
SESSIONS, FROM TYPES TO
PROGRAMMING LANGUAGES

Vasco T Vasco
Universidade Lisboa

Behavioural Types Workshop
19 April 2011

1

http://www.dcs.gla.ac.uk/%7Esimon/BehaviouralTypes/Vasconcelos.html
http://www.dcs.gla.ac.uk/%7Esimon/BehaviouralTypes/Vasconcelos.html
http://www.dcs.gla.ac.uk/%7Esimon/BehaviouralTypes/Vasconcelos.html
http://www.dcs.gla.ac.uk/%7Esimon/BehaviouralTypes/Vasconcelos.html

FUNDAMENTALS OF SESSION
TYPES

2

generates a new channel k, which would be used for communications in P . In the above
grammar, the parenthesis (k) and the key word in shows the binding and its scope.
Thus, in request a(k) in P , the part (k) binds the free occurrences of k in P . This
convention is used uniformly throughout the present paper.
Via a channel of a session, three kinds of atomic interactions are performed: value

sending (including name passing), branching and channel passing (or delegation).

k![e1 · · · en];P k?(x1 · · ·xn) in P data sending/receiving
k l;P k {l1 : P1[] · · · []ln : Pn} label selection/branching
throw k[k′];P catch k(k′) in P channel sending/receiving (delegation)

Data sending/receiving is the standard synchronous message passing. Here ei denotes
an expression such as arithmetic/boolean formulae as well as names. We assume vari-
ables x1..xn are all distinct. We do not consider program passing for simplicity, cf. [12].
The branching/selection is the minimisation of method invocation in object-based pro-
gramming. l1, .., ln are labels which are assumed to be pairwise distinct. The channel
sending/receiving, which we often call delegation, passes a channel which is being used in
a session to another process, thus radically changing the structure of a session. Delega-
tion is the generalisation of the concept with the same name originally conceived in the
concurrent object-oriented programming [40]. See Section 4.3 for detailed discussions.
In passing we note that its treatment distinct from the usual value passing is essential
for both disciplined programming and a tractable type inference.
Communication primitives, organised by sessions, are further combined by the fol-

lowing standard constructs in concurrent programming.

P1 | P2 concurrent composition
(νa)P (νk)P name/channel hiding
if e then P else Q conditional
def X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn in P recursion

We do not need sequencing since each communication primitive already accompanies one.
We also use inact, the inaction, which denotes the lack of action (acting as the unit of
“|”). Hiding declares a name/channel to be local in its scope (here P). Channel hiding
may not be used for usual programming, but is needed for the operational semantics
presented later. In conditional, e should be a boolean expression. In recursion, X, a
process variable, would occur in P1...Pn and P zero or more times. Identifiers in x̃ik̃i
should be pairwise distinct. We can use replication (or a single recursion) to achieve the
same effect, but multiple recursion is preferable for well-structured programs.
This finishes the introduction of all language constructs we shall use in this paper.

We give a simple example of a program.

accept a(k) in k![1]; k?(y) in P | request a(k) in k?(x) in k![x+ 1]; inact.

The first process receives a request for a new session via a, generates k, sends 1 and
receives a return value via k, while the second requests the initiation of a session via a,
receives the value via the generated channel, then returns the result of adding 1 to the
value. Observe the compatibility of communication patterns between two processes.

2.2. Syntax Summary. We summarise the syntax we have introduced so far. Base sets
are: names, ranged over by a, b, . . . ; channels, ranged over by k, k′; variables, ranged
over by x, y, . . . ; constants (including names, integers and booleans), ranged over by
c, c′, . . . ; expressions (including constants), ranged over by e, e′, . . . ; labels, ranged over
by l, l′, . . . ; and process variables, ranged over by X,Y, u, u′, . . . denote names and

4

THERE ARE NAMES AND
THERE ARE CHANNELS

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR

STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA∗, VASCO T. VASCONCELOS†, AND MAKOTO KUBO‡

Abstract. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous π-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline à la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

1. Introduction

Recently, significance of programming practice based on communication among pro-
cesses is rapidly increasing by the development of networked computing. From network
protocols over the Internet to server-client systems in local area networks to distributed
applications in the world wide web to interaction between mobile robots to a global
banking system, the execution of complex, reciprocal communication among multiple
processes becomes an important element in the achievement of the goals of applica-
tions. Many programming languages and formalisms have been proposed so far for the
description of software based on communication. As programming languages, we have
CSP [9], Ada [33], languages based on Actors [2], POOL [4], ABCL [39], Concurrent
Smalltalk [38], or more recently Pict and other π-calculus-based languages [7, 27, 34, 13].
As formalisms, we have CCS [19], Theoretical CSP [10], π-calculus [22], and other process
algebras. In another vein, we have functional programming languages augmented with
communication primitives, such as CML [30], dML [25], and Concurrent Haskell [15].
In these languages and formalisms, various communication primitives have been offered
(such as synchronous/asynchronousmessage passing, remote procedure call, method-call
and rendez-vous), and the description of communication behaviour is done by combin-
ing these primitives. What we observe in these primitives is that, while they do express
one-time interaction between processes, there is no construct to structure a series of
reciprocal interactions between two parties as such. That is, the only way to represent
a series of communications following a certain scenario (think of interactions between
a file server and its client) is to describe them as a collection of distinct, unrelated in-
teractions. In applications based on complex interactions among concurrent processes,
which are appearing more and more in these days, the lack of structuring methods would
result in low readability and careless bugs in final programs, apart from the case when
the whole communication behaviour can be simply described as, say, a one-time remote

∗Dept. of Computer Science, University of Edinburgh, UK. †Dept. of Computer Science, University
of Lisbon, Portugal. ‡Dept. of Computer Science, Chiba University of Commerce, Japan.

1

3

to that thread, while getting ready for the next request from clients itself. It is now the
thread FtpThread which actually processes the user’s request, receiving the user name,
referring to NIS, and executing various operations (note recursion within a session is
used). Here the delegation is used to enable the ftp server to process multiple requests
concurrently without undue delay in response. The scheme is generally applicable to a
server interacting with many clients. Some observations follow.

