An Integer Programming Formulation for a Matching Problem

David Manlove, Duncan Milne and Sofiat Olaosebikan

School of Computing Science, University of Glasgow

BCTCS 2018, Royal Holloway, University of London
March 28, 2018

Outline

(1) Introduction

- Matching Problems
- Student-Project Allocation problem (SPA)
- SPA with preferences over Projects (SPA-P)
- The problem: MAX-SPA-P
(2) An Integer Programming (IP) model for MAX-SPA-P
(3) Experimental results
(4) Discussions and Future work

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
- for example, the capacity of the agents

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
- for example, the capacity of the agents

Example applications include

- allocation of junior doctors to hospitals

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
- for example, the capacity of the agents

Example applications include

- allocation of junior doctors to hospitals
- assigning conference papers to reviewers

Matching Problems

This class of problem generally involves

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
- for example, the capacity of the agents

Example applications include

- allocation of junior doctors to hospitals
- assigning conference papers to reviewers
- assigning students to projects

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
- students (SPA-S), or

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
- students (SPA-S), or
- projects (SPA-P), or

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
- students (SPA-S), or
- projects (SPA-P), or
- student-project pairs (SPA-(S,P))

Student-Project Allocation Problem (SPA)

SPA involves

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
- students (SPA-S), or
- projects (SPA-P), or
- student-project pairs (SPA-(S,P))

SPA with preferences over Projects (SPA-P)

Students' preferences	Lecturers' preferences	
$s_{1}: p_{3}$	$p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}:$	p_{1}	p_{2}

SPA with preferences over Projects (SPA-P)

What we seek...

- a matching of students to projects based on these preferences

SPA with preferences over Projects (SPA-P)

Students' preferences	Lecturers' preferences	
$s_{1}: p_{3}$	$p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}:$	p_{1}	p_{2}

What we seek...

- a matching of students to projects based on these preferences - each student is not assigned more than one project

SPA with preferences over Projects (SPA-P)

Students' preferences	Lecturers' preferences		
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	$l_{1}: p_{1} p_{2}$
$s_{3}:$	p_{3}	$l_{2}: p_{3}$	
		Project capacities: $c_{1}=c_{2}=c_{3}=1$.	
Lecturer capacities: $d_{1}=2, d_{2}=1$.			

What we seek...

- a matching of students to projects based on these preferences
- each student is not assigned more than one project
- capacities of projects and lecturers are not exceeded

A matching..

Students' preferences	Lecturers' preferences
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1}$	p_{2}
$s_{3}: p_{3}$	
Project capacities: $c_{1}=c_{2}=c_{3}=1$.	
Lecturer capacities: $d_{1}=2, d_{2}=1$.	

A matching..

Students' preferences
$s_{1}: p_{3} p_{2} p_{2} p_{1}$
$s_{3}: \quad p_{3}$

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

however,

- s_{2} would prefer to be assigned p_{1}

A matching..

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$
Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

however,

- s_{2} would prefer to be assigned p_{1}
- this means l_{1} also gets her most preferred project

A matching..

Students' preferences
$s_{1}: p_{3} p_{2} p_{1}$
$s_{2}: p_{1} p_{2}$
$s_{3}: \quad p_{3}$

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$
Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

however,

- s_{2} would prefer to be assigned p_{1}
- this means l_{1} also gets her most preferred project
- we call $\left(s_{2}, p_{1}\right)$ a blocking pair

Definition: Blocking Pair

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:
(1) either s_{i} is unassigned in M or s_{i} prefers p_{j} to $M\left(s_{i}\right)$, and

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:
(1) either s_{i} is unassigned in M or s_{i} prefers p_{j} to $M\left(s_{i}\right)$, and
(2) p_{j} is undersubscribed in M, and either

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:
(1) either s_{i} is unassigned in M or s_{i} prefers p_{j} to $M\left(s_{i}\right)$, and
(2) p_{j} is undersubscribed in M, and either
(i) $s_{i} \in M\left(l_{k}\right)$ and l_{k} prefers p_{j} to $M\left(s_{i}\right)$, or

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:
(1) either s_{i} is unassigned in M or s_{i} prefers p_{j} to $M\left(s_{i}\right)$, and
(2) p_{j} is undersubscribed in M, and either
(i) $s_{i} \in M\left(l_{k}\right)$ and l_{k} prefers p_{j} to $M\left(s_{i}\right)$, or
(ii) $s_{i} \notin M\left(l_{k}\right)$ and l_{k} is undersubcribed, or

Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair $\left(s_{i}, p_{j}\right)$ forms a blocking pair relative to M, where l_{k} is the lecturer who offers p_{j}, if:
(1) either s_{i} is unassigned in M or s_{i} prefers p_{j} to $M\left(s_{i}\right)$, and
(2) p_{j} is undersubscribed in M, and either
(i) $s_{i} \in M\left(l_{k}\right)$ and l_{k} prefers p_{j} to $M\left(s_{i}\right)$, or
(ii) $s_{i} \notin M\left(l_{k}\right)$ and l_{k} is undersubcribed, or
(iii) $s_{i} \notin M\left(l_{k}\right)$ and l_{k} prefers p_{j} to her worst non-empty project in $M\left(l_{k}\right)$.

Another matching..

Another matching..

Project capacities: $c_{1}=c_{2}=c_{3}=1$. Lecturer capacities: $d_{1}=2, d_{2}=1$.

- s_{1} and s_{2} would rather swap their assigned projects, in order to be better off

Another matching..

Project capacities: $c_{1}=c_{2}=c_{3}=1$. Lecturer capacities: $d_{1}=2, d_{2}=1$.

- s_{1} and s_{2} would rather swap their assigned projects, in order to be better off
- we call $\left\{s_{1}, s_{2}\right\}$ a coalition

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

(55)
(st)

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

(55)
(st)

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

Definition: Coalition

Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, \ldots, s_{i_{r-1}}\right\}$, for some $r \geq 2$ such that each student $s_{i_{j}}(0 \leq j \leq r-1)$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where addition is performed modulo r.

The type of matching we seek..

The type of matching we seek..

Stable matchings

- one with no blocking pair and no coalition

Image adapted from https://bit.ly/2uBuuAO (last accessed 28 March 2018).

Stable matchings..

A stable matching

Students' preferences	Lecturers' preferences
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$

- 2 students are matched

Stable matchings..

A stable matching

Students' preferences
$s_{1}: p_{3} p_{2} p_{1}$
$s_{2}: p_{1} p_{2}$
$s_{3}: \quad p_{3}$

- 2 students are matched

Another stable matching

Students' preferences

$s_{2}: p_{1} p_{2}$
$s_{3}: p_{3}$

- 3 students are matched
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$

Maximum cardinality stable matching

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)

Maximum cardinality stable matching

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Maximum cardinality stable matching

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Maximum cardinality stable matching

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12 ,

- 2-approximation algorithm ${ }^{a}$, i.e., solution at least $\frac{1}{2} M=6$

Maximum cardinality stable matching

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12 ,

- 2-approximation algorithm ${ }^{a}$, i.e., solution at least $\frac{1}{2} M=6$
- $\frac{3}{2}$-approximation algorithm ${ }^{b}$, i.e., solution at least $\frac{2}{3} M=8$
- not approximable within $\frac{21}{19}-\epsilon$, for any $\epsilon>0$, unless $P=N P$

[^0]
An Integer Programming (IP) model for MAX-SPA-P

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
(1) find a matching;

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
(1) find a matching;
(2) ensure matching does not admit a blocking pair;

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
(1) find a matching;
(2) ensure matching does not admit a blocking pair;
(3) ensure matching does not admit a coalition;

An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
(1) find a matching;
(2) ensure matching does not admit a blocking pair;
(3) ensure matching does not admit a coalition;
- describe an objective function to maximise the size of the matching.

Encoding the binary-valued variables

Students' preferences	Lecturers' preferences		
$s_{1}: p_{3}$	$p_{2} p_{1}$		
$s_{2}:$	p_{1}	$p_{2} \quad l$	l
:---			

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

Encoding the binary-valued variables

Students' preferences	Lecturers' preferences
$s_{1}: p_{3}$	$p_{2} p_{1}$
$s_{2}:$	$p_{1}: p_{2}$
$s_{3}:$	p_{3}

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

$$
x_{1,3} \quad x_{1,2} \quad x_{1,1}
$$

Encoding the binary-valued variables

Students' preferences	Lecturers' preferences	
$s_{1}: p_{3}$	$p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}:$	p_{1}	p_{2}

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

$$
\begin{array}{ccc}
x_{1,3} & x_{1,2} & x_{1,1} \\
\Downarrow & &
\end{array}
$$

$=1$, then s_{1} is assigned to p_{3}

Encoding the binary-valued variables

Students'			
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	
$s_{3}:$	p_{3}		

