}\) seller \(\wedge\{\) buyer1, buyer2 \(\} \xrightarrow{\text { accept }}\) bank)

\section*{Examples}
join
(seller \(\xrightarrow{\text { price }}\) buyer \(1 \wedge\) bank \(\xrightarrow{\text { mortgage }}\) buyer2);
(\{buyer1, buyer2 \(\} \xrightarrow{\text { accept }}\) seller \(\wedge\{\) buyer1, buyer2 \(\} \xrightarrow{\text { accept } \text { bank) }) ~}\)
fork
seller \(\xrightarrow{\text { price }}\) buyer \(1 \wedge\) seller \(\xrightarrow{\text { price }}\) buyer2

\section*{Examples}
join
(seller \(\xrightarrow{\text { price }}\) buyer \(1 \wedge\) bank \(\xrightarrow{\text { mortgage }}\) buyer2);
(\{buyer1, buyer2 \(\} \xrightarrow{\text { accept }}\) seller \(\wedge\{\) buyer1, buyer2 \(\} \xrightarrow{\text { accept } \text { bank) }) ~}\)
fork
seller \(\xrightarrow{\text { price }}\) buyer \(1 \wedge\) seller \(\xrightarrow{\text { price }}\) buyer2
common participants in parallel actions

\section*{Examples}
different receivers in a choice
seller \(\xrightarrow{\text { price }}\) buyer 1 ; buyer \(1 \xrightarrow{\text { price }}\) buyer 2 V
seller \(\xrightarrow{\text { price }}\) buyer2; buyer \(2 \xrightarrow{\text { price }}\) buyer 1

\section*{Examples}
different receivers in a choice
seller \(\xrightarrow{\text { price }}\) buyer \(1 ;\) buyer \(1 \xrightarrow{\text { price }}\) buyer 2 V
seller \(\xrightarrow{\text { price }}\) buyer2; buyer \(2 \xrightarrow{\text { price }}\) buyer 1
different sets of participants for alternatives
(seller \(\xrightarrow{\text { agency }}\) broker; broker \(\xrightarrow{\text { price }}\) buyer \(\vee\) seller \(\xrightarrow{\text { price }}\) buyer); buyer \(\xrightarrow{\text { answer }}\) broker

\section*{Examples}
different receivers in a choice
seller \(\xrightarrow{\text { price }}\) buyer \(1 ;\) buyer \(1 \xrightarrow{\text { price }}\) buyer 2 V
seller \(\xrightarrow{\text { price }}\) buyer2; buyer \(2 \xrightarrow{\text { price }}\) buyer 1
different sets of participants for alternatives
(seller \(\xrightarrow{\text { agency }}\) broker; broker \(\xrightarrow{\text { price }}\) buyer \(\vee\) seller \(\xrightarrow{\text { price }}\) buyer); buyer \(\xrightarrow{\text { answer }}\) broker
different sets of participants when choosing between repeating or exiting a loop
seller \(\xrightarrow{\text { agency }}\) broker; (broker \(\xrightarrow{\text { offer }}\) buyer; buyer \(\xrightarrow{\text { counteroffer }}\) broker)*;
(broker \(\xrightarrow{\text { result }}\) seller \(\wedge\) broker \(\xrightarrow{\text { result }}\) buyer)

\section*{Global types}

\section*{Traces of global types \\ \(\operatorname{tr}(\) skip \()=\{\varepsilon\}\)}

\section*{Global types}

\section*{Traces of global types}
\[
\begin{aligned}
\operatorname{tr}(\text { skip }) & =\{\varepsilon\} \\
\operatorname{tr}(\pi \xrightarrow{a} \mathrm{p}) & =\{\pi \xrightarrow{a} \mathrm{p}\}
\end{aligned}
\]

\section*{Traces of global types}
\[
\begin{aligned}
\operatorname{tr}(\text { skip }) & =\{\varepsilon\} \\
\operatorname{tr}(\pi \xrightarrow{a} \mathrm{p}) & =\{\pi \xrightarrow{a} \mathrm{p}\} \\
\operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right) & =\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right)
\end{aligned}
\]

\section*{Traces of global types}
\[
\begin{aligned}
\operatorname{tr}(\text { skip }) & =\{\varepsilon\} \\
\operatorname{tr}(\pi \xrightarrow{a} \mathrm{p}) & =\{\pi \xrightarrow{a} \mathrm{p}\} \\
\operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right) & =\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
\operatorname{tr}\left(\mathscr{G}^{*}\right) & =(\operatorname{tr}(\mathscr{G}))^{\star}
\end{aligned}
\]

\section*{Global types}

\section*{Traces of global types}
\[
\begin{aligned}
\operatorname{tr}(\text { skip }) & =\{\varepsilon\} \\
\operatorname{tr}(\pi \xrightarrow{a} \mathrm{p}) & =\{\pi \xrightarrow{a} \mathrm{p}\} \\
\operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right) & =\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
\operatorname{tr}\left(\mathscr{G}^{*}\right) & =\left(\operatorname{tr}\left(\mathscr{G}_{)}\right)\right)^{\star} \\
\operatorname{tr}\left(\mathscr{G}_{1} \vee \mathscr{G}_{2}\right) & =\operatorname{tr}\left(\mathscr{G}_{1}\right) \cup \operatorname{tr}\left(\mathscr{G}_{2}\right)
\end{aligned}
\]

\section*{Global types}

\section*{Traces of global types}
\[
\begin{aligned}
& \operatorname{tr}(\text { skip })=\{\varepsilon\} \\
& \operatorname{tr}(\pi \xrightarrow{a} \mathrm{p})=\{\pi \xrightarrow{a} \mathrm{p}\} \\
& \operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}^{*}\right)=\left(\operatorname{tr}\left(\mathscr{G}_{)}\right)\right)^{\star} \\
& \operatorname{tr}\left(\mathscr{G}_{1} \vee \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \cup \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \uplus \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& L_{1} \amalg L_{2} \stackrel{\text { def }}{=}\left\{\varphi_{1} \psi_{1} \cdots \varphi_{n} \psi_{n} \mid \varphi_{1} \cdots \varphi_{n} \in L_{1} \wedge \psi_{1} \cdots \psi_{n} \in L_{2}\right\}
\end{aligned}
\]

