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Abstract. Quantum Information Processing (QIP) is an emerging area
at the intersection of physics and computer science. It aims to estab-
lish the principles of communication and computation for systems based
on the theory of quantum mechanics. Interesting QIP protocols such as
quantum error correction, teleportation, and blind quantum computation
have already been realised in the laboratory and are now in the realm of
mainstream industrial applications. The complexity of these protocols,
along with possible inaccuracies in implementation, demands systematic
and formal analysis. In this paper, we present a new technique and a
tool, with a high-level interface, for verification of quantum protocols
using equivalence checking. Previous work by Gay, Nagarajan and Pa-
panikolaou used model-checking to verify quantum protocols represented
in the stabilizer formalism, a restricted model which can be simulated ef-
ficiently on classical computers. Here, we are able to go beyond stabilizer
states and verify protocols efficiently on all input states.

Keywords: quantum protocols, equivalence checking, model checking,
stabilizers

1 Introduction

With the emergence of quantum computation and quantum information process-
ing, there is now a need for high level understanding and techniques in the design
and analysis of quantum protocols. To this end, we are pursuing a programme of
applying formal methods, developed for the analysis of classical computing and
communication systems, to analyse and verify quantum systems. The present
paper concerns model-checking, in which the behaviour of a system (defined in
a formal modelling language) is exhaustively explored in order to verify that a
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desired specification is satisfied by all possible execution paths. There are two
distinct styles of model-checking. The first style is property-oriented, in which a
specification is expressed as a logical formula, usually in temporal logic, and the
truth of the formula is checked along every possible execution path. The second
style is process-oriented, in which a specification is expressed as a simple ideal
system whose correctness is self-evident, and verification consists of checking
that the (model of the) implementation has exactly equivalent behaviour to the
specification.

Previous work by Gay, Nagarajan and Papanikolaou [19, 24] has developed
QMC, a property-oriented model-checking system for quantum protocols. The
present paper explores the process-oriented approach. The main novelty is to ex-
ploit the fact that quantum operators are linear, in the sense of linear algebra, to
reduce the number of inputs on which two quantum protocols must be executed
in order to check their equivalence. Interpreting quantum protocols as linear op-
erators on a certain vector space, we can check that two protocols denote the
same operator by executing them on inputs which form a basis for the space;
linearity means that their behaviour on the whole space is determined by their
behaviour on a basis. We have implemented a prototype software tool which uses
this idea to automatically check the equivalence of two given quantum protocols.

In addition to the usual problem of large state-spaces arising from the possi-
ble execution paths and interactions within a system, quantum model-checking
presents another challenge. A quantum state on n qubits (quantum bits) is de-
fined by a basis vector expansion involving 2n complex coefficients, so represent-
ing a quantum state as a classical data structure appears to require exponential
space. Indeed, much of the interest in quantum computing arises from the fact
that in general, quantum systems cannot be efficiently simulated by classical
computers. To avoid this problem, we work with the stabilizer formalism [1],
which allows efficient classical simulation of a restricted set of quantum states
and operations on them. Although not sufficient for general-purpose quantum
computing, stabilizer states support many interesting quantum protocols such
as teleportation [7], superdense coding [8], and quantum error correction [23,
Chapter 10], as well as the essential quantum phenomenon of entanglement.
The QMC system [19, 24] also uses the stabilizer formalism.