(1) The example shows how the generalised delegation allows programmers to cleanly
describe those interaction patterns which generalise the original form of delegation.
Other examples of the usage of delegation abound, for example a file server with ge-
ographically distributed sites or a server with multiple services each to be processed
by a different sub-server.

(2) A key factor of the above code is that a client does not have to be conscious of the
delegation which takes place on the server’s side: that is, a client program can be
written as if it is interacting with a single entity, for example as follows.

request pid(s) in s![myId]; s {sorry : · · · []welcome : · · · }

Observe that, between the initial request and the next sending operation, the
catch/throw interaction takes place on the server’s side: however the client process
does not have to be conscious of the event. This shows how delegation enables
distribution of computation while maintaining the transparency of the name space.

(3) If we allow each ftp-thread to be dynamically generated, we can use parallel com-
position to the same effect, just as the use of “fork” to pass process resources in
UNIX. While this scheme has a limitation in that we cannot send a channel to an
already running process, it offers another programming method to realise flexible,
dynamic communication structures. We also observe that the use of throw/catch,
or the “fork” mentioned above, would result in complexly woven sequences of inter-
actions, which would become more error-prone than without. In such situations, the
type discipline discussed in the next section would become an indispensable tool for
programming, where we can algorithmically verify if a program has coherent com-
munication structure and, in particular, if it contains interaction errors.

5. The Type Discipline

5.1. Preliminaries. The present structuring method allows the clear description of
complex interaction structures beyond conventional communication primitives. The
more complex the interaction becomes, however, the more difficult it would be to capture
the whole interactive behaviour and to write correct programs. The type discipline we
shall discuss in this section gives a simple solution to these issues at a basic level. We
first introduce the basic notions concerning types, including duality on types which
represents complementarity of interactions.

Definition 5.1 (Types). Given type variables (t, t′, . . .) and sort variables (s, s′, . . .),
sorts (S, S′, . . .) and types (α,β, . . .) are defined by the following grammar.

S ::= nat | bool | 〈α,α〉 | s | µs.S

α ::= ↓ [S̃];α | ↓ [α];β | &{l1 : α1, . . . , ln : αn} | 1 | ⊥

| ↑ [S̃];α | ↑ [α];β | ⊕ {l1 : α1, . . . , ln : αn} | t | µt.α

11

AND THERE ARE SORTS AND
THERE ARE TYPES

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR

STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA∗, VASCO T. VASCONCELOS†, AND MAKOTO KUBO‡

Abstract. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous π-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline à la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

1. Introduction

Recently, significance of programming practice based on communication among pro-
cesses is rapidly increasing by the development of networked computing. From network
protocols over the Internet to server-client systems in local area networks to distributed
applications in the world wide web to interaction between mobile robots to a global
banking system, the execution of complex, reciprocal communication among multiple
processes becomes an important element in the achievement of the goals of applica-
tions. Many programming languages and formalisms have been proposed so far for the
description of software based on communication. As programming languages, we have
CSP [9], Ada [33], languages based on Actors [2], POOL [4], ABCL [39], Concurrent
Smalltalk [38], or more recently Pict and other π-calculus-based languages [7, 27, 34, 13].
As formalisms, we have CCS [19], Theoretical CSP [10], π-calculus [22], and other process
algebras. In another vein, we have functional programming languages augmented with
communication primitives, such as CML [30], dML [25], and Concurrent Haskell [15].
In these languages and formalisms, various communication primitives have been offered
(such as synchronous/asynchronousmessage passing, remote procedure call, method-call
and rendez-vous), and the description of communication behaviour is done by combin-
ing these primitives. What we observe in these primitives is that, while they do express
one-time interaction between processes, there is no construct to structure a series of
reciprocal interactions between two parties as such. That is, the only way to represent
a series of communications following a certain scenario (think of interactions between
a file server and its client) is to describe them as a collection of distinct, unrelated in-
teractions. In applications based on complex interactions among concurrent processes,
which are appearing more and more in these days, the lack of structuring methods would
result in low readability and careless bugs in final programs, apart from the case when
the whole communication behaviour can be simply described as, say, a one-time remote

∗Dept. of Computer Science, University of Edinburgh, UK. †Dept. of Computer Science, University
of Lisbon, Portugal. ‡Dept. of Computer Science, Chiba University of Commerce, Japan.

1

4

IN THE PI CALCULUS THERE
ARE ONLY NAMES

5

Subtyping for session types in the pi calculus

Fig. 1 Syntax of types

annotations are added to C programs, in order to describe protocols that a com-
piler can statically enforce; these protocols specify the permitted state transition
sequences of tracked run-time objects. We can regard a session type as a specifi-
cation of state transitions for a channel, which is similar to a specification in Vault,
but in addition, session types specify the types of individual messages.

3 The language: syntax, semantics, type system

Our language is based on the polyadic pi calculus of Milner et al. [20, 21, 30].
We add the constructs proposed by Honda et al. [14, 15, 31] which allow external
choice, between a collection of labelled processes, to be resolved by transmission
of a label on a channel. We omit internal choice and matching of names: these
features have little interaction with the type system and can easily be added if
desired. The type system is based on our formulation [7] of the session types of
Honda et al. [14, 15, 31]. It incorporates our notion of subtyping for session types
[7, 8].

To simplify the presentation we have restricted the language to a pure calculus
of names and channel types. It is straightforward to add data types and data expres-
sions, as required by the examples in Sect. 2; for example, we have incorporated
a boolean type in an earlier presentation [8].

3.1 Syntax

The syntax of types is defined by the grammar in Fig. 1, assuming an infinite
collection X, Y . . . of type variables and an infinite collection l1, l2, . . . of labels.
We often write T̃ for a sequence T1, . . . , Tn of types, and l̃ : T̃ for a sequence
l1 :T1, . . . , ln :Tn of labelled types. Recursive types are required to be contractive,
containing no subexpressions of the form µX.µX1 . . . µXn .X . Each session type
S has a dual type S, defined recursively by the equations in Fig. 2.