\section*{Global types}

\section*{Traces of global types}
\[
\begin{aligned}
& \operatorname{tr}(\mathrm{skip})=\{\varepsilon\} \\
& \operatorname{tr}(\pi \xrightarrow{a} \mathrm{p})=\{\pi \xrightarrow{a} \mathrm{p}\} \\
& \operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}^{*}\right)=\left(\operatorname{tr}\left(\mathscr{G}^{*}\right)\right)^{\star} \\
& \operatorname{tr}\left(\mathscr{G}_{1} \vee \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \cup \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) ш \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& L_{1} \amalg L_{2} \stackrel{\text { def }}{=}\left\{\varphi_{1} \psi_{1} \cdots \varphi_{n} \psi_{n} \mid \varphi_{1} \cdots \varphi_{n} \in L_{1} \wedge \psi_{1} \cdots \psi_{n} \in L_{2}\right\} \\
& \mathscr{G}=(\mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{p} \xrightarrow{b} \mathrm{q}) ;(\mathrm{q} \xrightarrow{c} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q})^{*} ;(\mathrm{q} \xrightarrow{d} \mathrm{p} \vee \mathrm{q} \xrightarrow{e} \mathrm{p})
\end{aligned}
\]

\section*{Traces of global types}
\[
\begin{aligned}
& \operatorname{tr}(\mathrm{skip})=\{\varepsilon\} \\
& \operatorname{tr}(\pi \xrightarrow{a} \mathrm{p})=\{\pi \xrightarrow{a} \mathrm{p}\} \\
& \operatorname{tr}\left(\mathscr{G}_{1} ; \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}^{*}\right)=\left(\operatorname{tr}\left(\mathscr{G}_{\mathcal{G}}\right)\right)^{\star} \\
& \operatorname{tr}\left(\mathscr{G}_{1} \vee \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) \cup \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& \operatorname{tr}\left(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\right)=\operatorname{tr}\left(\mathscr{G}_{1}\right) ш \operatorname{tr}\left(\mathscr{G}_{2}\right) \\
& L_{1} \amalg L_{2} \stackrel{\text { def }}{=}\left\{\varphi_{1} \psi_{1} \cdots \varphi_{n} \psi_{n} \mid \varphi_{1} \cdots \varphi_{n} \in L_{1} \wedge \psi_{1} \cdots \psi_{n} \in L_{2}\right\} \\
& \mathscr{G}=(\mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{p} \xrightarrow{b} \mathrm{q}) ;(\mathrm{q} \xrightarrow{c} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q})^{*} ;(\mathrm{q} \xrightarrow{d} \mathrm{p} \vee \mathrm{q} \xrightarrow{e} \mathrm{p}) \\
& \mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{p} \xrightarrow{b} \mathrm{q} ; \mathrm{q} \xrightarrow{c} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q} ; \cdots ; \mathrm{q} \xrightarrow{d} \mathrm{p} \\
& \mathrm{p} \xrightarrow{b} \mathrm{q} ; \mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{q} \xrightarrow{c} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q} ; \cdots ; \mathrm{q} \xrightarrow{e} \mathrm{p}
\end{aligned}
\]
```

Global types and session types

Syntax of session types T ::=
 Pre-Session Type

```
Global types and session types

\section*{Syntax of session types \(T\) ::= Pre-Session Type end (termination)}

\section*{Syntax of session types}

Pre-Session Type (termination) (variable)

\section*{Syntax of session types}

\section*{Pre-Session Type} (termination) (variable) (output)

\section*{Syntax of session types}


Pre-Session Type
end (termination) (variable)
p!a. \(T\)
\(\pi\) ?a. \(T\)
(output)
(input)

\section*{Syntax of session types}


\section*{Pre-Session Type}
end
\(X\)
p!a. \(T\)
\(\pi\) ?a. \(T\)
\(T \oplus T\)
(termination)
(variable)
(output)
(input)
(internal choice)

\section*{Syntax of session types}

\[
\begin{aligned}
& \text { end } \\
& x \\
& \text { p!a. } T \\
& \pi ? a . T \\
& T \oplus T \\
& T+T
\end{aligned}
\]

Pre-Session Type
(termination)
(variable)
(output)
(input)
(internal choice)
(external choice)

\section*{Syntax of session types}

Pre-Session Type
end
\(X\)
p!a. \(T\)
\(\pi\) ?a. \(T\)
\(T \oplus T\)
\(T+T\)
rec X.T
(termination)
(variable)
(output)
(input)
(internal choice)
(external choice)
(recursion)

\section*{Syntax of session types}

end
\(X\)
p!a. \(T\) \(\pi\) ?a. \(T\) \(T \oplus T\)
\(T+T\)
rec \(X . T\)

Pre-Session Type
(termination)
(variable)
(output)
(input)
(internal choice)
(external choice)
(recursion)
session type

\section*{Syntax of session types}

end
\(X\)
p!a. \(T\) \(\pi\) ?a. \(T\) \(T \oplus T\)
\(T+T\)
rec X.T

Pre-Session Type
(termination)
(variable)
(output)
(input)
(internal choice)
(external choice)
(recursion)
session type
- end

\section*{Syntax of session types}

end (termination)
\(X \quad\) (variable)
p!a. \(T\) (output)
\(\pi\) ?a. \(T\)
\(T \oplus T\)
\(T+T\)
rec \(X . T\)

Pre-Session Type
(input)
(internal choice)
(external choice)
(recursion)
session type
- end
- \(\bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} . T_{i}\) and \(\forall i, j \in I\) we have that \(\mathrm{p}_{i}!a_{i}=\mathrm{p}_{j}!a_{j}\) implies \(i=j\) and each \(T_{i}\) is a session type

\section*{Syntax of session types}

end
\(X\)
p!a. \(T\) \(\pi\) ?a. \(T\)
\(T \oplus T\)
\(T+T\)
rec \(X . T\)

Pre-Session Type
(termination)
(variable)
(output)
(input)
(internal choice)
(external choice)
(recursion)
session type
- end
\(-\bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} . T_{i}\) and \(\forall i, j \in I\) we have that \(\mathrm{p}_{i}!a_{i}=\mathrm{p}_{j}!\mathrm{a}_{j}\) implies \(i=j\) and each \(T_{i}\) is a session type
- \(\sum_{i \in I} \pi_{i}\) ? \(a_{i} . T_{i}\) and \(\forall i, j \in I\) we have that \(\pi_{i} \subseteq \pi_{j}\) and \(a_{i}=a_{j}\) imply \(i=j\) and each \(T_{i}\) is a session type.

