
Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Sub-typing and sub-behaviour relations

Franco Barbanera1 and Ugo de’Liguoro2

1Dipartimento di Matematica e Informatica, Università di Catania
2Dipartimento di Informatica, Università di Torino

WSBT - 20th April 2011, Lisboa

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Overview

Session

A session is a logic unit, collecting and structuring messages
exchanged among a determined set of agents, sharing a private
channel to prevent interference by third parties.

Session types have been introduced to formalise two-sided

sessions in type systems for the π-calculus

We set up a behavioural semantic investigation of session types
using the notion of contract.

Contracts are a process algebraic formalism to describe the
behaviour of services in a client/server scenario

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Session Types (Honda, Vasconcelos, Kubo)

Session types = regular trees of ordinary types
of (polyadic) π-calculus

If Γ ⊢ P is derivable and

Γ(x) = µX . ?(Int).&〈 ℓ0 : ![Bool]end,
ℓ1 : ⊕〈ℓ2 : end,

ℓ3 : X 〉 〉

then channel x is used in P to carry the following “session”:

1 input an integer

2 on receiving the message ℓ0 send a boolean then stop

3 on receiving ℓ1 either issue ℓ2 then stop, or issue ℓ3 and start
over the whole session

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Session Types (Honda, Vasconcelos, Kubo)

The syntax:

T ::= Int | Bool | . . . | S ground/session type

S ::= end ended session
| ?(T)S input of type T , then S

| ![T]S oupt of type T , then S

| &〈ℓi : Si | i ∈ I 〉 branching (I finite)
| ⊕〈ℓi : Si | i ∈ I 〉 selection (I finite)
| X variable
| µX . S recursion (S not a variable)

where the T in ?(T), ![T] has to be closed (a restriction w.r.t.
[HVK] and [GH] session types).

If T is restricted to ground types, these are first order session
types; they are higher-order otherwise.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Session Types (Honda, Vasconcelos, Kubo)

The “duality” relation over session types:

end = end

?(T)S = ![T]S

![T]S = ?(T)S

&〈ℓi : Si | i ∈ I 〉 = ⊕〈ℓi : S i | i ∈ I 〉

⊕〈ℓi : Si | i ∈ I 〉 = &〈ℓi : S i | i ∈ I 〉
X = X

µX . S = µX . S

The following rule is at the hearth of error freeness property within
a typeable session:

∆, x : S ⊢ P ∆, x : S ⊢ Q

∆ ⊢ (νx)(P |Q)

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Subtyping Session Types (Gay-Hole)

Subtyping intuition

A <: B if and only if any channel that satisfies the stricter
“protocol” A also satisfies the protocol B

The A <: B relation has been axiomatized by Gay and Hole.

They proved it operationally sound by showing that the narrowing

rule:
∆, x : B ⊢ P A <: B

∆, x : A ⊢ P

doesn’t break subject reduction.

Note that narrowing rule is just the dual of subsumption rule of the

λ-calculus with subtyping.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Coinductive Axiomatization of FO-Subtyping

A coinductive reformulation: let Γ = {A1 <: B1, . . . ,Ak <: Bk},
then we derive judgements of the form Γ ⊢ A <: B by the rules:

Γ ⊢ A{µX .A/X} ≤p B

Γ ⊢ µX .A ≤p B

Γ ⊢ B ≤p A{µX .A/X}

Γ ⊢ B ≤p µX .A

Γ, &i∈I 〈ℓi : Ai 〉 <: &j∈J〈ℓj : Bj〉 ⊢ Ai <: Bi ∀i ∈ I I ⊆ J

Γ ⊢ &i∈I 〈ℓi : Ai 〉 <: &j∈J 〈ℓj : Bj〉

Γ,⊕i∈I 〈ℓi : Ai 〉 <: ⊕j∈J〈ℓj : Bj〉 ⊢ Aj <: Bj ∀j ∈ J I ⊇ J

Γ ⊢ ⊕i∈I 〈ℓi : Ai 〉 <: ⊕j∈J〈ℓj : Bj 〉

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Behavioural semantics of session types

Problem

Is there a semantic characterization of session subtyping?