The syntax of processes is defined by the grammar in Fig. 3. We assume an
infinite collection of names x, y, z, . . ., which is disjoint from the set of labels.

BUT WE STILL HAVE TYPES
AND SESSION TYPES

Acta Informatica (2005)
DOI 10.1007/s00236-005-0177-z

ORIGINAL ARTICLE

Simon Gay · Malcolm Hole

Subtyping for session types in the pi calculus

Received: 6 January 2004 / Revised: 10 October 2004 / Published online: 11 October 2005
C© Springer-Verlag 2005

Abstract Extending the pi calculus with the session types proposed by Honda
et al. allows high-level specifications of structured patterns of communication,
such as client-server protocols, to be expressed as types and verified by static type-
checking. We define a notion of subtyping for session types, which allows protocol
specifications to be extended in order to describe richer behaviour; for example,
an implemented server can be refined without invalidating type-correctness of an
overall system. We formalize the syntax, operational semantics and typing rules
of an extended pi calculus, prove that typability guarantees absence of run-time
communication errors, and show that the typing rules can be transformed into a
practical typechecking algorithm.

1 Introduction

The pi calculus [21, 30] has been used as a vehicle for much research on static
type systems for concurrent programming languages, for example [6, 16–18, 20,
26–28, 32, 34] in addition to its widespread use for modelling and reasoning about
concurrent systems. In such systems, successfully typechecking a program guar-
antees that certain kinds of error do not occur at run-time. The eliminated errors
range from disagreements between sender and receiver about the expected type of
a message [20] to deadlocks [17].

Malcolm Hole died on 28th February 2004, a few weeks after the original submission of this
paper.

S. Gay (B)
Department of Computing Science, University of Glasgow, G12 8QQ, UK
E-mail: simon@dcs.gla.ac.uk-y05979ZA
M. Hole
Dpartment of Computer Science, Royal Holloway, University of London, UK

6

Advanced Topics in Types and
Program

m
ing Languages

Pierce, editor

computer science/programming languages

Advanced Topics in Types and Programming Languages
edited by Benjamin C. Pierce

The study of type systems for programming languages now touches many areas of computer
science, from language design and implementation to software engineering, network security,
databases, and analysis of concurrent and distributed systems. This book offers accessible
introductions to key ideas in the field, with contributions by experts on each topic.

The topics covered include precise type analyses, which extend simple type systems to give
them a better grip on the run time behavior of systems; type systems for low-level languages;
applications of types to reasoning about computer programs; type theory as a framework for the
design of sophisticated module systems; and advanced techniques in ML-style type inference.

Advanced Topics in Types and Programming Languages builds on Benjamin Pierce’s Types
and Programming Languages (MIT Press, 2002); most of the chapters should be accessible to
readers familiar with basic notations and techniques of operational semantics and type sys-
tems—the material covered in the first half of the earlier book.

Advanced Topics in Types and Programming Languages can be used in the classroom and
as a resource for professionals. Most chapters include exercises, ranging in difficulty from quick
comprehension checks to challenging extensions, many with solutions. Additional material can
be found at <http://www.cis.upenn.edu/~bcpierce/attapl>.

Benjamin C. Pierce is Professor of Computer and Information Science at the University of
Pennsylvania. He is the author of Basic Category Theory for Computer Scientists (MIT Press,
1991) and Types and Programming Languages (MIT Press, 2002).

Cover photograph and design by Benjamin C. Pierce

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

0-262-16228-8

,!7IA2G2-bgccij!:t;K;k;K;k

THEN I
(RE)READ

THE
BROWN
BOOK...

7

1 Substructural Type Systems

David Walker

Advanced type systems make it possible to restrict access to data structures

and to limit the use of newly-defined operations. Oftentimes, this sort of

access control is achieved through the definition of new abstract types under

control of a particular module. For example, consider the following simplified

file system interface.

type file

val open : string → file option

val read : file → string * file

val append : file * string → file

val write : file * string → file

val close : file → unit

By declaring that the type file is abstract, the implementer of the module

can maintain strict control over the representation of files. A client has no way

to accidentally (or maliciously) alter any of the file’s representation invariants.

Consequently, the implementer may assume that the invariants that he or

she establishes upon opening a file hold before any read, append, write or

close.

While abstract types are a powerful means of controlling the structure of

data, they are not sufficient to limit the ordering and number of uses of func-

tions in an interface. Try as we might, there is no (static) way to prevent a

file from being read after it has been closed. Likewise, we cannot stop a client

from closing a file twice or forgetting to close a file.

This chapter introduces substructural type systems, which augment stan-

dard type abstraction mechanisms with the ability to control the number and

order of uses of a data structure or operation. Substructural type systems are

particularly useful for constraining interfaces that provide access to system

...FROM CHAPTER ONE

8

AND I LEARNT...
•Resources can be either linear or shared (resources are
values in a call be value lambda calculus)

•Resources are heap allocated; linear resources are
deallocated after being used

•Access to resources is mediated by types, which can be

•qualified as linear or unrestricted (shared)

•The main result says that there are no dangling pointers
to the heap, from a well typed process

9

TRANSPOSING TO THE PI
CALCULUS

•Names can be either linear or shared (you can call them
channels if you like)

•Resources (channels, input processes) are either linear
or shared; linear resources are deallocated after being
used

•Access to resources is mediated by types, which can be

•qualified as linear or unrestricted (shared)

•The main result states that if a thread reads on a
channel end, the other writes on the other end

10

q ::= Qualifiers: !T.T send
lin linear ⊕{li : Ti}i∈I select
un unrestricted &{li : Ti}i∈I branch

p ::= Pretypes: T ::= Types:
unit unit q p qualified pretype
end termination a type variable
?T.T receive µa.T recursive type

