
A linear type system for pi calculus
joint work with Vasco T. Vasconcelos

Marco Giunti

INRIA & LIX, École Polytechnique Palaiseau

Behavorial Types, April 19 2010, Lisboa

Session Types

• Describe a protocol between a service provider and a client

• Introduced for the pi calculus and now embedded also in other
paradigms based on message passing

- functional programming

- object oriented programming

• Idea: allowing typing of channels by using structured sequences
of types as output,output,input,..

!Integer . ! Boolean . ? Boolean . end

2

Session types in the pi calculus

• In [HVK Esop’98] a typing discipline for structured programming is
introduced for a dialect of pi calculus

• Session channels are used to abstract binary sessions and are
distinguished from standard pi calculus channels or names

• Session initiation arises on names

• Fidelity of sessions is guaranteed by a typing system enforcing a
session channel to be used at most by two threads with opposite
capabilities (e.g. input/output)

3

Discussion

• In the original system and recent works session delegation is
restricted to bound output

x〈k〉.P | x(k).Q→ P | Q

• Communication mechanism of the pi calculus breaks subject
reduction

• Decoration of channel end-points is the de-facto workaround [GH
Acta’05]

x+〈yp〉.P | x−(z).Q→ P | Q[yp/z]

• Distinction between names and session channels of [HVK98]
leads to duplicate typing rules

4

What we have done

• Remove distinction among session channels and names

• Do not use polarities or double binders

• That is: we use standard pi calculus

• Annotate session types with qualifiers

- lin for linear use

- un for unrestricted use

• Introduce a type construct that describes the two ends of a same
channel

5

Types
• Types T

- S for end point type describing one channel end

- (S, S) for channel type describing both channel ends

• End point types S are

- lin p linear channel used exactly once

- un p channel is used zero or more times

- µa.S and a for recursive end point types

• Session types p are

- ?T.S: waits for value of type T then continues as S

- !T.S: sends a value of type T then continues as S

- end: no further interactions are possible

6

Example: event scheduling

1. Create poll

• provide the title for the meeting

• provide a provisional date

2. Invite participants

• Pi calculus: send request to create poll / receive poll channel

poll〈y〉.y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | · · · | zn〈p〉))

• Challenge: concurrent distribution of the poll channel

7

Session type for the poll
• Poll channel used first in linear mode then in unrestricted mode

• Steps:

1. Send a title for the poll (linear mode)

2. Send a date for the poll (linear mode)

3. Distribute the poll (unrestricted mode)

y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | · · · | zn〈p〉))

• End point session type for channel p is

lin !string.lin !date. ∗S where ∗S = un !date. ∗S

• Recursive unrestricted type S allows distribution of poll channel

8

Type for the scheduling service

• Service: instantiation generates poll

Service =!poll(w).(νp : (S1, S2)) (w〈p〉.p(t).p(d).!p(d))

S1 = lin ?string.lin ?date. ∗un ?date

S2 = lin !string.lin !date. ∗un !date

• Poll channel is split:

1. One channel end sent to the invoker

2. The other channel end used in the continuation

9

Context splitting

• Type system Γ ` P based on context splitting Γ1 · Γ2

• Unrestricted types are copied into both contexts

• Linear types are placed in one of the two resulting contexts

Γ1, p : S2 ` p : S2 Γ2, w : end, p : S1 ` p(t).p(d).!p(d) Γ = Γ1 · Γ2

Γ, w : lin !S2.end, p : (S1, S2) ` w〈p〉.p(t).p(d).!p(d)

10

Subject reduction

• Γ balanced, Γ ` P , P → P ′ imply Γ′ ` P ′ with Γ′ balanced

• Interesting case: (q ?T.S1, q ?T.S2) is balanced if both T and
(S1, S2) are balanced

• Purpose of balancing is to preserve soundness of exchange

Γ = x : (lin ?(∗!bool).un end, lin !(un end).un end), y : un end

Γ ` x(z).z〈true〉 | x〈y〉

x(z).z〈true〉 | x〈y〉 → y〈true〉

x : (un end, un end), y : un end 6` y〈true〉

11

SR at work

• Receiving of a session already known

x〈v〉 | x(y).v〈true〉.y(z)→ v〈true〉.v(z)