We can explain the advantages of the tool described in the present paper,
in comparison with QMC, by considering the problem of verifying a quantum
teleportation protocol. Quantum teleportation transfers an unknown quantum
state from one physical carrier to another, by carrying out a certain sequence
of operations. Its specification is that it should be equivalent to the identity
operator on a single qubit. To verify teleportation with QMC, first the condition
that the output state is the same as the input state is expressed in a property-
oriented style. Then the protocol is executed with every one-qubit stabilizer state
(there are six of them) as input. Correctness on all of these inputs is interpreted
as evidence for, although not absolute proof of, correctness of the protocol on
arbitrary inputs. The equivalence checker described in the present paper executes
the teleportation protocol on a set of stabilizer states that form a basis for the



appropriate vector space; this involves only four states, and correspondingly less
computation. Moreover, by linearity, correctness on these four states guarantees
that the protocol is correct for arbitrary inputs. Because QMC tests the protocol
on these four states (as well as others), we can retrospectively see that QMC
also guaranteed correctness, assuming that the protocol satisfies the semantic
conditions that we introduce in Section 4.

The remainder of the paper is organised as follows. In Section 2, we give all
the necessary preliminaries for our equivalence checking method. In Section 3,
we introduce the language QPL with its syntax and a summary of its seman-
tics. We also present some examples of quantum protocols written in QPL. In
Section 4, we explain how our equivalence checker works and give details of the
implementation. In Section 5, we present some results comparing our equivalence
checker with the QMC system, in terms of running time. Finally, in Sections 6
and 7, related work and future research directions are discussed.

2 Technical Foundations

The unit of quantum information is a qubit (quantum bit). A vector space
equipped with an inner product is called Hilbert space.4 The state of a qubit
is a vector in the Hilbert space and is specified by |Ψ〉 = α |0〉 + β |1〉, where
α, β ∈ C are amplitudes and |α|2 + |β|2 = 1. We use Dirac’s notation to denote
unit vectors |0〉 and |1〉. States are transformed by unitary linear operators in
Hilbert space. An interesting quantum operation is measurement, which is not
unitary. The outcome of measuring the above state |Ψ〉 is the classical bit 0 with
probability |α|2 or 1 with probability |β|2. Moreover measurement changes the
state of the qubit permanently to |0〉 or |1〉. The quantum circuit model is simi-
lar to the classical circuit model, except that there are quantum gates acting on
qubits. Quantum circuits are usually described in the following way: each line
(wire) represents a qubit and boxes represent quantum gates and also measure-
ment. There are also two-qubit gates, which act on two qubits at the same time,
for example, controlled gates. Each controlled gate consist of a control qubit
(depicted by a point) and target qubit (depicted by a circle). If the value of
the control qubit is one, then the corresponding unitary gate is applied. In the
quantum circuit, control qubit and target qubit are connected by a vertical line.
After measurement, the outcome is classical and this is denoted by a double line.
For example, quantum teleportation [7] is a protocol which transmits a quantum
state from a sender to a receiver using a classical channel and an entangled pair
(i.e. the qubit is not physically transmitted but it is teleported). The circuit
which implements teleportation is illustrated in Figure 1. This circuit uses X
(not), Z (phase shift), H (Hadamard) and controlled-not (controlled-X) gates:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H =

1√
2

(
1 1
1 −1

)
4 There are other conditions, which will not concern us.



Prior to the execution of teleportation protocol, two parties (we call them Alice
and Bob) share an entangled pair which can be prepared by applying a Hadamard
and a controlled-not gate.

The protocol proceeds as follows: Alice combines the qubit to be teleported
with her part of the entangled pair, by applying a controlled-not gate followed
by a Hadamard gate. Then she measures the qubits in her possession. If the
outcome is one, then she applies Z or X to the corresponding qubit (see double
lines in Figure 1). Now Bob’s part of the entangled pair ends up in the same
state as Alice, which demonstrates that a qubit has been successfully transferred
from Alice to Bob.

|ψ〉 • H FE •

|0〉 �������� �������� FE
|0〉 H • X Z |ψ〉

Fig. 1. Teleportation

Stabilizer states are a small but useful subset of quantum states which can be
represented in polynomial space [1]. The main idea of the stabilizer formalism
is to represent a quantum state |φ〉, not by 2n complex amplitudes (here n
is the dimension of |φ〉) but by a stabilizer group, Stab(|φ〉). This group can
be represented by its set of generators Gi, i ≤ n such that Gi |φ〉 = |φ〉. For
example the two qubit entangled state |φ〉 = 1√

