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Motivation
• Software systems often rely on the collaboration 

between multiple parties to realize their tasks
e.g., web-service applications

How can we ensure protocol safety and progress in such a 
decentralized and dynamic setting?

• Sessions [Honda93,Honda et al.98] have been 
widely used to model typeful binary interaction

How can we extend classical sessions so as to address 
dynamic multiparty interaction?
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Sessions and Conversations
• Session type theory

Systems modeled in the π-calculus

Types describe the behavior of a single participant 
(≈ local types [HondaYoshidaCarbone07-08])

progress analysis based on well-founded ordering of channels 
[Dezani et al.07]

• Conversation type theory (this talk)
Systems modeled in the π-calculus extended with labels 
(to support distinguished interaction in a single medium)

Types describe the behavior of a subset of participants 
(mixing global and local type specifications)

progress analysis based on well-founded ordering of events 
and its propagation in communication

3
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π-calculus + labels
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P  :: =    0 (Inaction)
⏐ P |Q (Parallel Composition)

⏐ (νa) P (Name Restriction)

⏐ rec X.P (Recursion)

⏐ X (Variable)

⏐ Σi ∈ I αi.Pi (Prefix Guarded Choice)

α  :: =    n • label?(x1,...,xk) (Input)
⏐ n • label!(n1,...,nk) (Output)
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π-calculus + labels
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The eChair System
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The eChair System
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eChair System Code
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eChair System Run
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Conversation Types
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Conversation Types
• Typing judgement

says P interacts in ni accordingly to the Bi spec

• Behavioral types (B) extend session types:

Message types (M) are labeled and describe both 
external and internal message exchanges 

18

B :: =  B1 | B2 ⏐ 0 ⏐ rec X.B ⏐ X 
          | &i ∈ I {Mi.Bi} ⏐ ⊕i ∈ I {Mi.Bi}

M :: = p label(B) p :: = ! ⏐ ? ⏐ τ

P :: n1:B1 | n2:B2 | ... | nk:Bk
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Typing chat Conversation
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Results
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Results
Theorem (Subject Reduction)

Let P be a well-typed process, P :: T. 
If P → Q then there is T’ such that T → T’ and Q :: T’.

Proposition (Error Freeness)
Let P be a well-typed process. Then P is not an error: 

P has no communication errors; P has no illegal message races

Corollary (Type Safety)
Let P be a well-typed process. If P →* Q then Q is not an error.

Corollary (Conversation Fidelity)
Let P be a well-typed process, P :: T. 
Then all conversations in P follow the protocols prescribed by T.
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Proving Progress of Conversations
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• We complement conversation typing with a proof 
system to ensure deadlock absence.
As traditional methods (Lynch80, Kobayashi06, Dezani et al.07) we rely 
on imposing an ordering on events. 

• Judgement Γ;∆ ⊢ P

Events in P follow a well-founded order determined by Γ;∆.

• Events (channel.label.(x)Γ) are synchronizations in 
labeled channels passing channel references
Each event has associated the ordering admissible (x)Γ for the 
channel which is to be passed in the message

received/sent channels must comply with the prescribed order

Proving Progress of Conversations

37
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Ordering eChair System Events
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Results
Theorem (Preservation of Event Ordering)

Let P be well-formed and Γ;∆ ⊢ P. If P → Q then Γ’;∆,∆’ ⊢ Q.

Theorem (Lock Freeness)
Let P be a process s.t. P :: T and Γ;∆ ⊢ P. If closed(T) and 

P is not a finished process then there is Q such that P → Q.
A type T is closed if (roughly) T = τ(T). 
Finished processes only exhibit shared inputs (e.g., persistent services).

Corollary (Progress)
Let P be a process s.t. P :: T and Γ;ø ⊢ P and closed(T). 

If P →* Q and Q is not a finished process then Q → R.
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Related Work
• Multiparty Sessions (HondaYoshidaCarbone08)

Created via multicast atomic service requests, each having multiple channels; 
support a constant number of participants; global types specify who does what.

In our approach, a single medium supports a dynamic number of multiple 
participants, interacting via labeled messages.

• Progress in Multiparty Sessions (Bettini et al.08)
Builds on (HondaYoshidaCarbone08) improving on the progress result;

Does not address the interleaving of delegated sessions.

• Dynamic Multirole Sessions (DeniélouYoshida11)
Multicast atomic service request, multiple session channels; Dynamic number of 
participants, constant number of roles.

Our approach addresses systems with dynamic “roles”
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Concluding Remarks
• Conversation types

Simple extension of the session type notion 
Multiparty conversations in a single communication medium
Unify local and global behavioral specs at the same level 
Unantecipated participants may join / leave a conversation, 
as long as the “projection invariant” is preserved

Progress result on systems where processes interact in 
multiple conversations, supporting repeated accesses to 
several interleaved, possibly delegated, conversations

• Ongoing work
Analysis of role based conversation using conversation types 

P1 ⋈ P2 ⋈ ... ⋈ Pk = Gτ 

52