\section*{Session environments}
\[
\left\{p_{i}: T_{i}\right\}_{i \in I}
\]

\section*{Session environments}
\[
\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in 1}
\]
reduction of session environments

\section*{Session environments}
\[
\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\(\mathbb{B} \circ\left\{\mathrm{p}: \bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} \cdot T_{i}\right\} \uplus \Delta \quad \longrightarrow \quad\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \quad(k \in I)\)

\section*{Session environments}
\[
\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\[
\begin{aligned}
& \mathbb{B} \circ\left\{\mathrm{p}: \bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} \cdot T_{i}\right\} \uplus \Delta \longrightarrow\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \\
& \mathbb{B}::\left(\mathrm{p}_{i} \xrightarrow{a} \mathrm{p}\right)_{i \in I} \circ\left\{\mathrm{p}: \sum_{j \in J} \pi_{j} ? a_{j} . T_{j}\right\} \uplus \Delta \xrightarrow{\pi_{k} \xrightarrow{a} \mathrm{p}} \quad\left(\begin{array}{l}
\mathbb{B} ;\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta
\end{array}\right. \\
& \\
& \left(\begin{array}{c}
k \in J \\
a_{k}=a \\
\pi_{k}=\left\{\mathrm{p}_{i} \mid i \in I\right\}
\end{array}\right)
\end{aligned}
\]

\section*{Session environments}
\[
\left\{p_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\[
\begin{aligned}
& \mathbb{B} ;\left\{\mathrm{p}: \oplus_{i \in I} \mathrm{p}_{i}!a_{i} \cdot T_{i}\right\} \uplus \Delta \longrightarrow\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} ;\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \\
& \mathbb{B}::\left(\mathrm{p}_{i} \xrightarrow{a} \mathrm{p}\right)_{i \in I} \circ\left\{\mathrm{p}: \sum_{j \in J} \pi_{j} ? a_{j} . T_{j}\right\} \uplus \Delta \xrightarrow{\pi_{k} \xrightarrow{a} \mathrm{p}} \xrightarrow{\mathbb{B} ;\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta} \begin{array}{l}
\left(\begin{array}{c}
k \in J \\
a_{k}=a \\
\pi_{k}=\left\{\mathrm{p}_{i} \mid i \in I\right\}
\end{array}\right)
\end{array} \\
& \Delta=\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!\mathrm{a} \cdot X \oplus \mathrm{q}!b . \mathrm{end}), \mathrm{q}: \operatorname{rec} Y .(\mathrm{p} ? \mathrm{a} . Y+\mathrm{p} ? \mathrm{~b} . \mathrm{end})\}
\end{aligned}
\]

\section*{Session environments}
\[
\left\{p_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\[
\begin{aligned}
& \mathbb{B} ;\left\{\mathrm{p}: \bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} . T_{i}\right\} \uplus \Delta \quad \longrightarrow \quad\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} ;\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \quad(k \in I) \\
& \mathbb{B}::\left(\mathrm{p}_{i} \xrightarrow{a} \mathrm{p}\right)_{i \in 1} \circ\left\{\mathrm{p}: \sum_{j \in J} \pi_{j} ? \mathrm{a}_{j} . T_{j}\right\} \uplus \Delta \xrightarrow{\pi_{k} \xrightarrow{a} \mathrm{p}} \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \\
& \left(\begin{array}{ll}
k \in J & a_{k}=a \\
\pi_{k}=\left\{p_{i} \mid i \in I\right\}
\end{array}\right) \\
& \Delta=\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!b . \operatorname{end}), \mathrm{q}: \text { rec } Y .(\mathrm{p} ? \mathrm{a} . Y+\mathrm{p} ? b . \mathrm{end})\} \\
& \varepsilon ; \Delta \longrightarrow \mathrm{p} \xrightarrow{a} \mathrm{q} ; \Delta \quad \xrightarrow{\mathrm{p} \xrightarrow{a} \mathrm{q}} \varepsilon ; \Delta
\end{aligned}
\]

\section*{Session environments}
\[
\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\(\mathbb{B} \circ\left\{\mathrm{p}: \bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} \cdot T_{i}\right\} \uplus \Delta \quad \longrightarrow \quad\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \quad(k \in I)\) \(\mathbb{B}::\left(\mathrm{p}_{i} \xrightarrow{a} \mathrm{p}\right)_{i \in I} \circ\left\{\mathrm{p}: \sum_{j \in J} \pi_{j} ? \mathrm{a}_{j} . T_{j}\right\} \uplus \Delta \xrightarrow{\pi_{k} \xrightarrow{a} \mathrm{p}} \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta\) \(\left(\begin{array}{ll}k \in J & a_{k}=a \\ \pi_{k}=\left\{p_{i} \mid i \in I\right\}\end{array}\right)\)
\(\Delta=\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!\mathrm{b} . \mathrm{end}), \mathrm{q}: \operatorname{rec} Y .(\mathrm{p} ? \mathrm{a} . Y+\mathrm{p} ? \mathrm{~b} . \mathrm{end})\}\)
\(\Delta^{\prime}=\{p:\) end \(, q: r e c Y .(p ? a . Y+p ? b . e n d)\}\)
\(\varepsilon ; \Delta \longrightarrow \mathrm{p} \xrightarrow{a} \mathrm{q}_{\mathrm{q}}{ }^{\circ} \Delta\)
\(\xrightarrow{\mathrm{p}^{a} \mathrm{q}} \mathrm{p}\)
\(\varepsilon \% \Delta\)
\(\mathrm{p} \xrightarrow{b} \mathrm{q} ; \Delta^{\prime}\)