2
(|00〉 + |11〉) is represented by

{X ⊗X,Z ⊗ Z}:

X ⊗X |φ〉 = |φ〉
Z ⊗ Z |φ〉 = |φ〉

More importantly the effects of a certain class of operations and measurement
on the stabilizer states can be described by a polynomial time algorithm:

Theorem 1. (Gottesman-Knill, [23, p. 464]) Any quantum computation which
consists of only the following components:

1. State preparation, Hadamard gates, Phase gates, Controlled-Not gates and
Pauli gates.

2. Measurement gates.
3. Classical control conditions on the outcomes of measurements.

can be efficiently simulated on a classical computer.

The notion of density operator was introduced by Von Neumann and in fact the
whole quantum mechanics can be rewritten in the language of density operators.



Let {(|φi〉 , pi)} denote an ensemble of quantum states (the system is in the state
|φi〉 with probability |pi〉). The density operator ρ can be defined by

ρ :=
∑
i

pi |φi〉 〈φi|

Here |φi〉 〈φi| denotes the outer product of |φi〉. When pi = 1 we say the state is
pure; otherwise the state is mixed. It is useful to note that the density operator
ρ is a Hermitian operator: ρ† = ρ (here † denotes transpose of the complex
conjugate) and has two properties. It is positive (for any state |ϕ〉: 〈ϕ| ρ |ϕ〉 ≥ 0)
and has a trace condition Tr(ρ) = 1. Linear transformations of the form F :
ρ→ ρ′ where ρ and ρ′ are density operators, are called superoperators. Suppose
we have two systems A and B . Let |a1〉, |a2〉, |b1〉 and |b2〉 be any vectors in the
state space of A and B. The partial trace [23, page 105] of the composite system
AB is defined by:

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|Tr(|b1〉 〈b2|)

The mathematical interpretation of a quantum information processing sys-
tem, which is given some quantum input and produces some quantum output, is
a linear operator. This is very specific to quantum systems and has no analogue
in classical computing. In particular, quantum systems with no measurement
can be abstracted by unitary operators, which are linear. In order to check a
property of such system, it is sufficient to examine the standard basis of Hilbert
space (e.g. for a system operating on one qubit, we check only |0〉 and |1〉 and be-
cause of linearity we can extend our argument to any state of the general form
α |0〉 + β |1〉). In the case where quantum systems involve measurement, the
mathematical interpretation is superoperators, instead of unitaries. Superoper-
ators operate on the space of density matrices, with dimension 22n for n qubits.
Then the behaviour of a quantum system with measurement can be examined
by a basis of the space of density matrices. However, in general, for verification
of such quantum systems (especially using model-checking), it is impossible to
specify and manipulate quantum states on classical computers because there is
a continuum of quantum states. Therefore, we use stabilizer states which we can
manipulate efficiently. The following theorem [17] finds a stabilizer basis for the
space of density matrices, which we shall use later for equivalence checking.

Theorem 2. The space of density matrices for n-qubit states, considered as a
(2n)2-dimensional real vector space, has a basis consisting of density matrices of
n-qubit stabilizer states.

Notation 1 Write the standard basis for n-qubit states as {|x〉 | 0 6 x < 2n},
considering numbers to stand for their n-bit binary representations. We omit
normalization factors when writing quantum states. With this notation, for n > 1
let GHZn = |0〉+ |2n − 1〉 and iGHZn = |0〉+ i |2n − 1〉, as n-qubit states.

Lemma 1. For all n > 1, GHZn and iGHZn are stabilizer states.



Proof By induction on n. For the base case (n = 1), we have that |0〉 + |1〉
and |0〉+ i |1〉 are stabilizer states, by applying H and then P to |0〉.