Figure 1: The syntax of types

q ?T.U = q !T.U q !T.U = q ?T.U q end = q end

q ⊕{li : Ti}i∈I = q &{li : Ti}i∈I q &{li : Ti}i∈I = q ⊕ {li : Ti}i∈I
µa.T = µa.T a = a

Figure 2: The dual function on types

containing no subexpression of the form µ a1 . . . µ an.a1. The equations introduced
above are transformed into recursive types in the standard way:

Petition = rec a. lin⊕{setTitle: !string.a, setDate: !date.a, submit : ...}

In the presence of recursive types, we define type equality as the equality of
the regular infinite trees obtained by the infinite unfolding of recursive types. The
formal definition, which we omit, is co-inductive. In this way we can use types
un!string .rec a.un!string .a and rec a.un!string .un!string .a interchangeably, in any
mathematical context. This allows us never to consider a type µa.T explicitly (or
a for that matter). Instead, we pick another type in the same equivalence class,
namely the type obtained by replacing in T occurrences of type variable a by type
µa.T , usually written T [µa.T/a]. If the result of the process turns out to start
with µ, we repeat the procedure. Contractiveness ensures the termination of the
unfolding process. In other words, we take an equi-recursive view of types [11].

Rather than providing a co-inductive definition of duality, we start by defin-
ing a function from types to types as in Figure 2. Then, to check that a given
type T1 is dual of another type T2, we first build the dual of T1 and then check
that the thus obtained type is equivalent to T2. For example, to show that
type rec a.un!string .un!string .a is dual to rec b.un?string.b, we first build type
rec a.un?string.un?string.a, dual of the former and then check that it is equivalent

5

JUST TYPES... LIN/UN
ANNOTATED

11

WHAT NEW THINGS CAN WE
DO WITH THESE TYPES?

12

8 1 Substructural Type Systems

Syntax

q ::= qualifiers:

lin linear

un unrestricted

b ::= booleans:

true true

false false

t ::= terms:

x variable

q b boolean

if t then t else t conditional

q <t,t> pair

split t as x,y in t split

q λx:T.t abstraction

t t application

P ::= pretypes:

Bool booleans

T*T pairs

T→T functions

T ::= types:

q P qualified pretype

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Figure 1-3: Linear lambda calculus: Syntax

declarations, value declarations and let expressions where convenient; they

all have the obvious meanings.

Typing

To ensure that linear objects are used exactly once, our type system maintains

two important invariants.

1. Linear variables are used exactly once along every control-flow path.

2. Unrestricted data structures may not contain linear data structures. More

generally, data structures with less restrictive type may not contain data

structures with more restrictive type.

To understand why these invariants are useful, consider what could hap-

pen if either invariant is broken. When considering the first invariant, as-

sume we have constructed a function free that uses its argument and then

deallocates it. Now, if we allow a linear variable (say x) to appear twice, a

programmer might write <free x,free x>, or, slightly more deviously,

(λz.λy.<free z,free y>) x x.

In either case, the program ends up attempting to use and then free x after it

has already been deallocated, causing the program to crash.

Now consider the second invariant and suppose we allow a linear data

structure (call it x) to appear inside an unrestricted pair (un <x,3>). We can

LINEAR CBV LAMBDA

1 Substructural Type Systems

David Walker

Advanced type systems make it possible to restrict access to data structures

and to limit the use of newly-defined operations. Oftentimes, this sort of

access control is achieved through the definition of new abstract types under

control of a particular module. For example, consider the following simplified

file system interface.

type file

val open : string → file option

val read : file → string * file

val append : file * string → file

val write : file * string → file

val close : file → unit

By declaring that the type file is abstract, the implementer of the module

can maintain strict control over the representation of files. A client has no way

to accidentally (or maliciously) alter any of the file’s representation invariants.

Consequently, the implementer may assume that the invariants that he or

she establishes upon opening a file hold before any read, append, write or

close.

While abstract types are a powerful means of controlling the structure of

data, they are not sufficient to limit the ordering and number of uses of func-

tions in an interface. Try as we might, there is no (static) way to prevent a

file from being read after it has been closed. Likewise, we cannot stop a client

from closing a file twice or forgetting to close a file.

This chapter introduces substructural type systems, which augment stan-

dard type abstraction mechanisms with the ability to control the number and

order of uses of a data structure or operation. Substructural type systems are

particularly useful for constraining interfaces that provide access to system

13

TRANSPOSING TO THE PI
CALCULUS

• An unrestricted channel cannot evolve into a linear channel,

but...

• A linear channel may evolve into an unrestricted channel (this
is new)

14

AN ONLINE PETITION SERVER

15

HOW IT WORKS
• Petition writers start by providing the title of the petition, a

piece of text describing the situation and what is needed, and
the deadline for signature collection. The service allows this
information to be added with no particular order; writers can
even resubmit information if needed.

• Once writers are happy with the petition details, they commit
to the uploaded data and seek approval for starting the
petition. If accepted, writers may start promoting the petition.

• Promoting a petition means two things: signing and
disseminating. The petition writer may sign the petition, and must
get people to sign it, by letting them know of the newly created
petition.

16

THE TYPE OF THE ONLINE
PETITION IN OUR SYNTAX

race conditions may arise when, e.g., the server receives a commit operation from
one partner, followed by a setDate from a different, unsynchronized partner. On
the other hand, during the promotion phase, the success of the petition crucially
depends on dissemination, so that we want the protocol medium shared by an
unbounded number of potential promoters (signatories and disseminators).

Towards this end we qualify each operation in a type with one of two qualifiers:
lin denotes a linear operation; un denotes an unrestricted, or shared, operation.
When the protocol is in a lin state then the programming language must guarantee
that exactly two partners (server and writer) know the protocol medium; when in
an un state then an unbounded number of partners (potentially zero) may have
access to the medium. Our fully qualified type is thus:

Petition = lin⊕{setTitle: lin!string.Petition, setDate: lin!date.Petition,
submit : lin&{accepted: Promotion, denied: lin?string.lin end}}

Promotion = un!string.Promotion

There is one last question that we must answer. How do petition writers and
petition servers initiate a particular run of the protocol? Petition servers are usu-
ally installed on well-known names. It is on one such name that writers and servers
agree on initiating a new run of the petition protocol. The protocol is itself started
from a small bootstrap protocol, where the server provides the writer with a fresh
Petition . If the only thing the server does is to start new Petition protocols, then
its type is Server = un!Petition .Server which we abbreviate to ∗! Petition .