Lecturers' preferences
$l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

$$
\begin{array}{cll}
x_{1,3} & x_{1,2} & x_{1,1} \\
\Downarrow & &
\end{array}
$$

$=1$, then s_{1} is assigned to p_{3}
$=0$, then s_{1} is not assigned to p_{3}

Encoding the binary-valued variables

Students'			
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	
$s_{3}:$	p_{3}		

Lecturers' preferences
$l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

$$
\begin{array}{ccc}
x_{1,3} \\
\Downarrow & x_{1,2} & x_{1,1} \\
\end{array}
$$

$=1$, then s_{1} is assigned to p_{3}
$=0$, then s_{1} is not assigned to p_{3}
$x_{2,1} \quad x_{2,2}$

Encoding the binary-valued variables

Students' preferences	Lecturers' preferences			
$s_{1}:$	p_{3}	$p_{2} p_{1}$		
$s_{2}:$	p_{1}	p_{2}	\quad	$l_{1}: p_{1} p_{2}$
:---				
$s_{3}:$				
l_{3}	\quad	$l_{2}: p_{3}$		
:---				

We encode each $\left(s_{i}, p_{j}\right)$ as a variable $x_{i, j} \in\{0,1\}$

$x_{1,3} \quad x_{1,2} \quad x_{1,1}$
\Downarrow

$=1$, then s_{1} is assigned to p_{3}
$=0$, then s_{1} is not assigned to p_{3}
$x_{2,1} \quad x_{2,2}$
$x_{3,3}$

Matching Constraints

Students' preferences	Lecturers' preferences
$s_{1}: p_{3} \quad p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} \quad p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

Matching Constraints

Students' preferences	Lecturers' preferences
$s_{1}: \quad p_{3} \quad p_{2} \quad p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: \quad p_{1} \quad p_{2}$	$l_{2}: \quad p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

Matching Constraints

Students'			
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	
$s_{3}:$	p_{3}		

Lecturers' preferences
$l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

$$
\sum_{p_{j} \in A_{i}} x_{i, j} \leq 1 \quad\left(1 \leq i \leq n_{1}\right)
$$

$$
\Longrightarrow
$$

Matching Constraints

Students' prefer			
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	
$s_{3}:$	p_{3}		

Lecturers' preferences $l_{1}: \quad p_{1} p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

$$
\sum_{n \in A} x_{i, j} \leq 1 \quad\left(1 \leq i \leq n_{1}\right), \quad \Longrightarrow x_{1,3}+x_{1,2}+x_{1,1} \leq 1
$$

Matching Constraints

Students' prefer			
$s_{1}:$	p_{3}	p_{2}	p_{1}
$s_{2}:$	p_{1}	p_{2}	
$s_{3}:$	p_{3}		

Lecturers' preferences $l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

$$
\sum_{n_{i} \in A} x_{i, j} \leq 1 \quad\left(1 \leq i \leq n_{1}\right), \quad \Longrightarrow x_{1,3}+x_{1,2}+x_{1,1} \leq 1
$$

- capacities of projects are not exceeded

Matching Constraints

Students' preferences
$s_{1}: \quad p_{3} \quad p_{2} \quad p_{1}$
$s_{2}: \quad p_{1} \quad p_{2}$
$s_{3}: p_{3}$

Lecturers' preferences $l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: \quad p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

$$
\sum_{p_{j} \in A_{i}} x_{i, j} \leq 1 \quad\left(1 \leq i \leq n_{1}\right), \quad \Longrightarrow x_{1,3}+x_{1,2}+x_{1,1} \leq 1
$$

- capacities of projects are not exceeded

$$
\sum_{i=1}^{n_{1}} x_{i, j} \leq c_{j}, \quad\left(1 \leq j \leq n_{2}\right)
$$

Matching Constraints

Students' preferences
$s_{1}: \quad p_{3} \quad p_{2} \quad p_{1}$
$s_{2}: \quad p_{1} \quad p_{2}$
$s_{3}: \quad p_{3}$

Lecturers' preferences $l_{1}: \quad p_{1} \quad p_{2}$
$l_{2}: p_{3}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

- each student is not assigned more than one project

$$
\sum_{p_{j} \in A_{i}} x_{i, j} \leq 1 \quad\left(1 \leq i \leq n_{1}\right), \quad \Longrightarrow \quad x_{1,3}+x_{1,2}+x_{1,1} \leq 1
$$

- capacities of projects are not exceeded

$$
\sum_{i=1}^{n_{1}} x_{i, j} \leq c_{j}, \quad\left(1 \leq j \leq n_{2}\right) \quad \Longrightarrow \quad x_{1,1}+x_{2,1} \leq 1
$$

Matching Constraints..