For the inductive case, GHZn and iGHZn are obtained from GHZn−1⊗|0〉 and
iGHZn−1 ⊗ |0〉, respectively, by applying CNot to the two rightmost qubits. �

Lemma 2. If n > 1 and 0 6 x, y < 2n with x 6= y then |x〉+ |y〉 and |x〉+ i |y〉
are stabilizer states.

Proof By induction on n. For the base case (n = 1), the closure properties
imply that |0〉+ |1〉, |0〉+ i |1〉 and |1〉+ i |0〉 (equivalent to |0〉 − i |1〉 by scalar
multiplication) are stabilizer states.

For the inductive case, consider the binary representations of x and y. If
there is a bit position in which x and y have the same value b, then |x〉 + |y〉
is the tensor product of |b〉 with an (n − 1)-qubit state of the form |x′〉 + |y′〉,
where x′ 6= y′. By the induction hypothesis, |x′〉 + |y′〉 is a stabilizer state, and
the conclusion follows from the closure properties. Similarly for |x〉+ i |y〉.

Otherwise, the binary representations of x and y are complementary bit
patterns. In this case, |x〉 + |y〉 can be obtained from GHZn by applying X to
certain qubits. The conclusion follows from Lemma 1 and the closure properties.
The same argument applies to |x〉+ i |y〉, using iGHZn. �

Proof of Theorem 2. This is the space of Hermitian matrices and its
obvious basis is the union of

{|x〉 〈x| | 0 6 x < 2n} (1)

{|x〉 〈y|+ |y〉 〈x| | 0 6 x < y < 2n} (2)

{−i |x〉 〈y|+ i |y〉 〈x| | 0 6 x < y < 2n}. (3)

Now consider the union of

{|x〉 〈x| | 0 6 x < 2n} (4)

{(|x〉+ |y〉)(〈x|+ 〈y|) | 0 6 x < y < 2n} (5)

{(|x〉+ i |y〉)(〈x| − i 〈y|) | 0 6 x < y < 2n}. (6)

This is also a set of (2n)2 states, and it spans the space because we can obtain
states of forms (2) and (3) by subtracting states of form (4) from those of forms
(5) and (6). Therefore it is a basis, and by Lemma 2 it consists of stabilizer
states. �

Equality test : States in the stabilizer formalism are represented by sets of
Pauli generators. This representation is not unique since different sets of gener-
ators can produce the same state. Therefore a direct comparison of generators
cannot establish the equality of two stabilizer states. To check equality of two
stabilizer states, which we will require later, we check the linear independence of
their corresponding set of generators. If two sets of generators are independent,
then indeed they are not equal; otherwise they are equal. Let |φ〉 and |ψ〉 be
stabilizer states and Stab(|φ〉), Stab(|ψ〉) be their stabilizer groups. It is easy to
show that:



Lemma 3.
|φ〉 = |ψ〉 ⇐⇒ Stab(|φ〉) = Stab(|ψ〉)

Proposition 1. There is a polynomial time algorithm which decides for any
stabilizer states |φ〉 and |ψ〉, whether or not |φ〉 = |ψ〉.
Proof From Lemma 3 we have Stab(|φ〉) = Stab(|ψ〉) =⇒ |φ〉 = |ψ〉. So it
suffices to show Stab(|φ〉) ⊆ Stab(|ψ〉) and Stab(|φ〉) ⊇ Stab(|ψ〉). If genera-
tors of the group Stab(|φ〉) are linearly dependent on the generators of Stab(|ψ〉
then Stab(|φ〉) ⊆ Stab(|ψ〉). To check this, first we represent each Stab(|ψ〉) then
Stab(|φ〉) by their stabilizer array, an m×n matrix of Pauli operators, where n is
the number of qubits and m is the number of generators of the stabilizer group.
Now we consider elementary row operations on the stabilizer array [3]. Here we
have two operations: row transpose and row multiplication. These operations
do not alter the stabilizer group and hence do not change stabilizer states. In
the case of row multiplication, the generators of the stabilizer are altered. Using
these two operations a normal form, Row Reduced Echelon Form (RREF), is
introduced [3]. It is also shown in [3] that dependencies of stabilizer generators
result in I rows in RREF form. We use this result in the following way: we form a
combined stabilizer array consisting of generator sets of Stab(|ψ〉 then Stab(|φ〉)
and apply the RREF algorithm on the combined array. The dependencies be-
tween generators result in I rows in the combined array. If the number of I rows
in the RREF form of combined array is equal to the size of each generator set,
then these two sets are dependent. Otherwise they are independent and hence
produce different states. The complexity of the RREF algorithm is O(n3) [3].�

