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Session Types

• Describe a protocol between a service provider and a client

• Introduced for the pi calculus and now embedded also in other
paradigms based on message passing

- functional programming

- object oriented programming

• Idea: allowing typing of channels by using structured sequences
of types as output,output,input,..

!Integer . ! Boolean . ? Boolean . end
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Session types in the pi calculus

• In [HVK Esop’98] a typing discipline for structured programming is
introduced for a dialect of pi calculus

• Session channels are used to abstract binary sessions and are
distinguished from standard pi calculus channels or names

• Session initiation arises on names

• Fidelity of sessions is guaranteed by a typing system enforcing a
session channel to be used at most by two threads with opposite
capabilities (e.g. input/output)
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Discussion

• In the original system and recent works session delegation is
restricted to bound output

x〈k〉.P | x(k).Q→ P | Q

• Communication mechanism of the pi calculus breaks subject
reduction

• Decoration of channel end-points is the de-facto workaround [GH
Acta’05]

x+〈yp〉.P | x−(z).Q→ P | Q[yp/z]

• Distinction between names and session channels of [HVK98]
leads to duplicate typing rules
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What we have done

• Remove distinction among session channels and names

• Do not use polarities or double binders

• That is: we use standard pi calculus

• Annotate session types with qualifiers

- lin for linear use

- un for unrestricted use

• Introduce a type construct that describes the two ends of a same
channel
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Types
• Types T

- S for end point type describing one channel end

- (S, S) for channel type describing both channel ends

• End point types S are

- lin p linear channel used exactly once

- un p channel is used zero or more times

- µa.S and a for recursive end point types

• Session types p are

- ?T.S: waits for value of type T then continues as S

- !T.S: sends a value of type T then continues as S

- end: no further interactions are possible
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Example: event scheduling

1. Create poll

• provide the title for the meeting

• provide a provisional date

2. Invite participants

• Pi calculus: send request to create poll / receive poll channel

poll〈y〉.y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | · · · | zn〈p〉))

• Challenge: concurrent distribution of the poll channel
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Session type for the poll
• Poll channel used first in linear mode then in unrestricted mode

• Steps:

1. Send a title for the poll (linear mode)

2. Send a date for the poll (linear mode)

3. Distribute the poll (unrestricted mode)

y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | · · · | zn〈p〉))

• End point session type for channel p is

lin !string.lin !date. ∗S where ∗S = un !date. ∗S

• Recursive unrestricted type S allows distribution of poll channel
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Type for the scheduling service

• Service: instantiation generates poll

Service =!poll(w).(νp : (S1, S2)) (w〈p〉.p(t).p(d).!p(d))

S1 = lin ?string.lin ?date. ∗un ?date

S2 = lin !string.lin !date. ∗un !date

• Poll channel is split:

1. One channel end sent to the invoker

2. The other channel end used in the continuation
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Context splitting

• Type system Γ ` P based on context splitting Γ1 · Γ2

• Unrestricted types are copied into both contexts

• Linear types are placed in one of the two resulting contexts

Γ1, p : S2 ` p : S2 Γ2, w : end, p : S1 ` p(t).p(d).!p(d) Γ = Γ1 · Γ2

Γ, w : lin !S2.end, p : (S1, S2) ` w〈p〉.p(t).p(d).!p(d)
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Subject reduction

• Γ balanced, Γ ` P , P → P ′ imply Γ′ ` P ′ with Γ′ balanced

• Interesting case: (q ?T.S1, q ?T.S2) is balanced if both T and
(S1, S2) are balanced

• Purpose of balancing is to preserve soundness of exchange

Γ = x : (lin ?(∗!bool).un end, lin !(un end).un end), y : un end

Γ ` x(z).z〈true〉 | x〈y〉

x(z).z〈true〉 | x〈y〉 → y〈true〉

x : (un end, un end), y : un end 6` y〈true〉
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SR at work

• Receiving of a session already known

x〈v〉 | x(y).v〈true〉.y(z)→ v〈true〉.v(z)