Answer: behavioural semantics

provide a formal definition of protocols as behaviours

give a concept of sub-behaviour

interpret session types as behaviours

We understand behaviours as a suitable kind of processes, for
which we choose contracts

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Contracts (Castagna, Laneve, Padovani)

contracts are abstract specifications of web-services (and of
client queries)

central is the compliance relation among a client query and a
server contract:

ρ complies with τ (ρ ⊣ τ, ρ is a client for σ)

m

every request from ρ is satisfied by σ

compliance induces a subcontract relation:

σ is a subcontract of τ (σ � τ) ⇔ every client of σ is such of τ

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Contracts (Castagna, Laneve, Padovani)

Web contracts are parallel-free CCS terms (without τ) generated
by the grammar:

σ ::= 1 | α.σ | σ + σ | σ ⊕ σ | x | rec x .σ

where α ∈ N ∪N .

Semantics is defined by the LTS:

α.σ
α

−→ σ

σ
α

−→ σ′ ⇒ σ + ρ
α

−→ σ′, ρ + σ
α

−→ σ′

σ ⊕ ρ −→ σ, σ ⊕ ρ −→ τ

rec x .σ −→ σ{rec x .σ/x}

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login

in the negative restart

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login

in the negative restart

in the positive prompt for voting either A or B

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1 + Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login

in the negative restart

in the positive prompt for voting either A or B

then offer the possibility for voting for a ticket

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Example

The contract of a ballot service might be:

rec x .Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1 + Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login

in the negative restart

in the positive prompt for voting either A or B

then offer the possibility for voting for a ticket

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Session Behaviours as Contracts interpreting Session Types

Consider the mapping from (first order) session types to contracts:

[[X]] = x

[[end]] = 1 [[µX . A]] = rec x . [[A]]

[[?(γ)A]] = γ.[[A]] [[![γ]A]] = γ.[[A]]

[[&〈ℓi : Bi | i ∈ I 〉]] =
∑

i∈I ℓi .[[Bi]]

[[⊕〈ℓi : Bi | i ∈ I 〉]] =
⊕

i∈I ℓi .[[Bi]]

The image of the [[·]] map is a subset of the set of contracts.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Session Behaviours: the grammar

Session Behaviours in S are the closed expressions defined by the
grammar:

σ ::= 1

| a1.σ1 + · · · + an.σn external choice, ai distinct
| a1.σ1 ⊕ · · · ⊕ an.σn internal choice, ai distinct
| x variable
| rec x .σ recursion, σ not a variable

Contracts describe the overall behaviour of a client or a server.
Session Behaviors describe the possible interactions of a process
over a channel.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Compliance and Orthogonality

Extend the reduction relation to pairs of session-behaviours ρ‖σ:

ρ
α

−→ ρ′ σ
α

−→ σ′

ρ‖σ −→ ρ′‖σ′

ρ −→ ρ′

ρ‖σ −→ ρ′‖σ

σ −→ σ′

ρ‖σ −→ ρ‖σ′

Compliance: the client ρ complies with the server σ, ρ ⊣ σ if

∀ρ′, σ′ ρ‖σ
∗

−→ ρ′‖σ′ 6−→ ⇒ ρ′ = 1

i.e. any request of the client is eventually satisfied by the server.

Orthogonality:

ρ ⊥ σ ⇔ ρ ⊣ σ & σ ⊣ ρ

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Examples

a ⊕ b ⊣ a + b + c because:

(a ⊕ b)‖(a + b + c) −→ a‖(a + b + c) −→ 1‖1
ց

b‖(a + b + c) −→ 1‖1

and also a + b + c ⊣ a ⊕ b hence a ⊕ b ⊥ a + b + c .

But a ⊕ b ⊕ c 6⊣ a + b (and a + b 6⊣ a ⊕ b ⊕ c) since:

(a ⊕ b ⊕ c)‖(a + b) −→ c‖(a + b) 6−→

Note that rec x .a.x ⊣ rec x .a.x (without reaching 1‖ · · ·) since:

rec x .a.x‖rec x .a.x
2

−→ a.rec x .a.x‖a.rec x .a.x
−→ rec x .a.x‖rec x .a.x −→ · · ·

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Client/Server Sub-Behaviours

For σ, ρ ∈ S, let

Client(σ) = {ρ ∈ S | ρ ⊣ σ}, Server(ρ) = {σ ∈ S | ρ ⊣ σ}

Then define the relations:

1 σ �s σ′ if and only if Client(σ) ⊆ Client(σ′);

2 ρ �c ρ′ if and only if Server(ρ) ⊆ Server(ρ′).

In words: σ �s σ′ if the server σ′ has a larger set of clients than σ,
and similarly for ρ �c ρ′.