3 The Language

Many languages have already been proposed for quantum programming; for a
survey see [16]. Depending on the underlying model of quantum computation,
these languages are designed in different ways. In this paper, we use Selinger’s
Quantum Programming Language(QPL) [25]. This language assumes QRAM
[20] as a realistic model of quantum computation and follows the slogan of “clas-
sical control over quantum computation”. Also, QPL has a functional program-
ming style.

In the following we give the textual and structured syntax of QPL (Figure 2).
Here, we have a new type qbit which stands for qubits variables (for complete
typing rules see [25]). Furthermore, we have unitary operators on qubits and
measurements. In the case of qubits, discard x means deallocation of qubits
which we interpret as partial trace of qubits in a composite system. QPL has
many useful high-level features like recursive procedures, structured data types
and loops. We can formalise different quantum protocols as well as quantum
algorithms in QPL. For our equivalence checking, we formalise a protocol at
different levels of abstraction and then we check they are equivalent. Typically,
for each protocol we specify two quantum programs; one corresponding to its
specification and the other to its implementation.



P,Q ::= newbit b|newqbit q:=0 | discard x

skip|P;Q|q*= S|

if b then P else Q end| measure q then P else Q end |

while b do P | proc X:{P} in Q | call X

Fig. 2. QPL Syntax

Example 1. Teleportation. We have discussed this protocol in Section 2, in the
circuit model, and it is depicted in Figure 3. At the specification level, we can
think of teleportation as a protocol which transfers the state of a qubit from
Alice to Bob. At the implementation level, we apply different operations of the
protocol on Alice’s qubit and quantum resources (entangled pair) and Bob is
able to recover the state of the qubit. The specification and implementation are
shown in Figure 3.

Remark 1. This model of teleportation (circuit model and sequential QPL) does
not show the physical separation of Alice and Bob. Extending our approach to
a concurrent language with communication is a topic for future work.

program Teleportation_Specification

input q0:qbit

output q0:qbit

program Teleportation_Implementation

input q0:qbit

//Preparing EPR pair.

newqbit q1;

newqbit q2;

q1*=H;

q1q2*=CNot;

//Entangling Alice’s qubit.

q0q1*=CNot;

q0*=H;

//Alice’s Measurement and Bob’s corrections.

measure q0 then q2*=Z else q2*=I end;

measure q1 then q2*=X else q2*=I end

output q2:qbit

Fig. 3. Teleportation: Specification and Implementation



Example 2. Bit Flip Error Correction Code [23, p. 427]. In this protocol
Alice sends her qubit to Bob over a noisy channel and the effect of noise is flipping
qubits (by applying the Pauli gate X to random qubits). The implementation of
this protocol has three phases: encoding the qubit, sending it over a noisy channel
(applying random X) and recovery. The specification and implementation are
shown in Figure 4).

program Error_Correction_Specification

input q0:qbit

output q0:qbit

program Error_Correction_Implementation

input q0:qbit

//Encoding

newqbit q1; newqbit q2;

q0q1*=CNot; q0q2*=CNot;