\section*{Session environments}
\[
\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I}
\]
reduction of session environments
\(\mathbb{B} \circ\left\{\mathrm{p}: \bigoplus_{i \in I} \mathrm{p}_{i}!a_{i} \cdot T_{i}\right\} \uplus \Delta \quad \longrightarrow \quad\left(\mathrm{p} \xrightarrow{a_{k}} \mathrm{p}_{k}\right):: \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta \quad(k \in I)\) \(\mathbb{B}::\left(\mathrm{p}_{i} \xrightarrow{a} \mathrm{p}\right)_{i \in I} \circ\left\{\mathrm{p}: \sum_{j \in J} \pi_{j} ? \mathrm{a}_{j} . T_{j}\right\} \uplus \Delta \xrightarrow{\pi_{k} \xrightarrow{a} \mathrm{p}} \mathbb{B} \circ\left\{\mathrm{p}: T_{k}\right\} \uplus \Delta\) \(\left(\begin{array}{ll}k \in J & a_{k}=a \\ \pi_{k}=\left\{p_{i} \mid i \in I\right\}\end{array}\right)\)
\(\Delta=\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!b . \operatorname{end}), \mathrm{q}: \operatorname{rec} Y .(\mathrm{p} ? \mathrm{a} . Y+\mathrm{p} ? \mathrm{~b} . \mathrm{end})\}\)
\(\Delta^{\prime}=\{p\) : end \(, q:\) rec \(Y .(p ? a . Y+p\) ?bend \()\}\)
\(\varepsilon ; \Delta \longrightarrow \mathrm{p} \xrightarrow{a} \mathrm{q}_{\mathrm{q}}{ }^{\circ} \Delta\)
\(\xrightarrow{p \xrightarrow{a} q}\)
\(\varepsilon ; \Delta\)
\(\mathrm{p} \xrightarrow{b} \mathrm{q} \% \Delta^{\prime} \xrightarrow{\mathrm{p} \xrightarrow{b} \mathrm{q}} \varepsilon ;\{\mathrm{p}:\) end \(, \mathrm{q}:\) end \(\}\)

\section*{Traces of session environments}
\(\Delta\) is a live session if \(\varepsilon ; \Delta \xrightarrow{\varphi} \mathbb{B} ; \Delta^{\prime}\) implies
\(\mathbb{B} ; \Delta^{\prime} \xlongequal{\psi} \varepsilon_{q} ; \mathrm{p}_{i}:\) end \(\}_{i \in I}\) for some \(\psi\)
stronger than progress

\section*{Traces of session environments}
\(\Delta\) is a live session if \(\varepsilon ; \Delta \xrightarrow{\varphi} \mathbb{B} ; \Delta^{\prime}\) implies
\(\mathbb{B} ; \Delta^{\prime} \xlongequal{\psi} \varepsilon ;\left\{\mathrm{p}_{i}: \text { end }\right\}_{i \in I}\) for some \(\psi\)
\(\operatorname{tr}(\Delta) \stackrel{\text { def }}{=} \begin{cases}\left\{\varphi \mid \varepsilon ; \Delta \stackrel{\varphi}{\Longrightarrow} \varepsilon ;\left\{\mathrm{p}_{i}: \text { end }\right\}_{i \in I}\right\} & \text { if } \Delta \text { is a live session } \\ \emptyset & \text { otherwise }\end{cases}\)

\section*{Traces of session environments}
\(\Delta\) is a live session if \(\varepsilon ; \Delta \xrightarrow{\varphi} \mathbb{B} ; \Delta^{\prime}\) implies
\(\mathbb{B} ; \Delta^{\prime} \xlongequal{\psi} \varepsilon ;\left\{p_{i}: \text { end }\right\}_{i \in I}\) for some \(\psi\)
\(\operatorname{tr}(\Delta) \stackrel{\text { def }}{=} \begin{cases}\left\{\varphi \mid \varepsilon ; \Delta \stackrel{\varphi}{\Longrightarrow} \varepsilon ;\left\{\mathrm{p}_{i}: \text { end }\right\}_{i \in I}\right\} & \text { if } \Delta \text { is a live session } \\ \emptyset & \text { otherwise }\end{cases}\)
\(\operatorname{tr}(\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!\mathrm{b} . \mathrm{end}), \mathrm{q}: \operatorname{rec} Y .(\mathrm{p}\) ?a. \(Y+\mathrm{p}\) ? b.end \()\})=\) \(\operatorname{tr}\left((\mathrm{p} \xrightarrow{a} \mathrm{q})^{*} ; \mathrm{p} \xrightarrow{b} \mathrm{q}\right)\)

\section*{Traces of session environments}
\(\Delta\) is a live session if \(\varepsilon ; \Delta \xrightarrow{\varphi} \mathbb{B} ; \Delta^{\prime}\) implies
\(\mathbb{B} ; \Delta^{\prime} \xlongequal{\psi} \varepsilon ;\left\{\mathrm{p}_{i}: \text { end }\right\}_{i \in I}\) for some \(\psi\)
\(\operatorname{tr}(\Delta) \stackrel{\text { def }}{=} \begin{cases}\left\{\varphi \mid \varepsilon ; \Delta \stackrel{\varphi}{\Longrightarrow} \varepsilon ;\left\{\mathrm{p}_{i}: \text { end }\right\}_{i \in I}\right\} & \text { if } \Delta \text { is a live session } \\ \emptyset & \text { otherwise }\end{cases}\)
\(\operatorname{tr}(\{\mathrm{p}: \operatorname{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!\mathrm{b} . \mathrm{end}), \mathrm{q}: \operatorname{rec} Y .(\mathrm{p}\) ?a. \(Y+\mathrm{p}\) ? b.end \()\})=\) \(\operatorname{tr}\left((\mathrm{p} \xrightarrow{a} \mathrm{q})^{*} ; \mathrm{p} \xrightarrow{b} \mathrm{q}\right)\)
\(\operatorname{tr}(\{\mathrm{p}: \operatorname{rec} X . \mathrm{q}!\mathrm{a} . X, \mathrm{q}:\) rec \(Y . \mathrm{p} ? \mathrm{a} . Y\})=\emptyset\)

\section*{Outline}

Global types and session types
Overview
Global types
Session types
Projections
Semantic projection
Algorithmic projection Kleene star and recursion