So far we have been looking at the protocol from the point of view of writers
and promoters. How do things look like when seen from the server side? In
order to comply with the writer’s expectations, servers must start by offering a
menu composed of operations setTitle, setDate, and submit , which we write as
lin&{setTitle: ..., setDate: ..., submit : ...}. After a setTitle operation the server must
input a string (?string); after setDate, it is time to input a date (?date). After
submit , the server must select one of the two operations—accepted or denied—on
the client, which we write as lin⊕{accepted: ..., denied: ...}. When denied, then
the service must output a string and terminate with lin end; the server and the
client terminate the protocol together. It should by now be clear that, in order
for communication to run smoothly among the various partners involved, when
one says output (!), the other says input (?), when one says select (⊕), the other
says branch (&), and when one says terminate (end) so does the other. The un/lin
qualifiers must match in each case. The types constructed in this way are said to
be dual.

Session types. The types that describe our protocols are generated by the gram-
mar in Figure 1, where we use letter p to denote an unqualified (or pre-) type, and
letter T to describe a type. Recursive types are required to be contractive, that is,

4

•Promotion = un!string.Promotion abbreviated to *!string
•This is the only sort of interesting un type, apart from
un end

17

1 SaveTheWolf :: ∗?Petition
2 SaveTheWolf ps =
3 ps?p.
4 p� setDate. p!(31,12,2010).
5 p� setTitle. p!"Save the Wolf".
6 p� setDate. p!(31,12,2100).
7 p� submit .
8 p� {accepted:
9 Signatory1 p |

10 Signatory2 p |
11 p!"me"
12 denied:
13 p?x.
14 close p
15 }
16 Signatory1 :: ∗! string
17 Signatory1 p =
18 p!"signatory1"
19 Signatory2 :: ∗! string
20 Signatory2 p =
21 Signatory3 p | p!"signatory2"
22 Signatory3 :: ∗! string
23 Signatory3 p =

24 inaction

1 Server :: ∗! Petition
2 Server ps =
3 (new p1 p2)
4 ps!p2.(
5 Setup (p1,(1,1,1970),"Save me") |
6 Server ps)
7 Setup :: Petition ∗ date ∗ string
8 Setup (p, d, t) =
9 p� {setDate: p?d’.Setup (p, d’, t),

10 setTitle: p?t’.Setup (p, d, t’),
11 submit : p� accepted.
12 Promotion (p, [])
13 }
14 Promotion :: ∗?string ∗ stringList
15 Promotion (p, l) =
16 p?s.Promotion (p, s :: l)

1 Main =
2 (new ps1 ps2)
3 Server ps1 |
4 SaveTheWolf ps2

Figure 4: Petition example in the pi-calculus

of this channel, denoted by p2, is passed to potential writers (line 4); the other

end, called p1, is passed to process Setup, together with the default deadline and

title (line 5).

Process Setup receives the petition channel, the default deadline, and the de-

fault title, and interactively updates the last two (lines 9–10). Our simplistic server

accepts each single petition (line 11). The protocol now passes to the promo-

tion phase, by providing the Promotion process with the petition channel p and an

empty list, where the signatory names are to be stored. In order to simplify the

example, we use a data type for lists, where [] denotes the empty list and s :: l
denotes a list composed of an element s at the head and a list l at the tail. Such a

data type would have to be encoded in the base language [9, page 106]. Process

Promotion receives a signature s on channel p, stores it in the list (s :: l) and recurs.
3

Our Main process creates a channel and distributes one of its ends (ps1) to

process Server and the other end (ps2) to the petition writer, SaveTheWolf. In

3
Notice that, in the example, we use symbol :: both as list concatenation and to introduce

types in processes.

8

18

TYPING CONTEXTS

• Programs are typed against a context describing the types for
the free identifiers. Typing contexts are finite maps Γ from
identifiers to types.

• When type checking processes with two sub-processes we
pass the unrestricted part of the context to both processes,
while splitting the linear part in two and passing a different
part to each process.

19

1.2 A Linear Type System 9

Context Split Γ = Γ1 ◦ Γ2

∅ =∅◦∅ (M-Empty)

Γ = Γ1 ◦ Γ2

Γ , x:un P = (Γ1, x:un P) ◦ (Γ2, x:un P)
(M-Un)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = (Γ1, x:lin P) ◦ Γ2
(M-Lin1)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = Γ1 ◦ (Γ2, x:lin P)
(M-Lin2)

Figure 1-4: Linear lambda calculus: Context splitting

get exactly the same effect as above by using the unrestricted data structure

multiple times:

let z = un <x,3> in

split z as x1,_ in

split z as x2,_ in

<free x1,free x2>

Fortunately, our type system ensures that none of these situations can occur.

We maintain the first invariant through careful context management. When

type checking terms with two or more subterms, we pass all of the unre-

stricted variables in the context to each subterm. However, we split the linear

variables between the different subterms to ensure each variable is used ex-

actly once. Figure 1-4 defines a relation, Γ = Γ1 ◦ Γ2, which describes how to

split a single context in a rule conclusion (Γ) into two contexts (Γ1 and Γ2) that

will be used to type different subterms in a rule premise.

To check the second invariant, we define the predicate q(T) (and its exten-

sion to contexts q(Γ)) to express the types T that can appear in a q-qualified

data structure. These containment rules state that linear data structures can

hold objects with linear or unrestricted type, but unrestricted data structures

can only hold objects with unrestricted type.

• q(T) if and only if T = q′ P and q$q′

• q(Γ) if and only if (x:T) ∈ Γ implies q(T)

Recall, we have already defined q$q′ such that it is reflexive, transitive and

lin$un.

