

A linear type system for pi calculus

joint work with Vasco T. Vasconcelos

Marco Giunti

INRIA & LIX, École Polytechnique Palaiseau

Behavorial Types, April 19 2010, Lisboa

Session Types

- Describe a protocol between a service provider and a client
- Introduced for the pi calculus and now embedded also in other paradigms based on message passing
 - functional programming
 - object oriented programming
- Idea: allowing typing of channels by using structured sequences of types as output,output,input,..

!Integer . ! Boolean . ? Boolean . end

Session types in the pi calculus

- In [HVK Esop'98] a typing discipline for structured programming is introduced for a dialect of pi calculus
- Session channels are used to abstract binary sessions and are distinguished from standard pi calculus channels or names
- Session initiation arises on names
- Fidelity of sessions is guaranteed by a typing system enforcing a session channel to be used at most by two threads with opposite capabilities (e.g. input/output)

Discussion

• In the original system and recent works session delegation is restricted to bound output

$$\overline{x}\langle k\rangle.P \mid x(k).Q \to P \mid Q$$

- Communication mechanism of the pi calculus breaks subject reduction
- Decoration of channel end-points is the de-facto workaround [GH Acta'05]

$$\overline{x^+} \langle y^p \rangle . P \mid x^-(z) . Q \to P \mid Q[y^p/z]$$

• Distinction between names and session channels of [HVK98] leads to duplicate typing rules

What we have done

- Remove distinction among session channels and names
- Do not use polarities or double binders
- That is: we use standard pi calculus
- Annotate session types with qualifiers
 - Iin for linear use
 - un for unrestricted use
- Introduce a type construct that describes the two ends of a same channel

- \bullet Types T
 - ${\cal S}$ for end point type describing one channel end
 - $\left(S,S\right)$ for channel type describing both channel ends
- \bullet End point types S are
 - $\lim p$ linear channel used exactly once
 - $\operatorname{un} p$ channel is used zero or more times
 - $\mu a.S$ and a for recursive end point types
- \bullet Session types $p \mbox{ are }$
 - ?T.S: waits for value of type T then continues as S
 - !T.S: sends a value of type T then continues as S
 - end: no further interactions are possible

Example: event scheduling

- 1. Create poll
 - provide the title for the meeting
 - provide a provisional date
- 2. Invite participants
- Pi calculus: send request to create poll / receive poll channel

 $\overline{poll}\langle y \rangle . y(p) . (\overline{p}\langle Workshop \rangle . \overline{p}\langle 19April \rangle . (\overline{z_1}\langle p \rangle \mid \cdots \mid \overline{z_n}\langle p \rangle))$

• Challenge: concurrent distribution of the poll channel

Session type for the poll

- Poll channel used first in linear mode then in unrestricted mode
- Steps:
 - 1. Send a title for the poll (linear mode)
 - 2. Send a date for the poll (linear mode)
 - 3. Distribute the poll (unrestricted mode)

 $y(\mathbf{p}).(\overline{\mathbf{p}}\langle \mathsf{Workshop} \rangle.\overline{\mathbf{p}}\langle \mathsf{19April} \rangle.(\overline{z_1}\langle \mathbf{p} \rangle \mid \cdots \mid \overline{z_n}\langle \mathbf{p} \rangle))$

- End point session type for channel p is lin !string.lin !date. *S where *S = un !date. *S
- $\bullet\ {\rm Recursive\ unrestricted\ type\ }S$ allows distribution of poll channel

Type for the scheduling service

• Service: instantiation generates poll

 $\begin{aligned} & \textit{Service} = !\textit{poll}(w).(\nu p : (S_1, S_2)) \left(\overline{w} \langle p \rangle. p(t). p(d). !p(d) \right) \\ & S_1 = \text{lin ?string.lin ?date. *un ?date} \\ & S_2 = \text{lin !string.lin !date. *un !date} \end{aligned}$

- Poll channel is **split**:
 - 1. One channel end sent to the invoker
 - 2. The other channel end used in the continuation

Context splitting

- Type system $\Gamma \vdash P$ based on context splitting $\Gamma_1 \cdot \Gamma_2$
- Unrestricted types are copied into both contexts
- Linear types are placed in one of the two resulting contexts

