
Global types and session types Projections Related approaches

On Global Types and Multi-Party Sessions

Joint work with Giuseppe Castagna and Luca Padovani

Workshop on Behavioural Type Systems, Lisbon, 19 April 2011

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Global types, session types and processes

G Global Type G = alice nat−→ bob;
bob nat−→ carol

Talice Tbob Tcarol Session Types Tbob = alice?nat.
carol!nat.
end

Palice Pbob Pcarol Processes Pbob = receive x from alice;
send x+42 to carol;
end

Projection

Type checking

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Informal descriptions, global types and session types

Seller sends buyer a price and a description of the product; then
buyer initiate a loop of zero or more interactions in which buyer
sends an offer and then seller sends a price; then buyer sends seller
acceptance or it quits the conversation.

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Informal descriptions, global types and session types

Seller sends buyer a price and a description of the product; then
buyer initiate a loop of zero or more interactions in which buyer
sends an offer and then seller sends a price; then buyer sends seller
acceptance or it quits the conversation.

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Informal descriptions, global types and session types

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)

seller �→ buyer!descr.buyer!price.rec X .
(buyer?offer.buyer!price.X+
buyer?accept+buyer?quit)

buyer �→ seller?descr.seller?price.rec Y .
(seller!offer.seller?price.Y⊕
seller!accept⊕seller!quit)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Informal descriptions, global types and session types

(seller descr−→ buyer∧∧∧seller price−→ buyer);;;

(buyer offer−→ seller;;;seller price−→ buyer)∗∗∗;;;

(buyer accept−→ seller∨∨∨buyer quit−→ seller)

seller �→ buyer!price.buyer!descr.rec X .
(buyer?offer.buyer!price.X+
buyer?accept+buyer?quit)

buyer �→ seller?price.seller?descr.rec Y .
(seller!offer.seller?price.Y⊕
seller!accept⊕seller!quit)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Properties of projections
1. Sequentiality: an implementation in which buyer may send

accept before receiving price violates the specification.

2. Alternativeness: an implementation in which buyer emits both

accept and quit (or none of them) in the same execution violates

the specification.

3. Shuffling: an implementation in which seller emits price
without emitting descr violates the specification.

4. Fitness: an implementation in which seller sends buyer any

message other than price and descr violates the specification.

5. Exhaustivity: an implementation in which no execution of buyer
emits accept violates the specification.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Overview

Flawed global types

no covert channel

� No sequentiality: some sequentiality constraint between

independent interactions

(p a−→ q;r b−→ s)

� No knowledge for choice: some participant must behave in

different ways in accordance with some choice it is unaware of

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

� No knowledge, no choice: incompatible behaviours such as

performing and input or an output in mutual exclusion

p a−→ q∨q b−→ p
On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type

skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

multiple senders

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction) multiple senders

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star) fairness

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Syntax of global types

G ::= Global Type
skip (skip)

| π a−→ p (interaction)

| G ;G (sequence)

| G ∧G (both)

| G ∨G (either)

| G ∗ (star)

π a−→ {pi}i∈I can be encoded as
�

i∈I (π
a−→ pi )

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples

join

(seller price−→ buyer1∧bank mortgage−→ buyer2);
({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)

fork

seller price−→ buyer1∧seller price−→ buyer2

common participants in parallel actions

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples

join

(seller price−→ buyer1∧bank mortgage−→ buyer2);
({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)

fork

seller price−→ buyer1∧seller price−→ buyer2

common participants in parallel actions

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples

join

(seller price−→ buyer1∧bank mortgage−→ buyer2);
({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)

fork

seller price−→ buyer1∧seller price−→ buyer2

common participants in parallel actions

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples
different receivers in a choice

seller price−→ buyer1;buyer1 price−→ buyer2∨
seller price−→ buyer2;buyer2 price−→ buyer1

different sets of participants for alternatives

(selleragency−→ broker;brokerprice−→buyer∨sellerprice−→buyer);
buyeranswer−→ broker

different sets of participants when choosing between repeating or

exiting a loop

seller agency−→ broker; (broker offer−→ buyer;buyer counteroffer−→ broker)∗;
(broker result−→ seller∧broker result−→ buyer)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples
different receivers in a choice

seller price−→ buyer1;buyer1 price−→ buyer2∨
seller price−→ buyer2;buyer2 price−→ buyer1

different sets of participants for alternatives

(selleragency−→ broker;brokerprice−→buyer∨sellerprice−→buyer);
buyeranswer−→ broker

different sets of participants when choosing between repeating or

exiting a loop

seller agency−→ broker; (broker offer−→ buyer;buyer counteroffer−→ broker)∗;
(broker result−→ seller∧broker result−→ buyer)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Examples
different receivers in a choice

