
Analyzing Multiparty Interaction
using Conversation Types

Luís Caires, Hugo Torres Vieira
Nova - New University of Lisbon

/52

Motivation
• Software systems often rely on the collaboration

between multiple parties to realize their tasks
e.g., web-service applications

How can we ensure protocol safety and progress in such a
decentralized and dynamic setting?

• Sessions [Honda93,Honda et al.98] have been
widely used to model typeful binary interaction

How can we extend classical sessions so as to address
dynamic multiparty interaction?

2

/52

Sessions and Conversations
• Session type theory

Systems modeled in the π-calculus

Types describe the behavior of a single participant
(≈ local types [HondaYoshidaCarbone07-08])

progress analysis based on well-founded ordering of channels
[Dezani et al.07]

• Conversation type theory (this talk)
Systems modeled in the π-calculus extended with labels
(to support distinguished interaction in a single medium)

Types describe the behavior of a subset of participants
(mixing global and local type specifications)

progress analysis based on well-founded ordering of events
and its propagation in communication

3

/524

π-calculus + labels

/52

P :: = 0 (Inaction)
⏐ P |Q (Parallel Composition)

⏐ (νa) P (Name Restriction)

⏐ rec X.P (Recursion)

⏐ X (Variable)

⏐ Σi ∈ I αi.Pi (Prefix Guarded Choice)

α :: = n • label?(x1,...,xk) (Input)
⏐ n • label!(n1,...,nk) (Output)

5

π-calculus + labels

/52

The eChair System

6

/52

The eChair System

7

submit

publish

paper

file

reject
accept

author eChair editor

branch{

copyright

/52

eChair System Code

8

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()))
|
*eChair • submit?(x).
 x • paper?(pdf).
 (x • reject!()
 +
 x • accept!().
 editor • publish!(x). x • file!(pdf))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

/52

eChair System Run

9

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()))
|
*eChair • submit?(x).
 x • paper?(pdf).
 (x • reject!()
 +
 x • accept!().
 editor • publish!(x). x • file!(pdf))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

submit

publish

paper

reject

accept

author eChair editor

branch{

copyright

file

/52

eChair System Run

10

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!())
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

eChair System Run

11

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!())
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

eChair System Run

12

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!())
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

eChair System Run

13

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)
|
*editor • publish?(y).
 chat • file?(pdf). chat • copyright?())

eChair System Run

14

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)
|
*editor • publish?(y).
 chat • file?(pdf). chat • copyright?())

eChair System Run

15

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()
|
*eChair • submit?(x).
 chat • paper?(pdf).
 (chat • reject!()
 +
 chat • accept!().
 editor • publish!(chat). chat • file!(pdf)
|
*editor • publish?(y).
 chat • file?(pdf). chat • copyright?())

eChair System Run

16

submit

publish

reject

accept

author eChair editor

branch{

copyright

paper

file

/52

Conversation Types

17

/52

Conversation Types
• Typing judgement

says P interacts in ni accordingly to the Bi spec

• Behavioral types (B) extend session types:

Message types (M) are labeled and describe both
external and internal message exchanges

18

B :: = B1 | B2 ⏐ 0 ⏐ rec X.B ⏐ X
 | &i ∈ I {Mi.Bi} ⏐ ⊕i ∈ I {Mi.Bi}

M :: = p label(B) p :: = ! ⏐ ? ⏐ τ

P :: n1:B1 | n2:B2 | ... | nk:Bk

/52

Typing chat Conversation

19

/52

Typing chat Conversation

20

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

/52

Typing chat Conversation

21

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

/52

Typing chat Conversation

22

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

? file(Tpdf).
? copyright()

/52

Typing chat Conversation

23

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

{Bed
? file(Tpdf).
? copyright()

/52

Typing chat Conversation

24

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

! file(Tpdf) ? file(Tpdf).
? copyright()

/52

Typing chat Conversation

25

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

! file(Tpdf) ⋈? file(Tpdf).
? copyright()

τ file(Tpdf). =
? copyright()

/52

Typing chat Conversation

26

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
τ paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

/52

Typing chat Conversation

27

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
τ paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

/52

Typing chat Conversation

28

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
? paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

/52

Typing chat Conversation

29

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit(Bee)

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
? paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

 Bee

/52

Typing chat Conversation

30

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit(Bee)

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
? paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

! paper(Tpdf). ⊕ { ? reject();
 ? accept(). ! copyright() } {Bau

/52

Typing chat Conversation

31

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit(Bee)

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

chat:
? paper(Tpdf).
 ⊕ { ! reject();
 ! accept().
 τ file(Tpdf).
 ? copyright() }

! paper(Tpdf). ⊕ { ? reject();
 ? accept(). ! copyright() }

= ⋈

/52

Typing chat Conversation

32

chat:
τ paper(Tpdf).
 ⊕ { τ reject();
 τ accept().
 τ file(Tpdf).
 τ copyright() }

submit(Bee)

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright

= ⋈Bau Bec Bed ⋈

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()))
|
*eChair • submit?(x).
 x • paper?(pdf).
 (x • reject!()
 +
 x • accept!().
 editor • publish!(x). x • file!(pdf))
|
*editor • publish?(y).
 y • file?(pdf). y • copyright?()

Typing eChair System

33

submit(Bee)

publish(Bed)

paper

file

reject

accept

author eChair editor

branch{

copyright
::
eChair : τ submit(Bee) | *? submit(Bee) |
editor : τ publish(Bed) | *? publish(Bed)

/52

Results

34

/52

Results
Theorem (Subject Reduction)

Let P be a well-typed process, P :: T.
If P → Q then there is T’ such that T → T’ and Q :: T’.

