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Overview

Global types, session types and processes

G Global Type G = alice nat−→ bob;
bob nat−→ carol

Talice Tbob Tcarol Session Types Tbob = alice?nat.
carol!nat.
end

Palice Pbob Pcarol Processes Pbob = receive x from alice;
send x+42 to carol;
end

Projection

Type checking
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Overview

Informal descriptions, global types and session types

Seller sends buyer a price and a description of the product; then
buyer initiate a loop of zero or more interactions in which buyer
sends an offer and then seller sends a price; then buyer sends seller
acceptance or it quits the conversation.

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)
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Overview

Informal descriptions, global types and session types

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)

seller �→ buyer!descr.buyer!price.rec X .
(buyer?offer.buyer!price.X+
buyer?accept+buyer?quit)

buyer �→ seller?descr.seller?price.rec Y .
(seller!offer.seller?price.Y⊕
seller!accept⊕seller!quit)
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Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.
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Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p
On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type

skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )
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Global types

Examples

join

(seller price−→ buyer1∧bank mortgage−→ buyer2);
({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)

fork

seller price−→ buyer1∧seller price−→ buyer2

common participants in parallel actions
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Global types

Examples
different receivers in a choice

seller price−→ buyer1;buyer1 price−→ buyer2∨
seller price−→ buyer2;buyer2 price−→ buyer1

different sets of participants for alternatives

(selleragency−→ broker;brokerprice−→buyer∨sellerprice−→buyer);
buyeranswer−→ broker

different sets of participants when choosing between repeating or

exiting a loop

seller agency−→ broker; (broker offer−→ buyer;buyer counteroffer−→ broker)∗;
(broker result−→ seller∧broker result−→ buyer)
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Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p
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Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.
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Session types

Session environments

{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}
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Session types

Traces of session environments

∆ is a live session if ε �∆ ϕ
=⇒ B �∆� implies

B �∆� ψ
=⇒ ε �{pi : end}i∈I for some ψ

stronger than progress

tr(∆)
def
=

�
{ϕ | ε �∆ ϕ

=⇒ ε �{pi : end}i∈I} if ∆ is a live session

/0 otherwise

tr({p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}) =
tr((p a−→ q)∗;p b−→ q)

tr({p : rec X .q!a.X , q : rec Y .p?a.Y }) = /0
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Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)
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Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��
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Semantic projection

Projection rules II

(SP-Alternative)
∆ � G1 � {p : T1}�∆� ∆ � G2 � {p : T2}�∆�

∆ � G1∨G2 � {p : T1⊕T2}�∆�

∆0 � p a−→ q � {p : q!a.end , q : T} ∆0 � p b−→ q � {p : q!b.end , q : T}

∆0 � p a−→ q∨p b−→ q � {p : q!a.end⊕q!b.end , q : T}

∆0 = {p : end,q : end} T = p?a.end+p?b.end
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Semantic projection

Projection rules III

(SP-Iteration)
{p : T1⊕T2}�∆ � G � {p : T1}�∆

{p : T2}�∆ � G ∗ � {p : T1⊕T2}�∆

{p : T1⊕T2,q : S} � p a−→ q � {p : T1,q : S}
{p : T2,q : S} � (p a−→ q)∗ � {p : T1⊕T2, q : S}

T1 = q!a.rec X .(q!a.X ⊕q!b.end)
T2 = q!b.end

S = rec Y .(p?a.Y +p?b.end)
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Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)
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Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages
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Kleene star and recursion

k-Exit Iterations

(p handover−→ q;q handover−→ p)∗; (p bailout−→ q∨p handover−→ q;q bailout−→ p)

(G1, . . . ,Gk)
k∗ (G �

1, . . . ,G
�
k)

(p handover−→ q,q handover−→ p) 2∗ (p bailout−→ q,q bailout−→ p)

p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end)
q : rec Y .(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)
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Sessions and Choreographies

Honda Yoshida Carbone Bravetti Lanese Zavattaro ...
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Automata

MSG of the seller-buyer protocol

sellerbuyer

descr
price

sellerbuyer

offer
price

sellerbuyer

accept

sellerbuyer

quit

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Automata

CFMs implementing the seller-buyer protocol

q0start q1 q2

q3

q4

buyer!descr

buyer!price

buyer?offer

buyer?accept

buyer?quit

buyer→seller seller→buyer

q0start q1 q2

q3

q4

seller?descr

seller?price

seller!offer

seller!accept

seller!quit
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Cryptographic protocols

Kao Chow protocol in WPPL

1 (spec ([a (a b s kas) (kab)]
2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])
3 [a -> s : a, b, na:nonce]
4 [s -> b : |a, b, na, kab| kas, |a, b, na, kab| kbs]
5 [b -> a : |a, b, na, kab| kas, |na| kab, nb:nonce]
6 [a -> b : |nb| kab] .)
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