• Typing the redex

v : (un end, lin ?bool.un end) ` v(z)

v : (lin !bool.un end, lin ?bool.un end) ` v〈true〉.v(z)

12

Algorithm

• Type system ` cannot be implemented directly

• Main difficulty is split operation

• We avoid split by

1. passing entire context for the judgement

2. mark linear types consumed in the derivation as unusable

13

Type checking

• Algorithm relies on several patterns of checking function

fun check(g : context, p : process) : context

• Context in input is balanced

1. patterns are non ambiguous

2. no backtracking is needed

• Context in output has void marks in place of consumed types

• Top-level call accepts process if check returns unrestricted context

fun typeCheck(g : context, p : process) : bool

14

Checking the service

• Poll delegation: type for delegation channel T = lin !S2.un end

check(Γ, w : T, p : (S1, S2) , w〈p〉.P) =

let val d = check(Γ, w : un end, p : (S1, ◦), P)

in if d = d′, w : M and M = ◦, un p then d′, w : ◦

• Call for the continuation by setting delegated end point for the poll
to void (noted ◦)

• Linear use of channel must be consumed within the continuation
(condition M = ◦, un p)

• Returned context obtained by setting to void the unrestricted type
for the channel

15

Checking the continuation

• Linear receiving of the date: S1 = lin ?string.lin ?date. ∗un ?date

check(Γ, p : (S1, N) , p(t).P) =

let val d = check(Γ, p : lin ?date. ∗un ?date, t : string, P)

in if d = d′, p : M and M = ◦, un p then d′, p : (◦, N)

• Checking of the continuation invoked by passing one channel end

• Linear use of channel must be consumed within the continuation
(condition M = un p, ◦)

• Returned context re-builds channel type by setting used channel
end to void

16

Checking the scheduling protocol
• Protocol described by concurrent execution of

Service =!poll(w).(νp) (w〈p〉.p(t).p(d).!p(d))

Invoker = poll〈y〉.y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | .. | zn〈p〉))

• Type checking

check(Γ , Service | Invoker) =

check(Invoker , check(Γ , Service))

• Preservation of structural congruence

check(Γ , Invoker | Service) = check(Γ , Service | Invoker)

17

Algoritmic soundness

• The algorithm is sound

- typeCheck(Γ, P) implies Γ ` P

• Completeness missing since ` permits to infer

- Γ, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.C[x(y).P]

- Γ, x : (lin ?T.S1, lin !T.S2) ` x(y).C[x〈v〉.Q]

- Γ, x : (lin ?T.S1, lin !T.S2) ` x〈x〉.P

• Claim: processes in these judgements are deadlocked

18

Towards algoritmic completeness

• Proof transformation: Γ1 ` P1 transformed in Γ2 ` P2

• Construction: Γ, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.Q substituted in
the derivation tree for Γ1 ` P1 with ∅ ` 0

• Typed equivalence: Γ1 . P1 and Γ2 . P2 have same behavior

- Γ .P is typed configuration such that ∆ ` P and Γ ·∆ defined

- Γ is less informative typed observer allowing moves of P

• Semantic completeness: typeCheck (Γ2, P2)

19

Conclusions

• We introduced type system ` based on construct that describes
the two ends of the same channel

- An end point is described by session type qualified as linear or
unrestricted

- Linear types evolve to unrestricted types

• We assessed expressiveness by defining type-preserving
encoding of

1. linear lambda calculus [Walker&05]

2. linear pi calculus [KPT TOPLAS’99]

3. pi calculus with polarities [GH Acta’05]

20

Ongoing and future work

• We implemented rules ` in type checking algorithm

• (Semantic) completeness in progress

• Still there are interesting processes that are not typable by `

!x(y).(νa)(y〈a〉.a(title).a(date).(!a(date) | a〈22March〉)

• Both capabilities needed in continuation for receive and send date

• Sub typing à la Pierce&Sangiorgi would fix this

21

	Title slide
	Session Types
	Session types in the pi calculus
	Discussion
	What we have done
	Types
	Example: event scheduling
	Session type for the poll
	Type for the scheduling service
	Context splitting
	Subject reduction
	SR at work
	Algorithm
	Type checking
	Checking the service
	Checking the continuation
	Checking the scheduling protocol
	Algoritmic soundness
	Towards algoritmic completeness
	Conclusions
	Ongoing and future work