Related approaches
Sessions and Choreographies
Automata
Cryptographic protocols

\section*{Traces of global types and session environments}
first try (too strong condition):
\(\operatorname{tr}(\mathscr{G})=\operatorname{tr}(\Delta)\) does not allow to project \(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\)

\section*{Traces of global types and session environments}
first try (too strong condition):
\(\operatorname{tr}(\mathscr{G})=\operatorname{tr}(\Delta)\) does not allow to project \(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\)
second try (too weak condition):
\(\operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\) looses the exhaustivity property
\(\{\mathrm{p}: \mathrm{q}\) !a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\) would implement \(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}\)

\section*{Traces of global types and session environments} first try (too strong condition):
\(\operatorname{tr}(\mathscr{G})=\operatorname{tr}(\Delta)\) does not allow to project \(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\)
second try (too weak condition):
\(\operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\) looses the exhaustivity property
\(\{\mathrm{p}: \mathrm{q}\) !a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\) would implement \(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}\)
\[
\begin{gathered}
\operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)^{\circ} \\
\Delta \leqslant \mathscr{G}
\end{gathered}
\]
\(L^{\circ} \stackrel{\text { def }}{=}\left\{\alpha_{1} \cdots \alpha_{n} \mid\right.\) there exists a permutation \(\sigma\) such that \(\left.\alpha_{\sigma(1)} \cdots \alpha_{\sigma(n)} \in L\right\}\)

\section*{Traces of global types and session environments} first try (too strong condition):
\(\operatorname{tr}(\mathscr{G})=\operatorname{tr}(\Delta)\) does not allow to project \(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\)
second try (too weak condition):
\(\operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\) looses the exhaustivity property
\(\{\mathrm{p}: \mathrm{q}\) !a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\) would implement \(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}\)
\[
\begin{gathered}
\operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)^{\circ} \\
\Delta \leqslant \mathscr{G}
\end{gathered}
\]
\(L^{\circ} \stackrel{\text { def }}{=}\left\{\alpha_{1} \cdots \alpha_{n} \mid\right.\) there exists a permutation \(\sigma\) such that \(\left.\alpha_{\sigma(1)} \cdots \alpha_{\sigma(n)} \in L\right\}\)
\(\operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})\) : every trace of \(\Delta\) is a trace of \(\mathscr{G}\) (soundness)

\section*{Traces of global types and session environments}
first try (too strong condition):
\(\operatorname{tr}(\mathscr{G})=\operatorname{tr}(\Delta)\) does not allow to project \(\mathscr{G}_{1} \wedge \mathscr{G}_{2}\)
second try (too weak condition):
\(\operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\) looses the exhaustivity property
\(\{\mathrm{p}: \mathrm{q}\) !a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\) would implement \(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}\)
\[
\begin{gathered}
\operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)^{\circ} \\
\Delta \leqslant \mathscr{G}
\end{gathered}
\]
\(L^{\circ} \stackrel{\text { def }}{=}\left\{\alpha_{1} \cdots \alpha_{n} \mid\right.\) there exists a permutation \(\sigma\) such that \(\left.\alpha_{\sigma(1)} \cdots \alpha_{\sigma(n)} \in L\right\}\)
\(\operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})\) : every trace of \(\Delta\) is a trace of \(\mathscr{G}\) (soundness)
\(\operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)^{\circ}\) : every \(\operatorname{trace}\) of \(\mathscr{G}\) is the permutation of a trace of \(\Delta\) (completeness)

\section*{Projection rules I}
\[
\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime}
\]

\section*{Projection rules I}
\[
\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime}
\]
(SP-Skip)
\(\Delta \vdash\) skip \(\triangleright \Delta\)

\section*{Projection rules I}
\[
\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime}
\]
(SP-Skip)
\(\Delta \vdash\) skip \(\triangleright \Delta\)
(SP-Action)
\(\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I} \uplus\{\mathrm{p}: T\} \uplus \Delta \vdash\left\{\mathrm{p}_{i}\right\}_{i \in I} \xrightarrow{a} \mathrm{p} \triangleright\left\{\mathrm{p}_{i}: \mathrm{p}!\mathrm{a} . T_{i}\right\}_{i \in I} \uplus\left\{\mathrm{p}:\left\{\mathrm{p}_{i}\right\}_{i \in I} ? \mathrm{a} . T\right\} \uplus \Delta\)

\section*{Projection rules I}
\[
\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime}
\]
(SP-Skip)
\(\Delta \vdash\) skip \(\triangleright \Delta\)
(SP-Action)
\(\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I} \uplus\{\mathrm{p}: T\} \uplus \Delta \vdash\left\{\mathrm{p}_{i}\right\}_{i \in I} \xrightarrow{a} \mathrm{p} \triangleright\left\{\mathrm{p}_{i}: \mathrm{p}!\mathrm{a} . T_{i}\right\}_{i \in I} \uplus\left\{\mathrm{p}:\left\{\mathrm{p}_{i}\right\}_{i \in I} ?_{a . T}\right\} \uplus \Delta\)
\(\{\mathrm{p}:\) end, \(\mathrm{q}:\) end \(\} \vdash \mathrm{p} \xrightarrow{a} \mathrm{q} \triangleright\{\mathrm{p}: \mathrm{q}!\) a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\)

\section*{Projection rules I}
\[
\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime}
\]
(SP-Skip)
\(\Delta \vdash\) skip \(\triangleright \Delta\)
(SP-Action)
\(\left\{\mathrm{p}_{i}: T_{i}\right\}_{i \in I} \uplus\{\mathrm{p}: T\} \uplus \Delta \vdash\left\{\mathrm{p}_{i}\right\}_{i \in I} \xrightarrow{a} \mathrm{p} \triangleright\left\{\mathrm{p}_{i}: \mathrm{p}!\mathrm{a} . T_{i}\right\}_{i \in I} \uplus\left\{\mathrm{p}:\left\{\mathrm{p}_{i}\right\}_{i \in I} ?_{a . T}\right\} \uplus \Delta\)
\(\{\mathrm{p}:\) end \(, \mathrm{q}:\) end \(\} \vdash \mathrm{p} \xrightarrow{a} \mathrm{q} \triangleright\{\mathrm{p}: \mathrm{q}!\) a.end, \(\mathrm{q}: \mathrm{p}\) ? a.end \(\}\)
(SP-Sequence)
\(\Delta \vdash \mathscr{G}_{2} \triangleright \Delta^{\prime} \quad \Delta^{\prime} \vdash \mathscr{G}_{1} \triangleright \Delta^{\prime \prime}\)
\(\Delta \vdash \mathscr{G}_{1} ; \mathscr{G}_{2} \triangleright \Delta^{\prime \prime}\)