seller price−→ buyer1;buyer1 price−→ buyer2∨
seller price−→ buyer2;buyer2 price−→ buyer1

different sets of participants for alternatives

(selleragency−→ broker;brokerprice−→buyer∨sellerprice−→buyer);
buyeranswer−→ broker

different sets of participants when choosing between repeating or

exiting a loop

seller agency−→ broker; (broker offer−→ buyer;buyer counteroffer−→ broker)∗;
(broker result−→ seller∧broker result−→ buyer)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}

tr(G1;G2) = tr(G1)tr(G2)
tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)

tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Global types

Traces of global types
tr(skip) = {ε}

tr(π a−→ p) = {π a−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃ tr(G2)

L1

∃ L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}

G = (p a−→ q∧p b−→ q); (q c−→ p;p b−→ q)∗; (q d−→ p∨q e−→ p)

p a−→ q;p b−→ q;q c−→ p;p b−→ q; · · · ;q d−→ p
p b−→ q;p a−→ q;q c−→ p;p b−→ q; · · · ;q e−→ p

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Syntax of session types
T ::= Pre-Session Type

end (termination)

| X (variable)

| p!a.T (output)

| π?a.T (input)

| T ⊕T (internal choice)

| T +T (external choice)

| rec X .T (recursion)

session type

� end

�
�

i∈I pi !ai .Ti and ∀i , j ∈ I we have that pi !ai = pj !aj implies i = j and each Ti is a session type

� ∑i∈I πi?ai .Ti and ∀i , j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each Ti is a session

type.

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments

{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments

{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments

{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments

{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments
{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





∆= {p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}

ε �∆ −→ p a−→ q �∆

p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments
{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





∆= {p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}

ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆

−→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments
{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





∆= {p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}
∆� = {p : end , q : rec Y .(p?a.Y +p?b.end)}

ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆�

p b−→q−−−→ ε �{p : end,q : end}

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Session environments
{pi : Ti}i∈I

reduction of session environments

B �{p :�i∈I pi !ai .Ti}�∆ −→ (p ak−→ pk)::B �{p : Tk}�∆ (k∈I )

B::(pi
a−→p)i∈I �{p : ∑j∈J πj?aj .Tj}�∆

πk
a−→p−−−−→ B �{p : Tk}�∆

 k∈J ak=a

πk={pi |i∈I}





∆= {p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}
∆� = {p : end , q : rec Y .(p?a.Y +p?b.end)}

ε �∆ −→ p a−→ q �∆ p a−→q−−−→ ε �∆ −→

p b−→ q �∆� p b−→q−−−→ ε �{p : end,q : end}
On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Traces of session environments

∆ is a live session if ε �∆ ϕ
=⇒ B �∆� implies

B �∆� ψ
=⇒ ε �{pi : end}i∈I for some ψ

stronger than progress

tr(∆)
def
=

�
{ϕ | ε �∆ ϕ

=⇒ ε �{pi : end}i∈I} if ∆ is a live session

/0 otherwise

tr({p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}) =
tr((p a−→ q)∗;p b−→ q)

tr({p : rec X .q!a.X , q : rec Y .p?a.Y }) = /0

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Traces of session environments

∆ is a live session if ε �∆ ϕ
=⇒ B �∆� implies

B �∆� ψ
=⇒ ε �{pi : end}i∈I for some ψ

tr(∆)
def
=

�
{ϕ | ε �∆ ϕ

=⇒ ε �{pi : end}i∈I} if ∆ is a live session

/0 otherwise

tr({p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}) =
tr((p a−→ q)∗;p b−→ q)

tr({p : rec X .q!a.X , q : rec Y .p?a.Y }) = /0

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Traces of session environments

∆ is a live session if ε �∆ ϕ
=⇒ B �∆� implies

B �∆� ψ
=⇒ ε �{pi : end}i∈I for some ψ

tr(∆)
def
=

�
{ϕ | ε �∆ ϕ

=⇒ ε �{pi : end}i∈I} if ∆ is a live session

/0 otherwise

tr({p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}) =
tr((p a−→ q)∗;p b−→ q)

tr({p : rec X .q!a.X , q : rec Y .p?a.Y }) = /0

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Session types

Traces of session environments

∆ is a live session if ε �∆ ϕ
=⇒ B �∆� implies

B �∆� ψ
=⇒ ε �{pi : end}i∈I for some ψ

tr(∆)
def
=

�
{ϕ | ε �∆ ϕ

=⇒ ε �{pi : end}i∈I} if ∆ is a live session

/0 otherwise

tr({p : rec X .(q!a.X ⊕q!b.end) , q : rec Y .(p?a.Y +p?b.end)}) =
tr((p a−→ q)∗;p b−→ q)