- capacities of lecturers are not exceeded

Matching Constraints..

| Students' preferences | Lecturers' preferences | |
| :--- | :---: | :---: | :---: |
| $s_{1}:$ | $p_{3} \quad p_{2} p_{1}$ | $l_{1}: p_{1} p_{2}$ |
| $s_{2}:$ | $p_{1} p_{2}$ | $l_{2}: p_{3}$ |
| $s_{3}:$ | p_{3} | |
| | | |
| | | Project capacities: $c_{1}=c_{2}=c_{3}=1$. |
| Lecturer capacities: $d_{1}=2, d_{2}=1$. | | |

- capacities of lecturers are not exceeded

$$
\sum_{i=1}^{n_{1}} \sum_{p_{j} \in P_{k}} x_{i, j} \leq d_{k} \quad\left(1 \leq k \leq n_{3}\right)
$$

Matching Constraints..

Students' preferences	Lecturers' preferences	
$s_{1}:$	$p_{3} \quad p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}:$	p_{1}	p_{2}
$s_{3}:$	p_{3}	$l_{2}: p_{3}$
		Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.		

- capacities of lecturers are not exceeded

$$
\begin{aligned}
\sum_{i=1}^{n_{1}} \sum_{p_{j} \in P_{k}} x_{i, j} & \leq d_{k} \quad\left(1 \leq k \leq n_{3}\right) \\
& \Longrightarrow x_{1,2}+x_{1,1}+x_{2,1}+x_{2,2} \leq 2
\end{aligned}
$$

Blocking pair constraints

Blocking pair constraints

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

Blocking pair constraints

Students' preferences
$s_{1}: p_{3} p_{2} p_{1}$
$s_{2}: p_{1} p_{2}$
$s_{3}:$
p_{3}

Lecturers' preferences

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}}$

Blocking pair constraints

Students' preferences	Lecturers' pren
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.

Blocking pair constraints

Students' preferences	Lecturers' p
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j}$

Blocking pair constraints

Students' preferences	Lecturers' p
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.

Blocking pair constraints

Students' preferences	Lecturers' p
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}}$;

Blocking pair constraints

Students' preferences	Lecturers' p
$s_{1}: p_{3} p_{2} p_{1}$	$l_{1}: p_{1} p_{2}$
$s_{2}: p_{1} p_{2}$	$l_{2}: p_{3}$
$s_{3}: p_{3}$	

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}} ; \quad T_{1,1}=\left\{p_{2}\right\}$

Blocking pair constraints

Lecturers' preferences
$l_{1}: p_{1} p_{2}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}} ; \quad T_{1,1}=\left\{p_{2}\right\} \Longrightarrow \gamma_{2,1,1}=x_{2,2}=1$.

Blocking pair constraints

Lecturers' preferences
$l_{1}: p_{1} p_{2}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}} ; \quad T_{1,1}=\left\{p_{2}\right\} \Longrightarrow \gamma_{2,1,1}=x_{2,2}=1$.
(i) $\theta_{i, j}+\alpha_{j}+\gamma_{i, j, k} \leq 2$;

Blocking pair constraints

Students' prefe
$s_{1}: p_{3} p_{2} p_{1}$
$s_{2}: p_{1} p_{2}$
$s_{3}: p_{3}$

Lecturers' preferences
$l_{1}: p_{1} p_{2}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}} ; \quad T_{1,1}=\left\{p_{2}\right\} \Longrightarrow \gamma_{2,1,1}=x_{2,2}=1$.
(i) $\theta_{i, j}+\alpha_{j}+\gamma_{i, j, k} \leq 2$;
(ii) $\theta_{i, j}+\alpha_{j}+\left(1-\beta_{i, k}\right)+\delta_{k} \leq 3$;

Blocking pair constraints

Lecturers' preferences $l_{1}: p_{1} p_{2}$

Project capacities: $c_{1}=c_{2}=c_{3}=1$.
Lecturer capacities: $d_{1}=2, d_{2}=1$.