\section*{Projection rules II}
(SP-Alternative)
\[
\frac{\Delta \vdash \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta^{\prime} \quad \Delta \vdash \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta^{\prime}}{\Delta \vdash \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta^{\prime}}
\]

\section*{Projection rules II}
(SP-Alternative)
\[
\frac{\Delta \vdash \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta^{\prime} \quad \Delta \vdash \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta^{\prime}}{\Delta \vdash \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta^{\prime}}
\]
\[
\frac{\Delta_{0} \vdash \mathrm{p} \xrightarrow{a} \mathrm{q} \triangleright\{\mathrm{p}: \mathrm{q}!a . \text { end }, \mathrm{q}: T\} \quad \Delta_{0} \vdash \mathrm{p} \xrightarrow{b} \mathrm{q} \triangleright\{\mathrm{p}: \mathrm{q}!b . \text { end }, \mathrm{q}: T\}}{\Delta_{0} \vdash \mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q} \triangleright\{\mathrm{p}: \mathrm{q}!\mathrm{a} . \text { end } \oplus \mathrm{q}!b \text {.end }, \mathrm{q}: T\}}
\]
\(\Delta_{0}=\{\mathrm{p}\) : end \(, \mathrm{q}:\) end \(\} \quad T=\mathrm{p}\) ? a.end +p ? b.end

\section*{Projection rules III}
(SP-Iteration)
\[
\frac{\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta \vdash \mathscr{G} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta}{\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta \vdash \mathscr{G}^{*} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta}
\]

\section*{Projection rules III}
(SP-Iteration)
\[
\frac{\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta \vdash \mathscr{G} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta}{\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta \vdash \mathscr{G}^{*} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus \Delta}
\]
\[
\left\{\mathrm{p}: T_{1} \oplus T_{2}, \mathrm{q}: S\right\} \vdash \mathrm{p} \xrightarrow{a} \mathrm{q} \triangleright\left\{\mathrm{p}: T_{1}, \mathrm{q}: S\right\}
\]
\[
\left\{\mathrm{p}: T_{2}, \mathrm{q}: S\right\} \vdash(\mathrm{p} \xrightarrow{a} \mathrm{q})^{*} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}, \mathrm{q}: S\right\}
\]
\[
T_{1}=\mathrm{q}!a . \mathrm{rec} X .(\mathrm{q}!a . X \oplus \mathrm{q}!b . \mathrm{end})
\]
\[
T_{2}=\mathrm{q}!b . \mathrm{end}
\]
\[
S=\operatorname{rec} Y .(p ? a . Y+p ? b . e n d)
\]

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]
subsumption on global types

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]
\[
\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant \mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{r} \xrightarrow{b} \mathrm{~s}
\]

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]
\(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant \mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{r} \xrightarrow{b} \mathrm{~s}\)
\(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s}) \vee(\mathrm{r} \xrightarrow{b} \mathrm{~s} ; \mathrm{p} \xrightarrow{a} \mathrm{q})\)

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]
\[
\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant \mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{r} \xrightarrow{b} \mathrm{~s}
\]
\[
\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s}) \vee(\mathrm{r} \xrightarrow{b} \mathrm{~s} ; \mathrm{p} \xrightarrow{a} \mathrm{q})
\]
\[
\mathrm{r} \xrightarrow{b} \mathrm{p} ;(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}) \leqslant(\mathrm{r} \xrightarrow{b} \mathrm{p} ; \mathrm{p} \xrightarrow{a} \mathrm{q}) \vee(\mathrm{r} \xrightarrow{b} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q})
\]

\section*{Projection rules IV}
(SP-Subsumption)
\[
\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}
\]
\[
\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant \mathrm{p} \xrightarrow{a} \mathrm{q} \wedge \mathrm{r} \xrightarrow{b} \mathrm{~s}
\]
\[
\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s} \leqslant(\mathrm{p} \xrightarrow{a} \mathrm{q} ; \mathrm{r} \xrightarrow{b} \mathrm{~s}) \vee(\mathrm{r} \xrightarrow{b} \mathrm{~s} ; \mathrm{p} \xrightarrow{a} \mathrm{q})
\]
\[
\mathrm{r} \xrightarrow{b} \mathrm{p} ;(\mathrm{p} \xrightarrow{a} \mathrm{q} \vee \mathrm{p} \xrightarrow{b} \mathrm{q}) \leqslant(\mathrm{r} \xrightarrow{b} \mathrm{p} ; \mathrm{p} \xrightarrow{a} \mathrm{q}) \vee(\mathrm{r} \xrightarrow{b} \mathrm{p} ; \mathrm{p} \xrightarrow{b} \mathrm{q})
\]

\section*{Projection rules IV}
(SP-Subsumption)
\(\frac{\Delta \vdash \mathscr{G}^{\prime} \triangleright \Delta^{\prime} \quad \mathscr{G}^{\prime} \leqslant \mathscr{G} \quad \Delta^{\prime \prime} \leqslant \Delta^{\prime}}{\Delta \vdash \mathscr{G} \triangleright \Delta^{\prime \prime}}\)
subsumption on session environments

\section*{Main results}
\(\mathscr{G}\) is well formed if \(\varphi ; \pi \xrightarrow{a} \mathrm{p} ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \psi \in \operatorname{tr}(\mathscr{G})\) implies either \(\mathrm{p} \in \pi^{\prime} \cup\left\{\mathrm{p}^{\prime}\right\}\) or \(\varphi ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \pi \xrightarrow{a} \mathrm{p} ; \psi \in \operatorname{tr}(\mathscr{G})\)