//Random noise: either do nothing, or apply X to one of q0,q1,q2

newqbit q3; newqbit q4;

q3*=H; q4*=H;

measure q3 then {measure q4 then {q0*=X} else { } end} else end;

measure q3 then else {measure q4 then q1*=X else q2*=X end} end;

//Bob detects the error syndrome and corrects errors

newqbit q5; newqbit q6;

q0q5*=CNot; q1q5*=CNot;

q0q6*=CNot; q2q6*=CNot;

measure q5 then {measure q6 then q0*=X else q1*=X end} else end;

measure q5 then else {measure q6 then q2*=X else q0*=I end} end;

//Bob recovers Alice’s qubit

q0q1*=CNot; q0q2*=CNot;

output q0:qbit

Fig. 4. Error Correction: Specification and Implementation

The significance of QPL lies in its semantics [25]. It admits a denotational
semantics in terms of superoperators. This means that the input and output of
quantum programs can be in mixed states and the effect of executing a quantum
program can be elegantly described by a superoperator, operating on the density
matrices of the input.

Let Dn = {A ∈ Cn×n|A is positive hermitian and Tr(A)=1}. The Löwner
partial order for Dn is defined in the following way: if A v B then B − A is
positive. The domain of denotations for QPL, (Dn,v), is a poset and a complete
partial order (cpo) [25]. Now, the formal semantics of a program in QPL can
be defined by a superoperator F of the form: F : (Dn,v)→ (Dn,v). For more



details about the formal semantics, as well as a static type system for QPL and
several examples, see [25].

Remark 2. In the usual definition of density matrices we have that the trace is
equal to 1. But in [25] this has been relaxed to 6 1 in order to handle infinite
loops. However, in this version of equivalence checker we only deal with protocols
without loops, so the original definition is sufficient here.

4 The Equivalence Checker

Given QPL programs P1 and P2, representing the specification and implemen-
tation of a protocol, we want to check their equivalence: P1

∼= P2. By definition,
this means S1 = S2, where Si is the superoperator denoted by Pi.

S1 = S2 means ∀ρ.S1(ρ) = S2(ρ), where ρ ranges over all (mixed) quantum
states in the input space. By linearity, this is equivalent to ∀ρ ∈ B.S1(ρ) = S2(ρ),
where B is a basis for the input space (and we choose a basis consisting of
stabilizer states).

Because a QPL program may contain measurement operators, and quantum
measurements have probabilistic results in general, executing Pi on an input
ρ leads to a number of possible paths, ranged over by j, and the output is a
weighted sum of the final state of execution along each path:

Si(ρ) =
∑
ij

pij |ϕij〉 〈ϕij |

where the pij are probabilities.
To avoid explicitly representing and computing these weighted sums, we re-

quire (and check) that P1 and P2 define deterministic functions. This means that
for each input ρ we compute the output state Si(ρ)(j) for each branch j, and
check that they are all equal. If they are all equal then we write Si(ρ) for the
common value.

What our equivalence checker outputs, given P1 and P2, is the value of the
following (informal) expression:

∀ρ ∈ B. ∀j, k. S1(ρ)(j) = S1(ρ)(k)

∧ ∀ρ ∈ B. ∀j, k. S2(ρ)(j) = S2(ρ)(k)

∧ ∀ρ ∈ B. S1(ρ) = S2(ρ)

Let paths(P, s) denote the set of possible paths, indexed by integers from
1 upwards, when executing program P on input state s. Let StabSim(P, s, j)
denote the final state produced by the stabilizer simulation algorithm as in [1],
starting with input state s and executing path j of program P . Let EQS(v, w)
be the equality test algorithm from Section 2. Then the above procedure corre-
sponds to the algorithm in Figure 5.

Remark 3. The overall complexity of the above algorithm is O(22npoly(m+n)),
where n is the number of input qubits and m is the number of qubits inside the
programs (i.e those created by newqbit).