• Typing the redex

v : (un end, lin ?bool.un end) ` v(z)

v : (lin !bool.un end, lin ?bool.un end) ` v〈true〉.v(z)
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Algorithm

• Type system ` cannot be implemented directly

• Main difficulty is split operation

• We avoid split by

1. passing entire context for the judgement

2. mark linear types consumed in the derivation as unusable
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Type checking

• Algorithm relies on several patterns of checking function

fun check(g : context, p : process) : context

• Context in input is balanced

1. patterns are non ambiguous

2. no backtracking is needed

• Context in output has void marks in place of consumed types

• Top-level call accepts process if check returns unrestricted context

fun typeCheck(g : context, p : process) : bool
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Checking the service

• Poll delegation: type for delegation channel T = lin !S2.un end

check(Γ, w : T, p : (S1, S2) , w〈p〉.P ) =

let val d = check(Γ, w : un end, p : (S1, ◦), P )

in if d = d′, w : M and M = ◦, un p then d′, w : ◦

• Call for the continuation by setting delegated end point for the poll
to void (noted ◦)

• Linear use of channel must be consumed within the continuation
(condition M = ◦, un p)

• Returned context obtained by setting to void the unrestricted type
for the channel
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Checking the continuation

• Linear receiving of the date: S1 = lin ?string.lin ?date. ∗un ?date

check(Γ, p : (S1, N) , p(t).P ) =

let val d = check(Γ, p : lin ?date. ∗un ?date, t : string, P )

in if d = d′, p : M and M = ◦, un p then d′, p : (◦, N)

• Checking of the continuation invoked by passing one channel end

• Linear use of channel must be consumed within the continuation
(condition M = un p, ◦)

• Returned context re-builds channel type by setting used channel
end to void
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Checking the scheduling protocol
• Protocol described by concurrent execution of

Service =!poll(w).(νp) (w〈p〉.p(t).p(d).!p(d))

Invoker = poll〈y〉.y(p).(p〈Workshop〉.p〈19April〉.(z1〈p〉 | .. | zn〈p〉))

• Type checking

check(Γ , Service | Invoker) =

check( Invoker , check(Γ , Service) )

• Preservation of structural congruence

check(Γ , Invoker | Service) = check(Γ , Service | Invoker)
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Algoritmic soundness

• The algorithm is sound

- typeCheck(Γ, P ) implies Γ ` P

• Completeness missing since ` permits to infer

- Γ, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.C[x(y).P ]

- Γ, x : (lin ?T.S1, lin !T.S2) ` x(y).C[x〈v〉.Q]

- Γ, x : (lin ?T.S1, lin !T.S2) ` x〈x〉.P

• Claim: processes in these judgements are deadlocked
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Towards algoritmic completeness

• Proof transformation: Γ1 ` P1 transformed in Γ2 ` P2

• Construction: Γ, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.Q substituted in
the derivation tree for Γ1 ` P1 with ∅ ` 0

• Typed equivalence: Γ1 . P1 and Γ2 . P2 have same behavior

- Γ .P is typed configuration such that ∆ ` P and Γ ·∆ defined

- Γ is less informative typed observer allowing moves of P

• Semantic completeness: typeCheck (Γ2, P2)
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Conclusions

• We introduced type system ` based on construct that describes
the two ends of the same channel

- An end point is described by session type qualified as linear or
unrestricted

- Linear types evolve to unrestricted types

• We assessed expressiveness by defining type-preserving
encoding of

1. linear lambda calculus [Walker&05]

2. linear pi calculus [KPT TOPLAS’99]

3. pi calculus with polarities [GH Acta’05]
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Ongoing and future work

• We implemented rules ` in type checking algorithm

• (Semantic) completeness in progress

• Still there are interesting processes that are not typable by `

!x(y).(νa)(y〈a〉.a(title).a(date).(!a(date) | a〈22March〉)

• Both capabilities needed in continuation for receive and send date

• Sub typing à la Pierce&Sangiorgi would fix this
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