\section*{Main results}
\(\mathscr{G}\) is well formed if \(\varphi ; \pi \xrightarrow{a} \mathrm{p} ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \psi \in \operatorname{tr}(\mathscr{G})\) implies either \(\mathrm{p} \in \pi^{\prime} \cup\left\{\mathrm{p}^{\prime}\right\}\) or \(\varphi ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \pi \xrightarrow{a} \mathrm{p} ; \psi \in \operatorname{tr}(\mathscr{G})\)

If \(\mathscr{G}\) is well formed and \(\vdash \mathscr{G} \triangleright \Delta\), then \(\Delta \leqslant \mathscr{G}\)

\section*{Main results}
\(\mathscr{G}\) is well formed if \(\varphi ; \pi \xrightarrow{a} \mathrm{p} ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \psi \in \operatorname{tr}(\mathscr{G})\) implies either \(\mathrm{p} \in \pi^{\prime} \cup\left\{\mathrm{p}^{\prime}\right\}\) or \(\varphi ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \pi \xrightarrow{a} \mathrm{p} ; \psi \in \operatorname{tr}(\mathscr{G})\)

If \(\mathscr{G}\) is well formed and \(\vdash \mathscr{G} \triangleright \Delta\), then \(\Delta \leqslant \mathscr{G}\)
- No sequentiality: \(\exists \Delta: \Delta \leqslant \mathscr{G}\) and \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})^{\#}\) \(L^{\#}\) is the smallest well-formed set such that \(L \subseteq L^{\#}\)

\section*{Main results}
\(\mathscr{G}\) is well formed if \(\varphi ; \pi \xrightarrow{a} \mathrm{p} ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \psi \in \operatorname{tr}(\mathscr{G})\) implies either \(\mathrm{p} \in \pi^{\prime} \cup\left\{\mathrm{p}^{\prime}\right\}\) or \(\varphi ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \pi \xrightarrow{a} \mathrm{p} ; \psi \in \operatorname{tr}(\mathscr{G})\)

If \(\mathscr{G}\) is well formed and \(\vdash \mathscr{G} \triangleright \Delta\), then \(\Delta \leqslant \mathscr{G}\)
- No sequentiality: \(\nexists \Delta: \Delta \leqslant \mathscr{G}\) and \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})^{\#}\) \(L^{\#}\) is the smallest well-formed set such that \(L \subseteq L^{\#}\)
- No knowledge for choice: \(\nexists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})^{\#}\) and \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\)

\section*{Main results}
\(\mathscr{G}\) is well formed if \(\varphi ; \pi \xrightarrow{a} \mathrm{p} ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \psi \in \operatorname{tr}(\mathscr{G})\) implies either \(\mathrm{p} \in \pi^{\prime} \cup\left\{\mathrm{p}^{\prime}\right\}\) or \(\varphi ; \pi^{\prime} \xrightarrow{b} \mathrm{p}^{\prime} ; \pi \xrightarrow{a} \mathrm{p} ; \psi \in \operatorname{tr}(\mathscr{G})\)

If \(\mathscr{G}\) is well formed and \(\vdash \mathscr{G} \triangleright \Delta\), then \(\Delta \leqslant \mathscr{G}\)
- No sequentiality: \(\exists \Delta: \Delta \leqslant \mathscr{G}\) and \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})^{\#}\) \(L^{\#}\) is the smallest well-formed set such that \(L \subseteq L^{\#}\)
- No knowledge for choice: \(\nexists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta) \subseteq \operatorname{tr}(\mathscr{G})^{\#}\) and \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\)
- No knowledge, no choice: \(\exists \Delta: \operatorname{tr}(\mathscr{G}) \subseteq \operatorname{tr}(\Delta)\)

\section*{Projection rules}

\section*{no subsumption on session environments}

\section*{Projection rules}
no subsumption on session environments
(AP-Alternative)
\[
\frac{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta_{1} \quad \Delta \vdash_{\mathrm{a}} \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta_{2}}{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus\left(\Delta_{1} M \Delta_{2}\right)}
\]

\section*{Projection rules}
no subsumption on session environments
(AP-Alternative)
\[
\frac{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta_{1} \quad \Delta \vdash_{\mathrm{a}} \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta_{2}}{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus\left(\Delta_{1} \mathbb{M} \Delta_{2}\right)}
\]
(AP-Iteration)
\(\frac{\{\mathrm{p}: X\} \uplus\left\{\mathrm{p}_{\boldsymbol{i}}: \boldsymbol{X}_{\boldsymbol{i}}\right\}_{\boldsymbol{i} \in \boldsymbol{I}} \vdash_{\mathrm{a}} \mathscr{G} \triangleright\{\mathrm{p}: \boldsymbol{S}\} \uplus\left\{\mathrm{p}_{\boldsymbol{i}}: \boldsymbol{S}_{\boldsymbol{i}}\right\}_{\boldsymbol{i} \in \boldsymbol{I}}}{\{\mathrm{p}: \boldsymbol{T}\} \uplus\left\{\mathrm{p}_{\boldsymbol{i}}: \boldsymbol{T}_{\boldsymbol{i}}\right\}_{\boldsymbol{i} \in \boldsymbol{I}} \uplus \Delta \vdash_{\mathrm{a}} \mathscr{G}^{*} \triangleright\{\mathrm{p}: \operatorname{rec} X \cdot(\boldsymbol{T} \oplus \boldsymbol{S})\} \uplus\left\{\mathrm{p}_{\boldsymbol{i}}: \operatorname{rec} \boldsymbol{X}_{\boldsymbol{i}} \cdot\left(\boldsymbol{T}_{\boldsymbol{i}} \mathbb{M} \boldsymbol{S}_{\boldsymbol{i}}\right)\right\}_{\boldsymbol{i} \in \boldsymbol{I}} \uplus \Delta}\)

