
Session Scala

Multiparty Session Programming
with Scala, Scribble and AMQP

http://code.google.com/p/session-scala/

Olivier Pernet — Imperial College London
Lisbon Behavioural Types Workshop
April 19th, 2011

http://code.google.com/p/session-scala/
http://code.google.com/p/session-scala/


This talk

• Intro to Session Scala and Scribble

• Session type + implementation examples

• Session initiation in Session Scala

• Ongoing work:

• One-to-many choice

• Nested role invitations



Session Scala

• No new syntax, only extra compile-time checks

• Runtime based on / interop. with Scala Actors library

• Implemented as a Scala compiler plugin + small runtime lib

> scalac -Xplugin:sessions.jar -cp sessions-rt.jar myfile.scala

• Code will compile even without plugin

• Currently, lib supports shared memory and AMQP communication

• Uses Scribble as the session type declaration language



Scribble

• Multiparty session type definition language

• Independent of programming languages

• Includes framework for well-formedness validation, session type projection, 
runtime monitoring

• Open-source: www.scribble.org

• Main developer: Gary Brown, Red Hat, with contributions from others including 
myself

• Usable now, more features coming

http://www.scribble.org
http://www.scribble.org


Examples



Basic example - evenserver.spr

protocol EvenServer(role Client, role EvenServer) {

Int from Client to EvenServer;

Boolean from EvenServer to Client;

}



Basic example - evenserver.scala

val client = newLocalAddress(“evenserver.spr”, ‘Client)
val serv = newLocalAddress(“evenserver.spr”, ‘EvenServer)
actor { startSession(client, serv) }
actor {

client.bind { s =>
s ! ‘EvenServer -> 42
println(“is even: ” + s.?[Boolean](‘EvenServer))

}
}
serv.bind { s =>

val i = s.?[Int](‘Client)
s ! ‘Client -> i % 2 == 0

}



Choice example - opserver.spr

protocol OpServer(role Client, role OpServer) {

choice from Client to OpServer {

add(Int, Int): Int from OpServer to Client;

even(Int): Boolean from OpServer to Client;

time(): Date from OpServer to Client;

String: String from OpServer to Client;

}

}



Choice example - opserver.scala

client.bind { s =>
s ! ‘OpServer -> (‘add, 42, 1)
println(“42 + 1 = ” + s.?[Int](‘OpServer))

}

opserv.bind { s =>
s.receive(‘Client) {

case (‘add, i: Int, j: Int) => s ! ‘Client -> i+j
case (‘even, i: Int) => s ! ‘Client -> i % 2 == 0
case ‘time => s ! ‘Client -> new Date
case str: String => s ! ‘Client -> “You said: ”+str

} }



Recursion example - recserver.spr

protocol RecServer(role Client, role RecServer) {

rec X {

choice from Client to RecServer {

Int: 

Boolean from RecServer to Client;

X;

quit():

} }



client.bind { s =>

def loop(s: SessionChannel) {

if (wantMore) {

s ! ‘RecServer -> 42

println(“is even: ” + s.?[Boolean] (‘RecServer))

loop(s)

} else s ! ‘RecServer -> ‘quit

}

loop(s)

}

recserv.bind { s =>

def loop(s: SessionChannel) {

s.receive(‘Client) {

case i: Int => s ! ‘Client -> i % 2 == 0 ; loop(s)

case ‘quit =>

}

} 

loop(s)

}



Session initiation



Session initiation

• Using startSession and bind

• One process calls startSession, sends out invite messages for each role 
in the session (possibly to itself) to given addresses

• Other processes block on bind, waiting for an invite

• Alternatively, a process can block on forward and forward the invite to 
another

• Can start multiple instances of a protocol by calling startSession again /
in a loop

• Implementation of theory work under submission by Tzu-Chun Chen et al.



Session initiation protocol

• Inviter creates unique reply address

• Inviter sends invite to destination addresses including reply address

• Invited processes either forward, or accept the invitation

• accept: send message to reply address, including confirmation address 
and session address

• Inviter waits for confirmations for all invites, then sends the map role -
session addresses to all confirmation addresses

• All session participants can start



Ongoing work



Problem: Servers / Services

protocol ClientMidServ(role Client, role Middleware, role Service) {

request() from Client to Middleware;

choice from Middleware to Service {

nothing():

simpleReply() from Middleware to Client;

subrequest():

subreply() from Service to Middleware;

complexReply() from Middleware to Client;

}}



Solution

protocol ClientMidServ(role Client, role Middleware) {

request(...) from Client to Middleware;

choice at Middleware { 

Middleware introduces Service;

subrequest(...) from Middleware to Service;

complexReply(...) from Service to Client;

} or {

simpleReply(...) from Middleware to Client;

}

}



Projection: Client

protocol ClientMidServ(role Middleware, role Service)@Client {

request(...) to Middleware;

do { 

complexReply(...) from Service;

} or {

simpleReply(...) from Middleware;

}

}



Projection: Service

protocol ClientMidServ(role Client, role Middleware)@Service {

subrequest(...) from Middleware;

complexReply(...) to Client;

}



Projection: Middleware

protocol ClientMidServ(role Client)@Middleware {

request(...) from Client;

do { 

introduce Service;

subrequest(...) to Service;

} or {

simpleReply(...) to Client;

}

}



Implementation: Client

client.bind { s =>
s ! ‘Middleware -> (‘request, ...)
s.mreceive {

case ‘Middleware -> (‘simpleReply, ...) =>
case ‘Service -> (‘complexReply, ...) =>

}
}



Added benefits - 1

protocol P(role A, role B) {

choice at A { 

rec X {

M1 from A to B;

X;

}

} or {

M2 from A to B;

}

}



Added benefits - 2

protocol P(role A, role B) {

choice at A { 

run Sub1(A,B);

} or {

run Sub2(A,B);

}

}



Implementation: Client

client.bind { s =>
s ! ‘Middleware -> (‘request, ...)
s.mreceive {

case ‘Middleware -> (‘simpleReply, ...) =>
case ‘Service -> (‘complexReply, ...) =>

}
}



Thanks. Questions?

Multiparty Session Programming
with Scala, Scribble and AMQP

http://code.google.com/p/session-scala/

Olivier Pernet — Imperial College London
Lisbon Behavioural Types Workshop
April 19th, 2011

http://code.google.com/p/session-scala/
http://code.google.com/p/session-scala/


Backup slides



AMQP communication

• AMQP: Emerging Internet standard for async message passing

• Using very small part of AMQP

• Compatible with current 0.9.1 and upcoming 1.0

• “Addresses” in the abstract model map to queue@broker

• Each SessionChannel (s) uses 

• an actor proxy for each role in session

• one receiver actor, consuming messages sent to process’ session address



Alice Bob
proxy

Carol
proxy

Receiver 
for Alice

Bob

Carol Bob
proxy

Alice
proxy

Receiver 
for Carol

Alice
proxy

Carol
proxy

Receiver 
for Bob

Broker 1

Broker 2

Host 1

Host 2

Bob

Carol

Alice

Carol

Bob

Alice



Shared memory communication

• Using Scala actors as directly as possible

• “Addresses” in the abstract model map to a scala.actors.Channel

• Channel: tag on message in actor mailbox

• Each SessionChannel (s) uses

• A Channel for each role in the session to send to others 

• The current actor mailbox to receive messages



Alice

Carol

Bob

JVM

Bob

Carol
Alice

Bob Carol

Alice