tr({p : rec X .q!a.X , q : rec Y .p?a.Y }) = /0

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Traces of global types and session environments
first try (too strong condition):

tr(G ) = tr(∆) does not allow to project G1∧G2

second try (too weak condition):

tr(G )⊆ tr(∆) looses the exhaustivity property

{p : q!a.end , q : p?a.end} would implement p a−→ q∨p b−→ q

tr(∆)⊆ tr(G )⊆ tr(∆)◦

∆� G

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

tr(∆)⊆ tr(G ): every trace of ∆ is a trace of G (soundness)

tr(G )⊆ tr(∆)◦: every trace of G is the permutation of a trace of ∆
(completeness)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules I

∆ � G � ∆�

(SP-Skip)
∆ � skip � ∆

(SP-Action)
{pi : Ti}i∈I �{p : T}�∆ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I ?a.T}�∆

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}

(SP-Sequence)
∆ � G2 � ∆� ∆� � G1 � ∆��

∆ � G1;G2 � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules II

(SP-Alternative)
∆ � G1 � {p : T1}�∆� ∆ � G2 � {p : T2}�∆�

∆ � G1∨G2 � {p : T1⊕T2}�∆�

∆0 � p a−→ q � {p : q!a.end , q : T} ∆0 � p b−→ q � {p : q!b.end , q : T}

∆0 � p a−→ q∨p b−→ q � {p : q!a.end⊕q!b.end , q : T}

∆0 = {p : end,q : end} T = p?a.end+p?b.end

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules II

(SP-Alternative)
∆ � G1 � {p : T1}�∆� ∆ � G2 � {p : T2}�∆�

∆ � G1∨G2 � {p : T1⊕T2}�∆�

∆0 � p a−→ q � {p : q!a.end , q : T} ∆0 � p b−→ q � {p : q!b.end , q : T}

∆0 � p a−→ q∨p b−→ q � {p : q!a.end⊕q!b.end , q : T}

∆0 = {p : end,q : end} T = p?a.end+p?b.end

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules III

(SP-Iteration)
{p : T1⊕T2}�∆ � G � {p : T1}�∆

{p : T2}�∆ � G ∗ � {p : T1⊕T2}�∆

{p : T1⊕T2,q : S} � p a−→ q � {p : T1,q : S}
{p : T2,q : S} � (p a−→ q)∗ � {p : T1⊕T2, q : S}

T1 = q!a.rec X .(q!a.X ⊕q!b.end)
T2 = q!b.end

S = rec Y .(p?a.Y +p?b.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules III

(SP-Iteration)
{p : T1⊕T2}�∆ � G � {p : T1}�∆

{p : T2}�∆ � G ∗ � {p : T1⊕T2}�∆

{p : T1⊕T2,q : S} � p a−→ q � {p : T1,q : S}
{p : T2,q : S} � (p a−→ q)∗ � {p : T1⊕T2, q : S}

T1 = q!a.rec X .(q!a.X ⊕q!b.end)
T2 = q!b.end

S = rec Y .(p?a.Y +p?b.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

subsumption on global types

p a−→ q;r b−→ s� p a−→ q∧r b−→ s

p a−→ q;r b−→ s� (p a−→ q;r b−→ s)∨ (r b−→ s;p a−→ q)

r b−→ p; (p a−→ q∨p b−→ q)� (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

p a−→ q;r b−→ s� p a−→ q∧r b−→ s

p a−→ q;r b−→ s� (p a−→ q;r b−→ s)∨ (r b−→ s;p a−→ q)

r b−→ p; (p a−→ q∨p b−→ q)� (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

p a−→ q;r b−→ s� p a−→ q∧r b−→ s

p a−→ q;r b−→ s� (p a−→ q;r b−→ s)∨ (r b−→ s;p a−→ q)

r b−→ p; (p a−→ q∨p b−→ q)� (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

p a−→ q;r b−→ s� p a−→ q∧r b−→ s

p a−→ q;r b−→ s� (p a−→ q;r b−→ s)∨ (r b−→ s;p a−→ q)

r b−→ p; (p a−→ q∨p b−→ q)� (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

p a−→ q;r b−→ s� p a−→ q∧r b−→ s

p a−→ q;r b−→ s� (p a−→ q;r b−→ s)∨ (r b−→ s;p a−→ q)

r b−→ p; (p a−→ q∨p b−→ q)� (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Projection rules IV

