Sub-typing and sub-behaviour relations

Franco Barbanera! and Ugo de'Liguoro?

IDipartimento di Matematica e Informatica, Universita di Catania
2Dipartimento di Informatica, Universita di Torino

WSBT - 20th April 2011, Lisboa

Session Types

Overview

A session is a logic unit, collecting and structuring messages
exchanged among a determined set of agents, sharing a private
channel to prevent interference by third parties.

@ Session types have been introduced to formalise two-sided
sessions in type systems for the m-calculus

We set up a behavioural semantic investigation of session types
using the notion of contract.

o Contracts are a process algebraic formalism to describe the
behaviour of services in a client/server scenario

Session Types

Session Types (Honda, Vasconcelos, Kubo)

Session types = regular trees of ordinary types
of (polyadic) m-calculus

If '+ P is derivable and

M(x) = pX. ?(Int).&(¢y : [Bool]end,
01 @l : end,
63 X > >

then channel x is used in P to carry the following “session”:
© input an integer
© on receiving the message ¢y send a boolean then stop

© on receiving {7 either issue ¢» then stop, or issue 3 and start
over the whole session

Session Types

Session Types (Honda, Vasconcelos, Kubo)

The syntax:
T == Int|Bool|...|S ground/session type
S end ended session
°(T)S input of type T, then S
I[T]S oupt of type T, then S

|

|

| & :Si|iel) branching (/ finite)

| @ :Si|iel) selection (/ finite)

| X variable

| wX.S recursion (S not a variable)
where the T in ?(T), ![T] has to be closed (a restriction w.r.t.
[HVK] and [GH] session types).

If T is restricted to ground types, these are first order session
types; they are higher-order otherwise.

Session Types

Session Types (Honda, Vasconcelos, Kubo)

The “duality” relation over session types:

end end

2(T)S = I[T]S

I[T]S = (TS
&{;:Siliel) = & :Si|iel)
;i :Si|iel) = &{:S;]iel)
X = X

uX. S = uX.S

The following rule is at the hearth of error freeness property within
a typeable session:

Ax:SFP Ax:5+Q
AF (vx)(P|Q)

Session Types

Subtyping Session Types (Gay-Hole)

Subtyping intuition

A <: B if and only if any channel that satisfies the stricter
“protocol” A also satisfies the protocol B

The A <: B relation has been axiomatized by Gay and Hole.

They proved it operationally sound by showing that the narrowing

rule:
Ax:BFP A< B

Ax:AFP

doesn't break subject reduction.

Note that narrowing rule is just the dual of subsumption rule of the
A-calculus with subtyping.

Session Types

Coinductive Axiomatization of FO-Subtyping

A coinductive reformulation: let I' = {A; <: By, ..., Ax <: Bk},
then we derive judgements of the form ' = A <: B by the rules:

M- A{pX.A/X} <, B T+ B<,A{uX.A/X}
M- uX.A<,B M- B<,uX.A

O &ici(li - Ay <: &jey(lj: By FA <:Bi Viel 1CJ
I+ &i€l<€i : A,> <: &je_j<€j : BJ>

C@ici(li: Ay < @jes(l: By FA; <:B; Vjed 12J
M ®ici(li 0 Ai) < ®jes(l: Bj)

Behavioural semantics

Behavioural semantics of session types

Problem
Is there a semantic characterization of session subtyping?

Answer: behavioural semantics

@ provide a formal definition of protocols as behaviours
@ give a concept of sub-behaviour
@ interpret session types as behaviours

We understand behaviours as a suitable kind of processes, for
which we choose contracts

Behavioural semantics

Contracts (Castagna, Laneve, Padovani)

@ contracts are abstract specifications of web-services (and of
client queries)

@ central is the compliance relation among a client query and a
server contract:

p complies with 7 (p 47, pis a client for o)

0

every request from p is satisfied by o

@ compliance induces a subcontract relation:

o is a subcontract of 7 (0 < 7) < every client of ¢ is such of 7

Behavioural semantics

Contracts (Castagna, Laneve, Padovani)

Web contracts are parallel-free CCS terms (without 7) generated
by the grammar:

ocx=1]aoc|o+o|o®o|x|recx.o
where « € N UN.