\section*{Projection rules}
no subsumption on session environments
(AP-Alternative)
\[
\frac{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta_{1} \quad \Delta \vdash_{\mathrm{a}} \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta_{2}}{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus\left(\Delta_{1} \mathbb{M} \Delta_{2}\right)}
\]
(AP-Iteration)

no subsumption on global types: \(\wedge\)-types must be eliminated

\section*{Projection rules}
no subsumption on session environments
(AP-Alternative)
\[
\frac{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \triangleright\left\{\mathrm{p}: T_{1}\right\} \uplus \Delta_{1} \quad \Delta \vdash_{\mathrm{a}} \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{2}\right\} \uplus \Delta_{2}}{\Delta \vdash_{\mathrm{a}} \mathscr{G}_{1} \vee \mathscr{G}_{2} \triangleright\left\{\mathrm{p}: T_{1} \oplus T_{2}\right\} \uplus\left(\Delta_{1} \mathbb{M} \Delta_{2}\right)}
\]
(AP-Iteration)

no subsumption on global types: \(\wedge\)-types must be eliminated
\(\mathscr{G} \leqslant \mathscr{G}^{\prime}\) is decidable by the decidability of the Parikh equivalence on regular languages

\section*{\(k\)-Exit Iterations}
\[
(\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{*} ;(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q} \vee \mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p})
\]

\section*{\(k\)-Exit Iterations}
\[
\begin{aligned}
& (\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{*} ;(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q} \vee \mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p}) \\
& \left(\mathscr{G}_{1}, \ldots, \mathscr{G}_{k}\right)^{k *}\left(\mathscr{G}_{1}^{\prime}, \ldots, \mathscr{G}_{k}^{\prime}\right)
\end{aligned}
\]

\section*{\(k\)-Exit Iterations}
\[
\begin{aligned}
& (\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{*} ;(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q} \vee \mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p}) \\
& \left(\mathscr{G}_{1}, \ldots, \mathscr{G}_{k}\right)^{k *}\left(\mathscr{G}_{1}^{\prime}, \ldots, \mathscr{G}_{k}^{\prime}\right) \\
& (\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q}, \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{2 *}(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q}, \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p})
\end{aligned}
\]

\section*{\(k\)-Exit Iterations}
\((\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{*} ;(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q} \vee \mathrm{p} \xrightarrow{\text { handover }} \mathrm{q} ; \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p})\)
\(\left(\mathscr{G}_{1}, \ldots, \mathscr{G}_{k}\right)^{k *}\left(\mathscr{G}_{1}^{\prime}, \ldots, \mathscr{G}_{k}^{\prime}\right)\)
\((\mathrm{p} \xrightarrow{\text { handover }} \mathrm{q}, \mathrm{q} \xrightarrow{\text { handover }} \mathrm{p})^{2 *}(\mathrm{p} \xrightarrow{\text { bailout }} \mathrm{q}, \mathrm{q} \xrightarrow{\text { bailout }} \mathrm{p})\)
p : rec \(X .(\mathrm{q}!\) handover. \((\mathrm{q}\) ?handover. \(X+\mathrm{q}\) ? bailout.end) \(\oplus \mathrm{q}!\) bailout.end)
\(\mathrm{q}:\) rec \(Y\).(p?handover.(p!handover. \(Y \oplus\) p!bailout.end) +p ?bailout.end)

\section*{Outline}

Global types and session types
Overview
Global types
Session types
Projections
Semantic projection
Algorithmic projection
Kleene star and recursion
Related approaches
Sessions and Choreographies
Automata
Cryptographic protocols

\section*{Sessions and Choreographies}

\section*{Honda Yoshida Carbone Bravetti Lanese Zavattaro ...}

\title{
Contract-Driven Implementation of Choreographies*
}

\section*{Multiparty Asynchronous Session Types}
\begin{tabular}{|c|c|c|}
\hline Kohei Honda & Notako Yosthide & Maroo Carbuse \\
\hline Quoen Mary, Daiversify of London kheigoter.quilac ik & Imperial College Londan poshidegrock wick & Queca Mary. Uniresity of Lotalea corbonemsdot amul ac uk \\
\hline
\end{tabular}

Abstract












General Tomus Theory, Types, Design

1. Introduction

Boekpopund Canmaniastion is becoming cone of the eetral







```

Namen

```


Mario Bravetti, Ivan Lancse, and Gianluigi Zavattaro
Department of Computer Science, University of Bologna, Italy
\{brazatt1, 1aneasa, zavattar) 0 cas. unibo 1 t

\begin{abstract}
Choreographles and Contracts are important concepts in
Service Oriented Computing. Chocevgraphive are the description of the Servive Oriented Computing. Choregraphizes are the description of the tracts are the description of the externally observable mesange-passing behaviour of a given service. Expliting some of our previous resalts about chorosgraphy proj)ction und contract refinement, we slow how to solve the problen of implemen a a choreoprapho ing compositsan of
\end{abstract}

1 Introduction
SENSORLA (Sottware Engineering for Service-Oriented Overlay Computers) [6] is a European project funded under the 6th Framework Programme as part of the Globnl Computing Initiative. The sim of SENSORIA is to develop a orieated computing where foundational theories, techniques and methods are fully integrated in a pragmatic software enginecring approach
Service Oriented Computing (SOC) is a paradigm for distributed comput-
ing based on services intended as autwhomous and heterogeneous components that can be published and discovered via standard interface languages and publish/discovery protocols. Web Services is the most prominent service oriented technology: Web Services publish their intefface expressed in WSDL, they ar
discovered through the UDDI protocol, and they are invoked using SOAP This paper addresess the problem of implementing service ariented sys specifiod by means of high level langunges called choreoprophty languages in the SOC literature, by asembling already available services that can be automatically retrieved. The approach proposed in this paper in order to solve this prob ken is based on the assumption that services expose their behavioural interface expressed in terms of a contract, i.e. "the externally observable messnge-passing behaviour" [7].
More precisely, choreography languages are intended as notations for represent. of service-based applications in wh, that is, descriptions of the ghobal behasiot
\({ }^{*}\) Research partially funded by EU Integrated Project Sensaris, contract n. 016004.


\section*{MSG of the seller-buyer protocol}


\section*{Automata}

\section*{CFMs implementing the seller-buyer protocol}


\section*{Kao Chow protocol in WPPL}

1 (spec ([a (a b s kas) (kab)]
2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])
3 [a -> s : a, b, na:nonce]
4 [s -> b : |a, b, na, kab| kas, |a, b, na, kab| kbs]
5 [b -> a : |a, b, na, kab| kas, |na| kab, nb:nonce]
6 [a -> b : |nb| kab] .)```