(SP-Subsumption)
∆ � G � � ∆� G � � G ∆�� �∆�

∆ � G � ∆��

subsumption on session environments

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Semantic projection

Main results

G is well formed if ϕ;π a−→ p;π � b−→ p�;ψ ∈ tr(G ) implies either

p ∈ π � ∪{p�} or ϕ;π � b−→ p�;π a−→ p;ψ ∈ tr(G )

If G is well formed and � G � ∆, then ∆� G

� No sequentiality:�∆ :∆� G and ∃∆ : tr(G )⊆ tr(∆)⊆ tr(G )#

L# is the smallest well-formed set such that L ⊆ L#

� No knowledge for choice:

�∆ : tr(G )⊆ tr(∆)⊆ tr(G )# and ∃∆ : tr(G )⊆ tr(∆)

� No knowledge, no choice: �∆ : tr(G )⊆ tr(∆)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Algorithmic projection

Projection rules
no subsumption on session environments

(AP-Alternative)
∆ �a G1 � {p : T1}�∆1 ∆ �a G2 � {p : T2}�∆2

∆ �a G1∨G2 � {p : T1⊕T2}� (∆1 �∆2)

(AP-Iteration)
{p :X}�{pi :Xi }i∈I �a G � {p : S}�{pi : Si }i∈I

{p :T}�{pi :Ti }i∈I �∆ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi .(Ti �Si )}i∈I �∆

no subsumption on global types: ∧-types must be eliminated

G � G � is decidable by the decidability of the Parikh equivalence on

regular languages

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Kleene star and recursion

k-Exit Iterations

(p handover−→ q;q handover−→ p)∗; (p bailout−→ q∨p handover−→ q;q bailout−→ p)

(G1, . . . ,Gk)
k∗ (G �

1, . . . ,G
�
k)

(p handover−→ q,q handover−→ p) 2∗ (p bailout−→ q,q bailout−→ p)

p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end)
q : rec Y .(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Kleene star and recursion

k-Exit Iterations

(p handover−→ q;q handover−→ p)∗; (p bailout−→ q∨p handover−→ q;q bailout−→ p)

(G1, . . . ,Gk)
k∗ (G �

1, . . . ,G
�
k)

(p handover−→ q,q handover−→ p) 2∗ (p bailout−→ q,q bailout−→ p)

p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end)
q : rec Y .(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Kleene star and recursion

k-Exit Iterations

(p handover−→ q;q handover−→ p)∗; (p bailout−→ q∨p handover−→ q;q bailout−→ p)

(G1, . . . ,Gk)
k∗ (G �

1, . . . ,G
�
k)

(p handover−→ q,q handover−→ p) 2∗ (p bailout−→ q,q bailout−→ p)

p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end)
q : rec Y .(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Kleene star and recursion

k-Exit Iterations

(p handover−→ q;q handover−→ p)∗; (p bailout−→ q∨p handover−→ q;q bailout−→ p)

(G1, . . . ,Gk)
k∗ (G �

1, . . . ,G
�
k)

(p handover−→ q,q handover−→ p) 2∗ (p bailout−→ q,q bailout−→ p)

p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end)
q : rec Y .(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Outline
Global types and session types

Overview

Global types

Session types

Projections

Semantic projection

Algorithmic projection

Kleene star and recursion

Related approaches

Sessions and Choreographies

Automata

Cryptographic protocols

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Sessions and Choreographies

Honda Yoshida Carbone Bravetti Lanese Zavattaro ...

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Automata

MSG of the seller-buyer protocol

sellerbuyer

descr
price

sellerbuyer

offer
price

sellerbuyer

accept

sellerbuyer

quit

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Automata

CFMs implementing the seller-buyer protocol

q0start q1 q2

q3

q4

buyer!descr

buyer!price

buyer?offer

buyer?accept

buyer?quit

buyer→seller seller→buyer

q0start q1 q2

q3

q4

seller?descr

seller?price

seller!offer

seller!accept

seller!quit

On Global Types and Multi-Party Sessions



Global types and session types Projections Related approaches

Cryptographic protocols

Kao Chow protocol in WPPL

1 (spec ([a (a b s kas) (kab)]
2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])
3 [a -> s : a, b, na:nonce]
4 [s -> b : |a, b, na, kab| kas, |a, b, na, kab| kbs]
5 [b -> a : |a, b, na, kab| kas, |na| kab, nb:nonce]
6 [a -> b : |nb| kab] .)

On Global Types and Multi-Party Sessions


	Global types and session types
	Overview
	Global types
	Session types

	Projections
	Semantic projection
	Algorithmic projection
	Kleene star and recursion

	Related approaches
	Sessions and Choreographies
	Automata
	Cryptographic protocols