Now that we have defined the rules for containment and context splitting,

we are ready for the typing rules proper, which appear in Figure 1-5. Keep in

mind that these rules are constructed anticipating a call-by-value operational

semantics.

It is often the case when designing a type system that the rules for the

base cases, variables and constants, are hardly worth mentioning. However,

CONTEXT SPLITTING

1 Substructural Type Systems

David Walker

Advanced type systems make it possible to restrict access to data structures

and to limit the use of newly-defined operations. Oftentimes, this sort of

access control is achieved through the definition of new abstract types under

control of a particular module. For example, consider the following simplified

file system interface.

type file

val open : string → file option

val read : file → string * file

val append : file * string → file

val write : file * string → file

val close : file → unit

By declaring that the type file is abstract, the implementer of the module

can maintain strict control over the representation of files. A client has no way

to accidentally (or maliciously) alter any of the file’s representation invariants.

Consequently, the implementer may assume that the invariants that he or

she establishes upon opening a file hold before any read, append, write or

close.

While abstract types are a powerful means of controlling the structure of

data, they are not sufficient to limit the ordering and number of uses of func-

tions in an interface. Try as we might, there is no (static) way to prevent a

file from being read after it has been closed. Likewise, we cannot stop a client

from closing a file twice or forgetting to close a file.

This chapter introduces substructural type systems, which augment stan-

dard type abstraction mechanisms with the ability to control the number and

order of uses of a data structure or operation. Substructural type systems are

particularly useful for constraining interfaces that provide access to system

20

ALL TYPING RULES

Typing rules for values

un(Γ)

Γ � () : q unit
un(Γ)

Γ, x : T � x : T
(T-Unit,T-Var)

Typing rules for processes

un(Γ)

Γ � inaction
Γ1 � P1 Γ2 � P2

Γ1 ◦ Γ2 � P1 | P2

Γ, x : T, y : T � P
Γ � (νxy)P

(T-Inact,T-Par,T-Res)

Γ1 � x : q !T1.T2 Γ2 � v : T1 Γ3 + x : T2 � P
Γ1 ◦ Γ2 ◦ Γ3 � x!v.P

(T-Out)

Γ1 � x : q ?T1.T2 (Γ2, y : T1) + x : T2 � P q(Γ2)

Γ1 ◦ Γ2 � q x?y.P
(T-In)

Figure 5: Typing rules for the pi-calculus

the previous section we discussed the type of the well-known name where new

petitions are to be requested: ∗! Petition or ∗?Petition, depending on the point of

view; these are the types of the two ends of the newly created channel, ps1 and

ps2, respectively.

For the client, channel ps carries p typed at type Petition . The initial, linear,

part of the channel is consumed in lines 3–8 of process SaveTheWales. When

control reaches line 9, channel p is of type ∗! string , allowing it to be freely

passed around and used for signing (lines 9-11, as well as processes Signatory1,

Signatory2, and Signatory3). On the server side, the initial linear part of the type

dual of to Petition is consumed in process Setup, whereas the unrestricted part

(∗?string) is used in process Promotion.

Typing pi processes. The typing rules for the pi-calculus are in Figure 5. We

omit the grammar of values and processes, which can be easily inferred from the

rules. Typing judgements for values are of the form Γ � v : T , indicating that

value v has type T under context Γ, as usual. Judgements for processes are of the

form Γ � P, testifying that process P is well typed under context Γ.

We briefly comment on the rules. The rules for values and for process inaction

make sure that the unused typing context Γ is unrestricted, thus ensuring that lin-

ear values are completely consumed. The rule for closing channel ends, T-Close,

requires a channel ready to be closed: linear (no other process may know it) and

at end (the protocol on the channel is completed). The rule for parallel composi-

tion, T-Par, splits the incoming context in two and passes each part to a different

9

21

C
O
N
T
R
A
S
T

S. Gay, M. Hole

Fig. 9 Typing rules

In a practical language we would want to regard the branches in &〈 li :
Ti 〉1!i!n and ⊕〈 li : Ti 〉1!i!n as functions from labels to types, not as sequences;
this would allow the subtyping relation to vary the order of the branches. We do
not discuss this point further in the present paper.

3.4 Type system

The rules in Fig. 9 inductively define judgements of the form ! $ P where !
is an environment. Such a judgement means that the process P uses channels as
specified by the types in !. A process is either correctly typed or not; we do not
assign types to processes.

Definition 6 An environment ! is a function from optionally polarized names to
types. If x p ∈ dom(!) and !(x p) = T then we write x p : T ∈ !. Similarly,
we sometimes write an environment explicitly as ! = x p1

1 : T1, . . . , x pn
n : Tn . If

22

SESSION TYPES IN AN OBJECT-
BASED LANGUAGE

• In channel-based languages, processes communicate by
exchanging messages on (session governed) channels

• In our object-oriented language threads communicate solely
by calling methods on (session governed) object references

• This is in clear contrast with more conventional approaches
that add communication channels to an object-oriented
language

23

CHANNEL OPERATIONS AS
OO CONCEPTS

• A selection operation (previously identified with a left
triangle, ▹) is identified with a method call

• An output operation can only be identified with argument
passing within a method call

• An input operation can only occur as the result of a method
call

• What about branching? How can a target object force a
branch on a client? For a simple binary branch, boolean
methods force such a test, via conditional expressions. For more
general branching structures we use conventional enumerations
(enum) and a switch construct.