Semantics is defined by the LTS:
° a0 o
@ ! @ ! @ !
@0 —0 =0+p—0, pt+toc—0
Qobp—o0, 0Dp—T

® recx.0c — o{recx.c/x}

Behavioural semantics

Example

The contract of a ballot service might be:

rec x.Login.(Wrong.x & Ok.(VoteA.(Val+Va2)+VoteB.(Vb1+Vb2)))

Behavioural semantics

Example

The contract of a ballot service might be:
rec x.Login.(Wrong.x & Ok.(VoteA.(Val+Va2)+VoteB.(Vb1+Vb2)))

meaning:

@ wait for a Login action

Behavioural semantics

Example

The contract of a ballot service might be:
rec x.Login.(Wrong.x ¢ Ok.(VoteA.(Val+Va2)+VoteB.(Vb1+Vb2)))
meaning:

@ wait for a Login action

@ acknowledge the (in)correctness of login

Behavioural semantics

Example

The contract of a ballot service might be:
rec x.Login.(Wrong.x & Ok.(VoteA.(Val+Va2)+VoteB.(Vb1+Vb2)))

meaning:
@ wait for a Login action

@ acknowledge the (in)correctness of login

@ in the negative restart

Behavioural semantics

Example

The contract of a ballot service might be:
rec x.Login.(Wrong.x @& Ok.(VoteA.(Val+Va2)+VoteB.(Vb1+Vb2)))

meaning:
@ wait for a Login action
@ acknowledge the (in)correctness of login
@ in the negative restart

@ in the positive prompt for voting either A or B

Behavioural semantics

Example

The contract of a ballot service might be:

rec x.Login.(Wrong.x & Ok.(VoteA.(Val + Va2)+VoteB.(Vb1+Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login
in the negative restart

in the positive prompt for voting either A or B

e © ¢ ¢ ¢

then offer the possibility for voting for a ticket

Behavioural semantics

Example

The contract of a ballot service might be:

rec x.Login.(Wrong.x & Ok.(VoteA.(Val+Va2)+VoteB.(Vbl + Vb2)))

meaning:

wait for a Login action

acknowledge the (in)correctness of login
in the negative restart

in the positive prompt for voting either A or B

e © ¢ ¢ ¢

then offer the possibility for voting for a ticket

Behavioural semantics

Session Behaviours as Contracts interpreting Session Types

Consider the mapping from (first order) session types to contracts:

[X] = x
[end] = 1 [uX. Al = recx.[A]
[?NAI = ~[A1 ['DIAT = 7.0A1

[[&<£, : B,' | i € />]] = Z,-e,f,'.[[B,']]
[t Bilien] = @i tilBl

The image of the [[-] map is a subset of the set of contracts.

Behavioural semantics

Session Behaviours: the grammar

Session Behaviours in S are the closed expressions defined by the
grammar:

1
ai.o1 + -+ an.o, external choice, a; distinct
31.01 P --- P a,.0, internal choice, 3; distinct
X variable
rec x.o recursion, o not a variable

g

Contracts describe the overall behaviour of a client or a server.
Session Behaviors describe the possible interactions of a process
over a channel.

Sub-Behaviour

Compliance and Orthogonality

Extend the reduction relation to pairs of session-behaviours pl|o:

/ /
p—p o5 p—0p g—0

plle — ¢'|lo’ pllo — plllo pllo — pllo’

Compliance: the client p complies with the server o, p 4 o if
vp',o' pllo = pllo’ /— = p'=1

i.e. any request of the client is eventually satisfied by the server.

Orthogonality:

plo s pdo & o-p

Sub-Behaviour

Examples

2@ b-a+ b+ c because:
@ob)|(a+b+c) — 3|(a+b+c) — 1|1
N
Bl(a+b+c) — 11
andalsoa+b+cHa®bhencead bl a+b+c.
Buta@b®cAa+b(anda+bAa®b®T) since:
@@ b®7T)|(a+ b) — T|(a+b) /—

Note that rec x.a.x - rec x.a.x (without reaching 1|| - --) since:

rec x.a.x||rec x.3.x i>a.recx.a.x||§.recx.§.x
— recx.a.x||recx.a.x — - -

Sub-Behaviour

Client/Server Sub-Behaviours

For o,p € S, let
Client(c) ={pe S|p-a}, Server(p)={ocecS|p-o}

Then define the relations:
Q o =, ¢’ if and only if Client(c) C Client(c’);
Q p = p if and only if Server(p) C Server(p').