 $\frac{\Gamma_1, p: \mathbf{S_2} \vdash p: S_2 \quad \Gamma_2, w: \mathsf{end}, p: \mathbf{S_1} \vdash p(t).p(d).!p(d) \quad \Gamma = \Gamma_1 \cdot \Gamma_2}{\Gamma, w: \mathsf{lin}\, !S_2.\mathsf{end}, p: (\mathbf{S_1}, \mathbf{S_2}) \vdash \overline{w} \langle \mathbf{p} \rangle.p(t).p(d).!p(d)}$

Subject reduction

- Γ balanced, $\Gamma \vdash P$, $P \to P'$ imply $\Gamma' \vdash P'$ with Γ' balanced
- Interesting case: $(q ?T.S_1, q ?T.S_2)$ is balanced if both T and (S_1, S_2) are balanced
- Purpose of balancing is to preserve soundness of exchange

$$\begin{split} &\Gamma = x: (\operatorname{lin}?(*!\operatorname{bool}).\operatorname{un}\operatorname{end}, \operatorname{lin}!(\operatorname{un}\operatorname{end}).\operatorname{un}\operatorname{end}), y:\operatorname{un}\operatorname{end}} \\ &\Gamma \vdash x(z).\overline{z}\langle\operatorname{true}\rangle \mid \overline{x}\langle y\rangle \\ &x(z).\overline{z}\langle\operatorname{true}\rangle \mid \overline{x}\langle y\rangle \, \to \, \overline{y}\langle\operatorname{true}\rangle \\ &x: (\operatorname{un}\operatorname{end}, \operatorname{un}\operatorname{end}), y:\operatorname{un}\operatorname{end} \not\vdash \overline{y}\langle\operatorname{true}\rangle \end{split}$$

SR at work

• Receiving of a session already known

$$\overline{x} \langle v \rangle \mid x(y). \overline{v} \langle \mathrm{true} \rangle. y(z) \to \overline{v} \langle \mathrm{true} \rangle. v(z)$$

• Typing the redex

 $\frac{v:(\mathsf{un}~\mathsf{end},\mathsf{lin}~?\mathsf{bool.un}~\mathsf{end})\vdash v(z)}{v:(\mathsf{lin}~!\mathsf{bool.un}~\mathsf{end},\mathsf{lin}~?\mathsf{bool.un}~\mathsf{end})\vdash \overline{v}\langle\mathsf{true}\rangle.v(z)}$

Algorithm

- Type system \vdash cannot be implemented directly
- Main difficulty is split operation
- We avoid split by
 - 1. passing entire context for the judgement
 - 2. mark linear types consumed in the derivation as *unusable*

Type checking

• Algorithm relies on several patterns of checking function

 $fun \ check(g: context, p: process): context$

- Context in input is balanced
 - 1. patterns are non ambiguous
 - 2. no backtracking is needed
- Context in output has **void** marks in place of consumed types
- Top-level call accepts process if check returns unrestricted context fun typeCheck(g : context, p : process) : bool

Checking the service

• Poll delegation: type for delegation channel $T = \lim !S_2$.un end

 $\begin{aligned} \mathsf{check}(\Gamma,w:T,p:(S_1,S_2)\ ,\overline{w}\langle p\rangle.P) = \\ \mathsf{let}\ \mathsf{val}\ d = \mathsf{check}(\Gamma,w:\mathsf{un}\ \mathsf{end}\ ,p:(S_1,\circ),P) \\ \mathsf{in}\ \mathsf{if}\ d = d',w:M\ \mathsf{and}\ M = \circ,\mathsf{un}\ p\ \mathsf{then}\ d',w:\circ \end{aligned}$

- Call for the continuation by setting delegated end point for the poll to void (noted o)
- Linear use of channel must be consumed within the continuation (condition $M = \circ, \operatorname{un} p$)
- Returned context obtained by setting to void the unrestricted type for the channel