For each $\left(s_{i}, p_{j}\right)$, where l_{k} is the lecturer who offers p_{j}, we

- define $\theta_{i, j}=1-\sum_{p_{j^{\prime}} \in S_{i, j}} x_{i, j^{\prime}} \Longrightarrow \theta_{2,1}=1-x_{2,1}=1$.
- create $\alpha_{j} \in\{0,1\}$, enforce $c_{j} \alpha_{j} \geq c_{j}-\sum_{i^{\prime}=1}^{n_{1}} x_{i^{\prime}, j} \Longrightarrow \alpha_{1}=1$.
- define $\gamma_{i, j, k}=\sum_{p_{j^{\prime}} \in T_{k, j}} x_{i, j^{\prime}} ; \quad T_{1,1}=\left\{p_{2}\right\} \Longrightarrow \gamma_{2,1,1}=x_{2,2}=1$.
(i) $\theta_{i, j}+\alpha_{j}+\gamma_{i, j, k} \leq 2$;
(ii) $\theta_{i, j}+\alpha_{j}+\left(1-\beta_{i, k}\right)+\delta_{k} \leq 3$;
(iii) $\theta_{i, j}+\alpha_{j}+\left(1-\beta_{i, k}\right)+\eta_{j, k} \leq 3$.

Coalition constraints

Coalition constraints

Envy graph

Coalition constraints

Envy graph

53
(s1)
s2)

Coalition constraints

Envy graph

Coalition constraints

Students' preferences	Lecturers' preferences
$s_{1}: p_{3}$	p_{2}
$s_{2}: p_{1}$	$p_{1}: p_{2}$
$s_{3}: p_{3}$	$l_{2}: p_{3}$

Envy graph

Coalition constraints

Students' preferences	Lecturers' preferences
$s_{1}: p_{3}$	p_{2}
$s_{2}:$	p_{1}
$s_{3}:$	p_{2}

Envy graph

Coalition constraints

Students' preferences

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$

Envy graph

- admits topological ordering \Longrightarrow it is acyclic \Longrightarrow no coalition.

Coalition constraints

Students' preferences

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$

Envy graph

- admits topological ordering \Longrightarrow it is acyclic \Longrightarrow no coalition.
- For each $\left(s_{i}, s_{i^{\prime}}\right)$, if s_{i} envies $s_{i^{\prime}}$, create $e_{i, i^{\prime}} \in\{0,1\}$ and enforce

$$
\text { - } e_{i, i^{\prime}}+1 \geq x_{i, j}+x_{i^{\prime}, j^{\prime}} \quad i \neq i^{\prime}
$$

Coalition constraints

Students' preferences

Lecturers' preferences
$l_{1}: p_{1} p_{2}$
$l_{2}: p_{3}$

Envy graph

- admits topological ordering \Longrightarrow it is acyclic \Longrightarrow no coalition.
- For each $\left(s_{i}, s_{i^{\prime}}\right)$, if s_{i} envies $s_{i^{\prime}}$, create $e_{i, i^{\prime}} \in\{0,1\}$ and enforce

$$
\text { - } e_{i, i^{\prime}}+1 \geq x_{i, j}+x_{i^{\prime}, j^{\prime}} \quad i \neq i^{\prime}
$$

- to hold the label of each vertex in the topological ordering, create an integer-valued variable v_{i} and enforce
- $v_{i}<v_{i^{\prime}}+n_{1}\left(1-e_{i, i^{\prime}}\right) \quad n_{1}$ - number of students.

Objective function

Objective function

- summation of all the $x_{i, j}$ binary variables

$$
\max \sum_{i=1}^{n_{1}} \sum_{p_{j} \in A_{i}} x_{i, j}
$$

Objective function

- summation of all the $x_{i, j}$ binary variables

$$
\max \sum_{i=1}^{n_{1}} \sum_{p_{j} \in A_{i}} x_{i, j}
$$

- it seeks to maximise the number of students assigned to projects

Objective function

- summation of all the $x_{i, j}$ binary variables

$$
\max \sum_{i=1}^{n_{1}} \sum_{p_{j} \in A_{i}} x_{i, j}
$$

- it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of SPA-P, there exists an IP formulation J of I such that an optimal solution in J corresponds to a maximum stable matching in I, and vice-versa.