In words: o < o’ if the server ¢’ has a larger set of clients than o,
and similarly for p <. p'.

Note. Our = is essentially the subcontract relation by Castagna
et alii.

Sub-Behaviour

Duality in &

Let us extend the ~ operation to all (also open) behaviours:
o1=1
@ 30=30and 3.0 = a0
@ o+T=0DT
@ oPbT=0+T
o X=x

@ reCX.0 = reCcxX.o

If o € SthenT € S, and T = . Moreover:

o =[A] ifandonlyif &=[A]

Sub-Behaviour

Duality in &

Relating the syntactic operator - to the server/client preorders:

Proposition. Let 7 € S:
© T is the minimum server among those of 7:
Vo € Server(1). T =50 (i.e. Client(T) C Client(o))
© T is the minimum client among those of 7:
Vp € Client(7). T <c p (i.e. Server(T) C Server(p))

This does not hold outside of S:
ead@abAa+ab
@ the minimum of Client(a + a.b) is actually 3
®@atabAadmab
@ the minimum of Server(a + a.b) is a.b
@ Server(a.b+ac) =10

Sub-Behaviour

Behavioural Subtyping

Llet At ={0e€S|3r€A o L7}and ot = {0}t

A
ocxXT & ot Ccrt

Behavioural subtyping is the intersection of both client and
server-subbehaviour relations:

== 2N

It follows that or any o, 7 € §, @ is minimal in oL wrt < and
o=7 ifandonlyif 7.7

matching with the fact that A <: B < B <: A.

Higher-Order

Higher-Order LTS

Higher-order Behaviours add input/output of behaviors to
prefixes:
o,7 = ...|20P.1 |loP.T
where p € {s, c}.
The higher-order LTS:

?pP 1pP
oP.0 — lpP.o — o
5 o, o, 5
o—=0 T—>T p13pp2 o—=0 T—>T p13pp2
/ / / /
ollr — o7 ollr — o'||r

Note the use of =g, =<, in the LTS rules.

The syntactical duality extends as:

toP.r =loPT, loP.T=7PT

Higher-Order

Interpreting Higher-Order Sessions

Higher-order session may send and receive session types:
A B,:=...|?7(AP)B |![AP]B for p=c,s

By considering higher-order behaviours we can extend the
interpretation map to higher order session types straightforwardly:

[7(A%)B] =?[AI°[B], ['[A%18] ='[A]"[B]

Note. We have studied asymmetric session-types, with polarized
channels to record either client or server role in
[Barbanera-Capecchi-de'Liguoro, Proc. of FSEN'09].

Higher-Order

Subtyping Higher-Order Sessions

We decorate the sent/received session by a polarity:
A B,:=...|?(AP)B |![AP]B for p=c,s.
Then consider the (coinductive versions of) the Gay-Hole rules:

M, 7(AP)B <:?(CP)DFA<:C,B<:D
[=7(AP)B <:?(CP)D

[, 1[AP]B <:![CPIDF C <: A, B <: D
[-1[AP]B <:1[CP]D
Fact A <: B (according to Gay-Hole) if and only if H A <: B

Result
Results

Define:
O = A<: Biff [A] = [B]
QFTiff=EC<:Dforall C<:DeTl
QO TI=A< Biff =T implies A <: B
then (soundness)

INFA<:B = TEA<B

Completeness also holds:

NEA<:B = T+HA< B

Conclusions

Final Remarks

Results:

@ we have proposed an interpretation of session types into
behaviours which is sound w.r.t. Gay-Hole subtyping

@ we also have that the interpretation is complete

@ when restricting to S, there is no theoretical loss w.r.t. the
full set of contracts in the case of two-ended sessions

Further work:
@ things are different when considering multiparty sessions and
fairness concepts are involved

@ the power of higher-order LTS in giving semantics to the
typed mw-calculus deserves further attention

	Session Types
	Behavioural semantics
	Sub-Behaviour
	Higher-Order
	Result
	Conclusions