Checking the continuation

• Linear receiving of the date: $S_1 = \lim ?$ string.lin?date. *un?date

$$\begin{aligned} \mathsf{check}(\Gamma,p:(S_1,N)\,,\,p(t).P) &= \\ \mathsf{let}\;\mathsf{val}\;d &= \mathsf{check}(\Gamma,p:\mathsf{lin}\,?\mathsf{date}.\,*\mathsf{un}\,?\mathsf{date},t:\mathsf{string},P)\\ \mathsf{in}\;\mathsf{if}\;d &= d',p:M\;\mathsf{and}\;M = \circ,\mathsf{un}\;p\;\mathsf{then}\;d',p:(\circ,N) \end{aligned}$$

- Checking of the continuation invoked by passing one channel end
- Linear use of channel must be consumed within the continuation (condition $M = \operatorname{un} p, \circ$)
- Returned context re-builds channel type by setting used channel end to void

Checking the scheduling protocol

• Protocol described by concurrent execution of

 $\begin{aligned} &\textit{Service} = !\textit{poll}(w).(\nu p) \left(\overline{w} \langle \boldsymbol{p} \rangle. \boldsymbol{p}(t). \boldsymbol{p}(d). !\boldsymbol{p}(d) \right) \\ &\textit{Invoker} = \overline{\textit{poll}} \langle y \rangle. y(\boldsymbol{p}).(\overline{\boldsymbol{p}} \langle \textit{Workshop} \rangle. \overline{\boldsymbol{p}} \langle \textit{19April} \rangle.(\overline{z_1} \langle \boldsymbol{p} \rangle \mid .. \mid \overline{z_n} \langle \boldsymbol{p} \rangle)) \end{aligned}$

• Type checking

 $check(\Gamma, Service | Invoker) = \\check(Invoker, check(\Gamma, Service))$

• Preservation of structural congruence

 $check(\Gamma, Invoker | Service) = check(\Gamma, Service | Invoker)$

Algoritmic soundness

- The algorithm is sound
 - $\mathsf{typeCheck}(\Gamma, P)$ implies $\Gamma \vdash P$
- Completeness missing since \vdash permits to infer
 - $\Gamma, x: (\lim ?T.S_1, \lim !T.S_2) \vdash \overline{x} \langle v \rangle.C[x(y).P]$
 - $\Gamma, x: (\lim ?T.S_1, \lim !T.S_2) \vdash x(y).C[\overline{x}\langle v \rangle.Q]$
 - $\Gamma, x: (\lim ?T.S_1, \lim !T.S_2) \vdash \overline{x} \langle x \rangle.P$
- Claim: processes in these judgements are deadlocked

Towards algoritmic completeness

- Proof transformation: $\Gamma_1 \vdash P_1$ transformed in $\Gamma_2 \vdash P_2$
- Construction: $\Gamma, x : (\lim ?T.S_1, \lim !T.S_2) \vdash \overline{x} \langle v \rangle.Q$ substituted in the derivation tree for $\Gamma_1 \vdash P_1$ with $\emptyset \vdash \mathbf{0}$
- Typed equivalence: $\Gamma_1 \triangleright P_1$ and $\Gamma_2 \triangleright P_2$ have same *behavior*
 - $\Gamma \triangleright P$ is typed configuration such that $\Delta \vdash P$ and $\Gamma \cdot \Delta$ defined
 - Γ is less informative typed observer allowing moves of P
- Semantic completeness: typeCheck (Γ_2, P_2)

Conclusions

- We introduced type system ⊢ based on construct that describes the two ends of the same channel
 - An end point is described by session type qualified as linear or unrestricted
 - Linear types evolve to unrestricted types
- We assessed expressiveness by defining type-preserving encoding of
 - 1. linear lambda calculus [Walker&05]
 - 2. linear pi calculus [KPT TOPLAS'99]
 - 3. pi calculus with polarities [GH Acta'05]

Ongoing and future work

- We implemented rules \vdash in type checking algorithm
- (Semantic) completeness in progress
- Still there are interesting processes that are not typable by \vdash $!x(y).(\nu a)(\overline{y}\langle a \rangle.a(title).a(date).(!a(date) | \overline{a}\langle 22March \rangle)$
- Both capabilities needed in continuation for receive and send date
- Sub typing à la Pierce&Sangiorgi would fix this