We have implemented our equivalence checker in Java. The compiler for the
specification language (QPL) is produced using SableCC [15]. We used a Java
implementation of Aaronson-Gottesman’s algorithm for interpreting QPL in the
stabilizer formalism [24]. The main components of our tool are the following:

– QPL parser (by specifying QPL grammer for SableCC).
– QPL Interpreter/Simulator (using stabilizer array algorithms and their im-

plementation [1, 24]).
– Basis Generator (Based on Theorem 2, generates all basis states construc-

tively)
– Equality Test for States (Based on Proposition 1).
– Quantum Measurement Scheduler (to instruct the interpreter to explore all

execution paths, arising from quantum measurements).

Remark 4. The result of our equivalence checker is whether a protocol satisfies
its specification on all inputs. Therefore, it stands as a proof of correctness of
the protocol.

for all v ∈ B do
for all i ∈ {1, 2} do
|φv

i 〉 = StabSim(Pi, v, 1)
for all j ∈ paths(Pi, v)− {1} do

if ¬EQS(StabSim(Pi, v, j), |φv
i 〉) then

return Pi non-deterministic
end if

end for
end for
if ¬EQS(|φv

1〉 , |φv
2〉) then

return P1 � P2

end if
end for
return P1

∼= P2

Fig. 5. Algorithm for checking equivalence of QPL programs.

5 Results

We now present some initial experimental results, comparing our equivalence
checking technique with the QMC model-checking system. We performed the
experiments on a 2.1 GHz Intel Dual Core machine with 3.7 GB RAM, running
Windows.

The main results use the examples from Section 3: teleportation (Figure 3)
and error-correction (Figure 4). The timings are shown in Figure 6. In both cases



Protocol equivalence checking (this paper) QMC [19, 24]

Teleportation 21 75

Quantum error correction 63 72

Fig. 6. Running times in milliseconds for equivalence checking and model-checking
(QMC) quantum protocols

our equivalence checker is faster, although the improvement is much smaller for
the error-correction example than for the teleportation example.

To observe the effect of non-determinism in quantum systems, consider the
simple QPL program in Figure 7, which simulates a coin-toss by using the ran-
dom results of measuring a quantum superposition. If the input state is such

program Simple-Coin-Toss_Specification

input q0:qbit

output q0:qbit

program Simple-Coin-Toss_Implementation

input q0:qbit

//Applying H to q0 creates a superposition in some cases

q0*=H;

measure q0 then q0*=I else q0*=I end

output q0:qbit

Fig. 7. Simple-Coin-toss: Implementation

that applying H produces a superposition state, then the measurement has two
possible outcomes which occur with equal probability. The output of this pro-
gram is therefore not a deterministic function of its input, and so it is rejected by
our equivalence checker, independently of the specification program. Detecting
non-determinism of this example takes 14ms.

6 Related work

The most closely related work is the QMC system [19, 24], with which we com-
pared our equivalence checker in Section 5. Both QMC and our equivalence
checker are based on the stablizer formalism. There are two main differences.
First, QMC uses a more general modelling language which supports concurrency
and synchronous communication on channels. Extending our system to a con-
current language is a topic for future work. Second, QMC is property-oriented,
using Exogenous Quantum Propositional Logic (EQPL) [22] and its temporal ex-
tension Quantum Computation Tree Logic (QCTL) [4] to express specifications.



However, the existing applications of QMC have not used the full power of these
logics.

Recently, Feng et al. [13] have studied model checking of quantum systems
using quantum Markov chains. In their setting, a transition system is deter-
mined by set of states consisting of density matrices and transitions in terms of
superoperators. They considered model checking of an extension of CTL to the
quantum case, using quantum Markov chains. In particular, in the presence of
maximal entanglement, they need to compute accumulated superoperators [13]
from Markov chains. Their paper establishes the foundations for an approach to
quantum model checking but we are not aware that they have implemented it.