24

ANNOTATE CLASSES WITH A
SESSION TYPE1 enum Answer = {accepted, denied}

2 class SaveTheWolf {
3 usage lin&{init : lin&{run: un end}};
4 Petition p;
5 Signatory[Sign] signatory1;
6 Signatory[Sign] signatory2;
7 unit init(PetitionServer s,
8 Signatory[Sign] s1,
9 Signatory[Sign] s2) {

10 p = s.newPetition ();
11 signatory1 = s1;
12 signatory2 = s2;
13 }
14 unit run() {
15 p.setDate
16 (new Date(31, 12, 2010));
17 p.setTitle("Save the Wolf");
18 p.setDate
19 (new Date(31, 12, 2100));
20 switch (p.submit()) {
21 case Answer.accepted:
22 fork signatory1.signPlease(p);
23 fork signatory2.signPlease(p);
24 p.sign("me");
25 case Answer.denied:
26 free p;
27 }
28 }
29 }
30 class Signatory {
31 usage lin&{setName: Sign} where
32 Sign = un&{signPlease: Sign};
33 string name;
34 unit setName(string n) {
35 name = n;
36 }
37 unit signPlease
38 (Petition [Promotion] p) {
39 p.sign (name);

40 }
41 }

1 class PetitionServer {
2 Petition newPetition() {new Petition ();}
3 }
4 class Petition {
5 usage Setup where
6 Setup = lin&{setTitle: Setup,
7 setDate: Setup,
8 submit : lin⊕{accepted: Promotion,
9 denied: lin end}}

10 Promotion = un&{sign: Promotion,
11 howMany: Promotion};
12 string title = "Save me";
13 Date date = new Date(1,1,1970);
14 List signatures = new List();
15 unit setTitle(string t) { title = t; }
16 unit setDate(string d) { date = d; }
17 Answer submit() { Answer.accepted; }
18 sync unit sign(string name) {
19 signatures.add(name);
20 }
21 int howMany() { signatures.length(); }
22 }

1 class Main {
2 unit main() {
3 PetitionServer server =
4 new PetitionServer();
5 Signatory s1 = new Signatory();
6 s1.setName ("signatory1");
7 Signatory s2 = new Signatory();
8 s2.setName ("signatory2");
9 SaveTheWolf wolf =

10 new SaveTheWolf();
11 wolf . init(server, s1, s2);
12 fork wolf .run();
13 }
14 }

Figure 8: Petition example in an object-based language

16

25

1 enum Answer = {accepted, denied}
2 class SaveTheWolf {
3 usage lin&{init : lin&{run: un end}};
4 Petition p;
5 Signatory[Sign] signatory1;
6 Signatory[Sign] signatory2;
7 unit init(PetitionServer s,
8 Signatory[Sign] s1,
9 Signatory[Sign] s2) {

10 p = s.newPetition ();
11 signatory1 = s1;
12 signatory2 = s2;
13 }
14 unit run() {
15 p.setDate
16 (new Date(31, 12, 2010));
17 p.setTitle("Save the Wolf");
18 p.setDate
19 (new Date(31, 12, 2100));
20 switch (p.submit()) {
21 case Answer.accepted:
22 fork signatory1.signPlease(p);
23 fork signatory2.signPlease(p);
24 p.sign("me");
25 case Answer.denied:
26 free p;
27 }
28 }
29 }
30 class Signatory {
31 usage lin&{setName: Sign} where
32 Sign = un&{signPlease: Sign};
33 string name;
34 unit setName(string n) {
35 name = n;
36 }
37 unit signPlease
38 (Petition [Promotion] p) {
39 p.sign (name);

40 }
41 }

1 class PetitionServer {
2 Petition newPetition() {new Petition ();}
3 }
4 class Petition {
5 usage Setup where
6 Setup = lin&{setTitle: Setup,
7 setDate: Setup,
8 submit : lin⊕{accepted: Promotion,
9 denied: lin end}}

10 Promotion = un&{sign: Promotion,
11 howMany: Promotion};
12 string title = "Save me";
13 Date date = new Date(1,1,1970);
14 List signatures = new List();
15 unit setTitle(string t) { title = t; }
16 unit setDate(string d) { date = d; }
17 Answer submit() { Answer.accepted; }
18 sync unit sign(string name) {
19 signatures.add(name);
20 }
21 int howMany() { signatures.length(); }
22 }

1 class Main {
2 unit main() {
3 PetitionServer server =
4 new PetitionServer();
5 Signatory s1 = new Signatory();
6 s1.setName ("signatory1");
7 Signatory s2 = new Signatory();
8 s2.setName ("signatory2");
9 SaveTheWolf wolf =

10 new SaveTheWolf();
11 wolf . init(server, s1, s2);
12 fork wolf .run();
13 }
14 }

Figure 8: Petition example in an object-based language

16

26

CONCLUSION
• lin/un approach to

session types opens
interesting avenues
(see talk by Giunti)

• Session types in pi,
functional, OO
languages (beatcs,
feb 2011)

• Compiler for Mool
available online

27

THAT IS IT!

28

DOUBLE BINDER

• The pi calculus (with free output), when considered in
conjunction with session types, is known to require a means to
distinguish the two ends of a session channel

• Two approaches for distinguishing the ends of a channel are
available in the literature: polarized channel variables, and form
of channel double binder

• A new-constructor (new x1 x2) creates a fresh channel and
two identifiers, each describing one end of a channel

29

1 enum Answer = {accepted, denied}
2 class SaveTheWolf {
3 usage lin&{init : lin&{run: un end}};
4 Petition p;
5 Signatory[Sign] signatory1;
6 Signatory[Sign] signatory2;
7 unit init(PetitionServer s,
8 Signatory[Sign] s1,
9 Signatory[Sign] s2) {

10 p = s.newPetition ();
11 signatory1 = s1;
12 signatory2 = s2;
13 }
14 unit run() {
15 p.setDate
16 (new Date(31, 12, 2010));
17 p.setTitle("Save the Wolf");
18 p.setDate
19 (new Date(31, 12, 2100));
20 switch (p.submit()) {
21 case Answer.accepted:
22 fork signatory1.signPlease(p);
23 fork signatory2.signPlease(p);
24 p.sign("me");
25 case Answer.denied:
26 free p;
27 }
28 }
29 }
30 class Signatory {
31 usage lin&{setName: Sign} where
32 Sign = un&{signPlease: Sign};
33 string name;
34 unit setName(string n) {
35 name = n;
36 }
37 unit signPlease
38 (Petition [Promotion] p) {
39 p.sign (name);