Implementation and Experimental Setup

Implementation and Experimental Setup

- IP model was implemented using the Gurobi optimisation solver - www.gurobi.com

Implementation and Experimental Setup

- IP model was implemented using the Gurobi optimisation solver
- www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed

Implementation and Experimental Setup

- IP model was implemented using the Gurobi optimisation solver
- www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
- with the coalition constraints (63.50 seconds)
- without the coalition constraints (2.61 seconds)

Implementation and Experimental Setup

- IP model was implemented using the Gurobi optimisation solver
- www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
- with the coalition constraints (63.50 seconds)
- without the coalition constraints (2.61 seconds)
- size of a maximum stable matching = size of a matching that admits no blocking pair, but potentially admits a coalition

Implementation and Experimental Setup

- IP model was implemented using the Gurobi optimisation solver
- www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
- with the coalition constraints (63.50 seconds)
- without the coalition constraints (2.61 seconds)
- size of a maximum stable matching = size of a matching that admits no blocking pair, but potentially admits a coalition
- for the purpose of this experiment, we removed the coalition constraints from our IP solver

Experimental results: Randomly-generated SPA-P instances

Experimental results: Randomly-generated SpA-P instances

Experimental results: spA-p instances derived from real datasets

Experimental results: spA-p instances derived from real datasets

- actual student preference data from previous runs of project allocation in the School of Computing Science, University of Glasgow; lecturer preference data was derived from this information

Experimental results: spA-p instances derived from real

 datasets- actual student preference data from previous runs of project allocation in the School of Computing Science, University of Glasgow; lecturer preference data was derived from this information

					Random					Most popular					Least popular				
Year	n_{1}	n_{2}	n_{3}	l	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E
2014	55	149	38	6	55	55	55	54	\|53	55	55	55	54	50	55	55	55	54	52
2015	76	197	46	6	76	76	76	76	72	76	76	76	76	72	76	76	76	76	5
2016	92	214	44		84	82	83	77	75	85	85	83	79	76	82	80	77	76	74
2017	90	289	59	4	89	87	85	80	76	90	89	86	81	79	88	85	84	80	77

Table 1: A, B, C, D and E denotes the solution obtained from the IP model, 100 runs of $\frac{3}{2}$-approximation algorithm, single run of $\frac{3}{2}$-approximation algorithm, 100 runs of 2 -approximation algorithm, and single run of 2 -approximation algorithm respectively. Also, n_{1}, n_{2}, n_{3} and l is number of students, number of projects, number of lecturers and length of the students' preference lists respectively.

Discussions and Conclusions

Discussions and Conclusions

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$-approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run

Discussions and Conclusions

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$-approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)

Discussions and Conclusions

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$-approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)
- IP model can be employed in practice

Discussions and Conclusions

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$-approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)
- IP model can be employed in practice
- potential coalitions can subsequently be dealt with in polynomial-time

Future work

Interesting directions..

Future work

Interesting directions..

- Approximation algorithm with improved bounds?

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity 1

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length x

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length x
- what if there is a constant number of lecturer?

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length X
- what if there is a constant number of lecturer?
- might be solvable in polynomial-time with one lecturer?

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length X
- what if there is a constant number of lecturer?
- might be solvable in polynomial-time with one lecturer?
- remains hard to solve with two lecturers, even if each project has capacity 1

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length X
- what if there is a constant number of lecturer?
- might be solvable in polynomial-time with one lecturer?
- remains hard to solve with two lecturers, even if each project has capacity $1 \checkmark$

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length X
- what if there is a constant number of lecturer? X
- might be solvable in polynomial-time with one lecturer?
- remains hard to solve with two lecturers, even if each project has capacity $1 \checkmark$

Future work

Interesting directions..

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
- each project and lecturer has capacity $1 X$
- all preference lists are of bounded length X
- what if there is a constant number of lecturer? X
- might be solvable in polynomial-time with one lecturer?
- remains hard to solve with two lecturers, even if each project has capacity $1 \checkmark$
- more parameters yet to be explored..

Thank you for your attention

David Manlove ${ }^{1}$, Duncan Milne and Sofiat Olaosebikan ${ }^{2}$. An Integer Programming Approach to the Student-Project Allocation Problem with Preferences over Projects. To appear in proceedings of ISCO 2018: the 5th International Symposium on Combinatorial Optimisation, Lecture Notes in Computer Science, Springer, 2018.

Corresponding author: Sofiat Olaosebikan
Website: www.dcs.gla.ac.uk/~sofiat
Email: s.olaosebikan.1@research.gla.ac.uk

[^1]
[^0]: ${ }^{a}$ D.F. Manlove and G. O'Malley. Student project allocation with preferences over projects. Journal of Discrete Algorithms, 6:553-560, 2008
 ${ }^{b}$ K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the student-project allocation problem with preferences over projects. Journal of Discrete Algorithms, 13:59-66, 2012.

[^1]: ${ }^{1}$ Supported by grant EP/P028306/1 from the Engineering and Physical Sciences Research Council.
 ${ }^{2}$ Supported by a College of Science and Engineering Scholarship, University of Glasgow.