Proposition (Error Freeness)
Let P be a well-typed process. Then P is not an error:

P has no communication errors; P has no illegal message races

Corollary (Type Safety)
Let P be a well-typed process. If P →* Q then Q is not an error.

Corollary (Conversation Fidelity)
Let P be a well-typed process, P :: T.
Then all conversations in P follow the protocols prescribed by T.

35

/52

Proving Progress of Conversations

36

/52

• We complement conversation typing with a proof
system to ensure deadlock absence.
As traditional methods (Lynch80, Kobayashi06, Dezani et al.07) we rely
on imposing an ordering on events.

• Judgement Γ;∆ ⊢ P

Events in P follow a well-founded order determined by Γ;∆.

• Events (channel.label.(x)Γ) are synchronizations in
labeled channels passing channel references
Each event has associated the ordering admissible (x)Γ for the
channel which is to be passed in the message

received/sent channels must comply with the prescribed order

Proving Progress of Conversations

37

/5238

Ordering eChair System Events

/5239

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

Ordering eChair System Events

/5240

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

Ordering eChair System Events

/5241

submit

publish

paper

file

reject

accept

author eChair editor

branch{

copyright

Ordering eChair System Events

y.file
<
y.copyright

/5242

submit

publish.(y)Γed

paper

file

reject

accept

author eChair editor

branch{

copyright {Γed

Ordering eChair System Events

y.file
<
y.copyright

/5243

submit

paper

file

reject

accept

author eChair editor

branch{

copyright

x.paper
<
x.accept
<
editor.publish.(y)Γed
<
x.file
<
x.copyright

Ordering eChair System Events

chat:

<
x.reject

publish.(y)Γed

<
y.copyright

/5244

submit

paper

file

reject

accept

author eChair editor

branch{

copyright

x.paper
<
x.accept
<
editor.publish.(y)Γed
<
x.file
<
x.copyright

Ordering eChair System Events

chat:

<
x.reject

publish.(y)Γed

/5245

submit.(x)Γee

paper

file

reject

accept

author eChair editor

branch{

copyright

x.paper
<
x.accept
<
editor.publish.(y)Γed
<
x.file
<
x.copyright

Ordering eChair System Events

publish.(y)Γed

 Γee chat:

<
x.reject

/5246

submit.(x)Γee

paper

file

reject

accept

author eChair editor

branch{

copyright

Ordering eChair System Events

publish.(y)Γed

chat:

<
chat.reject

eChair.submit.(x)Γee
<
chat.paper
<
chat.accept
<
editor.publish.(y)Γed
<
chat.file
<
chat.copyright

/5247

submit.(x)Γee

paper

file

reject

accept

author eChair editor

branch{

copyright

Ordering eChair System Events

publish.(y)Γed

chat:

<
chat.reject

eChair.submit.(x)Γee
<
chat.paper
<
chat.accept
<
editor.publish.(y)Γed
<
chat.file
<
chat.copyright

/52

(νchat)
(eChair • submit!(chat).
 chat • paper!(pdf).
 (chat • reject?()
 +
 chat • accept?(). chat • copyright!()))
|
eChair • submit?(x).
 x • paper?(pdf).
 (x • reject!()
 +
 x • accept!().
 editor • publish!(x). x • file!(pdf))
|
editor • publish?(y).
 y • file?(pdf). y • copyright?()

Typing eChair System

48

submit.(x)Γee

publish.(y)Γed

paper

file

reject

accept

author eChair editor

branch{

copyright

eChair.submit.(x)Γee
< editor.publish.(y)Γed
⊢

/52

Results

49

/52

Results
Theorem (Preservation of Event Ordering)

Let P be well-formed and Γ;∆ ⊢ P. If P → Q then Γ’;∆,∆’ ⊢ Q.

Theorem (Lock Freeness)
Let P be a process s.t. P :: T and Γ;∆ ⊢ P. If closed(T) and

P is not a finished process then there is Q such that P → Q.
A type T is closed if (roughly) T = τ(T).
Finished processes only exhibit shared inputs (e.g., persistent services).

Corollary (Progress)
Let P be a process s.t. P :: T and Γ;ø ⊢ P and closed(T).

If P →* Q and Q is not a finished process then Q → R.

50

/52

Related Work
• Multiparty Sessions (HondaYoshidaCarbone08)

Created via multicast atomic service requests, each having multiple channels;
support a constant number of participants; global types specify who does what.

In our approach, a single medium supports a dynamic number of multiple
participants, interacting via labeled messages.

• Progress in Multiparty Sessions (Bettini et al.08)
Builds on (HondaYoshidaCarbone08) improving on the progress result;

Does not address the interleaving of delegated sessions.

• Dynamic Multirole Sessions (DeniélouYoshida11)
Multicast atomic service request, multiple session channels; Dynamic number of
participants, constant number of roles.

Our approach addresses systems with dynamic “roles”

51

/52

Concluding Remarks
• Conversation types

Simple extension of the session type notion
Multiparty conversations in a single communication medium
Unify local and global behavioral specs at the same level
Unantecipated participants may join / leave a conversation,
as long as the “projection invariant” is preserved

Progress result on systems where processes interact in
multiple conversations, supporting repeated accesses to
several interleaved, possibly delegated, conversations

• Ongoing work
Analysis of role based conversation using conversation types

P1 ⋈ P2 ⋈ ... ⋈ Pk = Gτ

52

