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This talk

• Intro to Session Scala and Scribble

• Session type + implementation examples

• Session initiation in Session Scala

• Ongoing work:

• One-to-many choice

• Nested role invitations



Session Scala

• No new syntax, only extra compile-time checks

• Runtime based on / interop. with Scala Actors library

• Implemented as a Scala compiler plugin + small runtime lib

> scalac -Xplugin:sessions.jar -cp sessions-rt.jar myfile.scala

• Code will compile even without plugin

• Currently, lib supports shared memory and AMQP communication

• Uses Scribble as the session type declaration language



Scribble

• Multiparty session type definition language

• Independent of programming languages

• Includes framework for well-formedness validation, session type projection, 
runtime monitoring

• Open-source: www.scribble.org

• Main developer: Gary Brown, Red Hat, with contributions from others including 
myself

• Usable now, more features coming

http://www.scribble.org
http://www.scribble.org


Examples



Basic example - evenserver.spr

protocol EvenServer(role Client, role EvenServer) {

Int from Client to EvenServer;

Boolean from EvenServer to Client;

}



Basic example - evenserver.scala

val client = newLocalAddress(“evenserver.spr”, ‘Client)
val serv = newLocalAddress(“evenserver.spr”, ‘EvenServer)
actor { startSession(client, serv) }
actor {

client.bind { s =>
s ! ‘EvenServer -> 42
println(“is even: ” + s.?[Boolean](‘EvenServer))

}
}
serv.bind { s =>

val i = s.?[Int](‘Client)
s ! ‘Client -> i % 2 == 0

}



Choice example - opserver.spr

protocol OpServer(role Client, role OpServer) {

choice from Client to OpServer {

add(Int, Int): Int from OpServer to Client;

even(Int): Boolean from OpServer to Client;

time(): Date from OpServer to Client;

String: String from OpServer to Client;

}

}



Choice example - opserver.scala

client.bind { s =>
s ! ‘OpServer -> (‘add, 42, 1)
println(“42 + 1 = ” + s.?[Int](‘OpServer))

}

opserv.bind { s =>
s.receive(‘Client) {

case (‘add, i: Int, j: Int) => s ! ‘Client -> i+j
case (‘even, i: Int) => s ! ‘Client -> i % 2 == 0
case ‘time => s ! ‘Client -> new Date
case str: String => s ! ‘Client -> “You said: ”+str

} }



Recursion example - recserver.spr

protocol RecServer(role Client, role RecServer) {

rec X {

choice from Client to RecServer {

Int: 

Boolean from RecServer to Client;

X;

quit():

} }



client.bind { s =>

def loop(s: SessionChannel) {

if (wantMore) {

s ! ‘RecServer -> 42

println(“is even: ” + s.?[Boolean] (‘RecServer))

loop(s)

} else s ! ‘RecServer -> ‘quit

}

loop(s)

}

recserv.bind { s =>

def loop(s: SessionChannel) {

s.receive(‘Client) {

case i: Int => s ! ‘Client -> i % 2 == 0 ; loop(s)

case ‘quit =>

}

} 

loop(s)

}



Session initiation



Session initiation

• Using startSession and bind

• One process calls startSession, sends out invite messages for each role 
in the session (possibly to itself) to given addresses

• Other processes block on bind, waiting for an invite

• Alternatively, a process can block on forward and forward the invite to 
another

• Can start multiple instances of a protocol by calling startSession again /
in a loop

• Implementation of theory work under submission by Tzu-Chun Chen et al.



Session initiation protocol

• Inviter creates unique reply address

• Inviter sends invite to destination addresses including reply address

• Invited processes either forward, or accept the invitation

• accept: send message to reply address, including confirmation address 
and session address

• Inviter waits for confirmations for all invites, then sends the map role -
session addresses to all confirmation addresses

• All session participants can start



Ongoing work



Problem: Servers / Services

protocol ClientMidServ(role Client, role Middleware, role Service) {

request() from Client to Middleware;

choice from Middleware to Service {

nothing():

simpleReply() from Middleware to Client;

subrequest():

subreply() from Service to Middleware;

complexReply() from Middleware to Client;

}}



Solution

protocol ClientMidServ(role Client, role Middleware) {

request(...) from Client to Middleware;

choice at Middleware { 

Middleware introduces Service;

subrequest(...) from Middleware to Service;

complexReply(...) from Service to Client;

} or {

simpleReply(...) from Middleware to Client;

}

}



Projection: Client

protocol ClientMidServ(role Middleware, role Service)@Client {

request(...) to Middleware;

do { 

complexReply(...) from Service;

} or {

simpleReply(...) from Middleware;

}

}



Projection: Service

protocol ClientMidServ(role Client, role Middleware)@Service {

subrequest(...) from Middleware;

complexReply(...) to Client;

}



Projection: Middleware

protocol ClientMidServ(role Client)@Middleware {

request(...) from Client;

do { 

introduce Service;

subrequest(...) to Service;

} or {

simpleReply(...) to Client;

}

}



Implementation: Client

client.bind { s =>
s ! ‘Middleware -> (‘request, ...)
s.mreceive {

case ‘Middleware -> (‘simpleReply, ...) =>
case ‘Service -> (‘complexReply, ...) =>

}
}



Added benefits - 1

protocol P(role A, role B) {

choice at A { 

rec X {

M1 from A to B;

X;

}

} or {

M2 from A to B;

}

}



Added benefits - 2

protocol P(role A, role B) {

choice at A { 

run Sub1(A,B);

} or {

run Sub2(A,B);

}

}



Implementation: Client

client.bind { s =>
s ! ‘Middleware -> (‘request, ...)
s.mreceive {

case ‘Middleware -> (‘simpleReply, ...) =>
case ‘Service -> (‘complexReply, ...) =>

}
}



Thanks. Questions?
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Backup slides



AMQP communication

• AMQP: Emerging Internet standard for async message passing

• Using very small part of AMQP

• Compatible with current 0.9.1 and upcoming 1.0

• “Addresses” in the abstract model map to queue@broker

• Each SessionChannel (s) uses 

• an actor proxy for each role in session

• one receiver actor, consuming messages sent to process’ session address
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Shared memory communication

• Using Scala actors as directly as possible

• “Addresses” in the abstract model map to a scala.actors.Channel

• Channel: tag on message in actor mailbox

• Each SessionChannel (s) uses

• A Channel for each role in the session to send to others 

• The current actor mailbox to receive messages
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