Note. Our �s is essentially the subcontract relation by Castagna
et alii.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Duality in S

Let us extend the · operation to all (also open) behaviours:

1 = 1

a.σ = a.σ and a.σ = a.σ

σ + τ = σ ⊕ τ

σ ⊕ τ = σ + τ

x = x

rec x .σ = rec x .σ

If σ ∈ S then σ ∈ S, and σ = σ. Moreover:

σ = [[A]] if and only if σ = [[A]]

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Duality in S

Relating the syntactic operator · to the server/client preorders:

Proposition. Let τ ∈ S:

1 τ is the minimum server among those of τ :

∀σ ∈ Server(τ). τ �s σ (i.e. Client(τ) ⊆ Client(σ))

2 τ is the minimum client among those of τ :

∀ρ ∈ Client(τ). τ �c ρ (i.e. Server(τ) ⊆ Server(ρ))

This does not hold outside of S:

a ⊕ a.b 6⊣ a + a.b

the minimum of Client(a + a.b) is actually a

a + a.b 6⊣ a ⊕ a.b

the minimum of Server(a + a.b) is a.b

Server(a.b + a.c) = ∅

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Behavioural Subtyping

Let A⊥ = {σ ∈ S | ∃τ ∈ A. σ ⊥ τ} and σ⊥ = {σ}⊥:

σ �: τ
∆
⇔ σ ⊥ ⊆ τ ⊥

Theorem

Behavioural subtyping is the intersection of both client and
server-subbehaviour relations:

�: = �c ∩ �s

It follows that or any σ, τ ∈ S, σ is minimal in σ ⊥ w.r.t. �: and

σ �: τ if and only if τ �: σ

matching with the fact that A <: B ⇔ B <: A.

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Higher-Order LTS

Higher-order Behaviours add input/output of behaviors to
prefixes:

σ, τ ::= . . . |?σp.τ |!σp.τ

where p ∈ {s, c}.

The higher-order LTS:

?ρp.σ
?ρp

−→ σ !ρp.σ
!ρp

−→ σ

σ
?ρ

p
2−→ σ′ τ

!ρ
p
1−→ τ ′ ρ1 �p ρ2

σ‖τ −→ σ′‖τ ′

σ
!ρ

p
1−→ σ′ τ

?ρ
p
2−→ τ ′ ρ1 �p ρ2

σ‖τ −→ σ′‖τ ′

Note the use of �s ,�c in the LTS rules.

The syntactical duality extends as:

?σp.τ =!σp.τ , !σp.τ =?σp.τ

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Interpreting Higher-Order Sessions

Higher-order session may send and receive session types:

A,B , ::= . . . | ?(Ap)B | ![Ap]B for p = c , s

By considering higher-order behaviours we can extend the
interpretation map to higher order session types straightforwardly:

[[?(Ap)B]] =?[[A]]p[[B]], [[![Ap]B]] =![[A]]p[[B]]

Note. We have studied asymmetric session-types, with polarized
channels to record either client or server role in
[Barbanera-Capecchi-de’Liguoro, Proc. of FSEN’09].

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Subtyping Higher-Order Sessions

We decorate the sent/received session by a polarity:

A,B , ::= . . . | ?(Ap)B | ![Ap]B for p = c , s.

Then consider the (coinductive versions of) the Gay-Hole rules:

Γ, ?(Ap)B <: ?(Cp)D ⊢ A <: C ,B <: D

Γ ⊢ ?(Ap)B <: ?(Cp)D

Γ, ![Ap]B <: ![Cp]D ⊢ C <: A,B <: D

Γ ⊢ ![Ap]B <: ![Cp]D

Fact A <: B (according to Gay-Hole) if and only if ⊢ A <: B

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Results

Main Theorem

Define:

1 |= A <: B iff [[A]] �: [[B]]

2 |= Γ iff |= C <: D for all C <: D ∈ Γ

3 Γ |= A <: B iff |= Γ implies |= A <: B

then (soundness)

Γ ⊢ A <: B ⇒ Γ |= A <: B

Completeness also holds:

Γ |= A <: B ⇒ Γ ⊢ A <: B

Session Types Behavioural semantics Sub-Behaviour Higher-Order Result Conclusions

Final Remarks

Results:

we have proposed an interpretation of session types into
behaviours which is sound w.r.t. Gay-Hole subtyping

we also have that the interpretation is complete

when restricting to S, there is no theoretical loss w.r.t. the
full set of contracts in the case of two-ended sessions

Further work:

things are different when considering multiparty sessions and
fairness concepts are involved

the power of higher-order LTS in giving semantics to the
typed π-calculus deserves further attention

	Session Types
	Behavioural semantics
	Sub-Behaviour
	Higher-Order
	Result
	Conclusions