An alternative style of modelling language is given by quantum process cal-
culus, which has been developed by Gay and Nagarajan [18] (CQP) and Ying
et al. [27] (qCCS). Bisimulation-based equivalences have been studied by David-
son [10] for CQP and by Feng et al. [14] for qCCS. These equivalences provide
a foundation for process-oriented specification and verification of quantum sys-
tems, but they have not yet been developed into tools.

For synthesis of quantum circuits, Hayes et al. [26] introduced Quantum
Information Decision Diagrams (QUIDD), which extend Binary Decision Dia-
grams(BDD) [9] to the representation and evaluation of quantum circuits. This
technique has been implemented in a tool called QuIDD Pro [26] and applied
to many examples. The input of QuIDD Pro is a quantum circuit which is then
represented by a QUIDD. This is in contrast with QMC and our approach, which
use higher level modelling languages amenable to programming.

Abramsky and Coecke [2] started an extensive line of research on a graphi-
cal calculus for reasoning about quantum protocols. Diagrammatic reasoning is
supported by an underlying categorical semantics. By using graph rewriting tech-
niques, this idea has been implemented in the tool Quantomatic [12]. We have
not compared execution times between Quantomatic and our system, because
the input formats are so different (textual vs. graphical). A detailed comparison
of the Quantomatic approach and our approach would be an interesting topic
for future work.

Belardinelli et al. [5] introduced a technique for the verification of quantum
protocols using a classical model checker for multi-agent systems, MCMAS [21].
They used the framework of D’Hondt and Panangaden [11] to specify protocols
with respect to epistemic properties, implemented a compiler to translate the
epistemic description of protocols to the input language of MCMAS. However,
their technique represents quantum states by their matrix representation, which
imposes scalability restrictions, and it also does not support classical control flow
in the protocols.

7 Conclusion and Future Work

We have demonstrated a new approach to the verification of quantum protocols
by equivalence checking. We used the stabilizer formalism and its efficient algo-
rithms to represent and manipulate quantum states. This enabled us to develop



an equivalence checker for quantum protocols. Using Theorem 2, we were able to
take the further step to prove the correctness of protocols for all inputs, not just
inputs that are stabilizer states. This provides stronger results than the original
conclusions from the stabilizer-based model-checking system QMC, when speci-
fications are expressed in terms of input/output behaviour. Our implementation
is also faster than QMC on the examples that we have tested.

There is an important point to make in comparison with QMC. QMC does
not require a program to denote a determinstic function, so it is more general,
and in cases in which the program is not a deterministic function, the fact that
QMC checks it on all stabilizer states as inputs can be interpreted as evidence
for correctness. By Theorem 2, in cases when the program is a deterministic
function, our equivalence checker gives a guarantee of correctness for all inputs.
This result can be retrospectively applied to some QMC verifications, including
the examples from Section 5, and could be used to speed up QMC.

The main area for future work is the extension of our techniques to concurrent
systems. The idea is to allow a system to be constructed from communicating
concurrent components, but still require its overall input/output behaviour to
be a deterministic function. This requires extension of the syntax of QPL to a
concurrent language, and an argument that every possible interleaving gives a se-
quentialized system which still has a superoperator semantics and can therefore
be analyzed by the same techniques that we have used in this paper. Extending
our language and system in this way will support more realistic models of quan-
tum protocols, in which the participants are represented by separate concurrent
processes and communication is explicit.

Because we are working within the stabilizer formalism, we can only ana-
lyze protocols whose operations are restricted to those allowed in the stabilizer
formalism (Theorem 1). There are techniques for extending the stabilizer formal-
ism to a limited number of more general operations and states (for example, [1])
and we would like to investigate those techniques in the context of our equiv-
alence checker. Finally, there is scope for extending the classical aspects of our
modelling language and for improving the efficiency of the tool.

Acknowledgement. We would like to thank Nick Papanikolaou for useful discus-
sions and for making the source code of QMC available.
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