40 }
41 }

1 class PetitionServer {
2 Petition newPetition() {new Petition ();}
3 }
4 class Petition {
5 usage Setup where
6 Setup = lin&{setTitle: Setup,
7 setDate: Setup,
8 submit : lin⊕{accepted: Promotion,
9 denied: lin end}}

10 Promotion = un&{sign: Promotion,
11 howMany: Promotion};
12 string title = "Save me";
13 Date date = new Date(1,1,1970);
14 List signatures = new List();
15 unit setTitle(string t) { title = t; }
16 unit setDate(string d) { date = d; }
17 Answer submit() { Answer.accepted; }
18 sync unit sign(string name) {
19 signatures.add(name);
20 }
21 int howMany() { signatures.length(); }
22 }

1 class Main {
2 unit main() {
3 PetitionServer server =
4 new PetitionServer();
5 Signatory s1 = new Signatory();
6 s1.setName ("signatory1");
7 Signatory s2 = new Signatory();
8 s2.setName ("signatory2");
9 SaveTheWolf wolf =

10 new SaveTheWolf();
11 wolf . init(server, s1, s2);
12 fork wolf .run();
13 }
14 }

Figure 8: Petition example in an object-based language

16

1 enum Answer = {accepted, denied}
2 class SaveTheWolf {
3 usage lin&{init : lin&{run: un end}};
4 Petition p;
5 Signatory[Sign] signatory1;
6 Signatory[Sign] signatory2;
7 unit init(PetitionServer s,
8 Signatory[Sign] s1,
9 Signatory[Sign] s2) {

10 p = s.newPetition ();
11 signatory1 = s1;
12 signatory2 = s2;
13 }
14 unit run() {
15 p.setDate
16 (new Date(31, 12, 2010));
17 p.setTitle("Save the Wolf");
18 p.setDate
19 (new Date(31, 12, 2100));
20 switch (p.submit()) {
21 case Answer.accepted:
22 fork signatory1.signPlease(p);
23 fork signatory2.signPlease(p);
24 p.sign("me");
25 case Answer.denied:
26 free p;
27 }
28 }
29 }
30 class Signatory {
31 usage lin&{setName: Sign} where
32 Sign = un&{signPlease: Sign};
33 string name;
34 unit setName(string n) {
35 name = n;
36 }
37 unit signPlease
38 (Petition [Promotion] p) {
39 p.sign (name);

40 }
41 }

1 class PetitionServer {
2 Petition newPetition() {new Petition ();}
3 }
4 class Petition {
5 usage Setup where
6 Setup = lin&{setTitle: Setup,
7 setDate: Setup,
8 submit : lin⊕{accepted: Promotion,
9 denied: lin end}}

10 Promotion = un&{sign: Promotion,
11 howMany: Promotion};
12 string title = "Save me";
13 Date date = new Date(1,1,1970);
14 List signatures = new List();
15 unit setTitle(string t) { title = t; }
16 unit setDate(string d) { date = d; }
17 Answer submit() { Answer.accepted; }
18 sync unit sign(string name) {
19 signatures.add(name);
20 }
21 int howMany() { signatures.length(); }
22 }

1 class Main {
2 unit main() {
3 PetitionServer server =
4 new PetitionServer();
5 Signatory s1 = new Signatory();
6 s1.setName ("signatory1");
7 Signatory s2 = new Signatory();
8 s2.setName ("signatory2");
9 SaveTheWolf wolf =

10 new SaveTheWolf();
11 wolf . init(server, s1, s2);
12 fork wolf .run();
13 }
14 }

Figure 8: Petition example in an object-based language

16

1 enum Answer = {accepted, denied}
2 class SaveTheWolf {
3 usage lin&{init : lin&{run: un end}};
4 Petition p;
5 Signatory[Sign] signatory1;
6 Signatory[Sign] signatory2;
7 unit init(PetitionServer s,
8 Signatory[Sign] s1,
9 Signatory[Sign] s2) {

10 p = s.newPetition ();
11 signatory1 = s1;
12 signatory2 = s2;
13 }
14 unit run() {
15 p.setDate
16 (new Date(31, 12, 2010));
17 p.setTitle("Save the Wolf");
18 p.setDate
19 (new Date(31, 12, 2100));
20 switch (p.submit()) {
21 case Answer.accepted:
22 fork signatory1.signPlease(p);
23 fork signatory2.signPlease(p);
24 p.sign("me");
25 case Answer.denied:
26 free p;
27 }
28 }
29 }
30 class Signatory {
31 usage lin&{setName: Sign} where
32 Sign = un&{signPlease: Sign};
33 string name;
34 unit setName(string n) {
35 name = n;
36 }
37 unit signPlease
38 (Petition [Promotion] p) {
39 p.sign (name);

40 }
41 }

1 class PetitionServer {
2 Petition newPetition() {new Petition ();}
3 }
4 class Petition {
5 usage Setup where
6 Setup = lin&{setTitle: Setup,
7 setDate: Setup,
8 submit : lin⊕{accepted: Promotion,
9 denied: lin end}}

10 Promotion = un&{sign: Promotion,
11 howMany: Promotion};
12 string title = "Save me";
13 Date date = new Date(1,1,1970);
14 List signatures = new List();
15 unit setTitle(string t) { title = t; }
16 unit setDate(string d) { date = d; }
17 Answer submit() { Answer.accepted; }
18 sync unit sign(string name) {
19 signatures.add(name);
20 }
21 int howMany() { signatures.length(); }
22 }

1 class Main {
2 unit main() {
3 PetitionServer server =
4 new PetitionServer();
5 Signatory s1 = new Signatory();
6 s1.setName ("signatory1");
7 Signatory s2 = new Signatory();
8 s2.setName ("signatory2");
9 SaveTheWolf wolf =

10 new SaveTheWolf();
11 wolf . init(server, s1, s2);
12 fork wolf .run();
13 }
14 }

Figure 8: Petition example in an object-based language

16

30

