

An Integer Programming Formulation for a Matching Problem

David Manlove, Duncan Milne and Sofiat Olaosebikan

School of Computing Science, University of Glasgow

BCTCS 2018, Royal Holloway, University of London

March 28, 2018

D. Manlove, D. Milne, S. Olaosebikan

sale in a lit

26

Outline

1 Introduction

- Matching Problems
- Student-Project Allocation problem (SPA)
- SPA with preferences over Projects (SPA-P)
- The problem: MAX-SPA-P

2 An Integer Programming (IP) model for MAX-SPA-P

3 Experimental results

4 Discussions and Future work

• assigning a set of agents to another set of agents

- assigning a set of agents to another set of agents
- based on the preferences of the agents

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
 - for example, the capacity of the agents

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
 - for example, the capacity of the agents

Example applications include

• allocation of junior doctors to hospitals

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
 - for example, the capacity of the agents

Example applications include

- allocation of junior doctors to hospitals
- assigning conference papers to reviewers

- assigning a set of agents to another set of agents
- based on the preferences of the agents
- and some problem-specific constraints
 - for example, the capacity of the agents

Example applications include

- allocation of junior doctors to hospitals
- assigning conference papers to reviewers
- assigning students to projects

Student-Project Allocation Problem (SPA)

SPA involves

• the assignment of students to projects offered by lecturers

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
 - students (SPA-S), or

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
 - students (SPA-S), or
 - projects (SPA-P), or

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
 - students (SPA-S), or
 - projects (SPA-P), or
 - student-project pairs (SPA-(S,P))

- the assignment of students to projects offered by lecturers
- based on the capacities of projects and lecturers
- students' preferences over projects
- lecturers' preferences over
 - students (SPA-S), or
 - projects (SPA-P), or
 - student-project pairs (SPA-(S,P))

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	$egin{array}{cccc} l_1\colon & p_1 & p_2 \ l_2\colon & p_3 \end{array}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	v_2 . p_3
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

What we seek...

• a *matching* of students to projects based on these preferences

Students' preferences	Lecturers' preferences
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} l_1\colon & p_1 & p_2 \ l_2\colon & p_3 \end{array}$
$s_{3}: p_{3}$	
	Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

What we seek...

• a *matching* of students to projects based on these preferences

• each student is not assigned more than one project

Students' preferences	Lecturers' preferences
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} l_1\colon & p_1 & p_2 \ l_2\colon & p_3 \end{array}$
$s_3: p_3$	Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

What we seek...

• a *matching* of students to projects based on these preferences

- each student is not assigned more than one project
- capacities of projects and lecturers are not exceeded

however,

• s_2 would prefer to be assigned p_1

however,

- s_2 would prefer to be assigned p_1
- this means l_1 also gets her most preferred project

however,

- s_2 would prefer to be assigned p_1
- this means l_1 also gets her most preferred project
- we call (s_2, p_1) a blocking pair

Definition: Blocking Pair

• either s_i is unassigned in M or s_i prefers p_j to $M(s_i)$, and

• either s_i is unassigned in M or s_i prefers p_j to $M(s_i)$, and

2 p_j is undersubscribed in M, and either

- either s_i is unassigned in M or s_i prefers p_j to $M(s_i)$, and
- **2** p_j is undersubscribed in M, and either
 - (i) $s_i \in M(l_k)$ and l_k prefers p_j to $M(s_i)$, or

- either s_i is unassigned in M or s_i prefers p_j to $M(s_i)$, and
- **2** p_j is undersubscribed in M, and either
 - (i) $s_i \in M(l_k)$ and l_k prefers p_j to $M(s_i)$, or
 - (ii) $s_i \notin M(l_k)$ and l_k is undersubcribed, or

- either s_i is unassigned in M or s_i prefers p_j to $M(s_i)$, and
- **2** p_j is undersubscribed in M, and either
 - (i) $s_i \in M(l_k)$ and l_k prefers p_j to $M(s_i)$, or
 - (ii) $s_i \notin M(l_k)$ and l_k is undersubcribed, or
 - (iii) $s_i \notin M(l_k)$ and l_k prefers p_j to her worst non-empty project in $M(l_k)$.

• s_1 and s_2 would rather swap their assigned projects, in order to be better off

- s_1 and s_2 would rather swap their assigned projects, in order to be better off
- we call $\{s_1, s_2\}$ a coalition

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \geq 2$ such that each student s_{i_j} $(0 \leq j \leq r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Definition: Coalition

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \geq 2$ such that each student s_{i_j} $(0 \leq j \leq r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \ge 2$ such that each student s_{i_j} $(0 \le j \le r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \ge 2$ such that each student s_{i_j} $(0 \le j \le r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \geq 2$ such that each student s_{i_j} $(0 \leq j \leq r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \geq 2$ such that each student s_{i_j} $(0 \leq j \leq r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

Given a matching M, a coalition is a set of students $\{s_{i_0}, \ldots, s_{i_{r-1}}\}$, for some $r \ge 2$ such that each student s_{i_j} $(0 \le j \le r-1)$ is assigned in Mand prefers $M(s_{i_{j+1}})$ to $M(s_{i_j})$, where addition is performed modulo r.

D. Manlove, D. Milne, S. Olaosebikan

The type of matching we seek..

Stable matchings

• one with no blocking pair and no coalition

Image adapted from https://bit.ly/2uBuuAO (last accessed 28 March 2018).

Stable matchings..

A stable matching

Stable matchings..

A stable matching

• 2 students are matched

Another stable matching

26

Another problem..

• finding a maximum cardinality stable matching (MAX-SPA-P)

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

• 2-approximation algorithm^{*a*}, i.e., solution at least $\frac{1}{2}M = 6$

Another problem..

- finding a maximum cardinality stable matching (MAX-SPA-P)
- MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

- 2-approximation algorithm^{*a*}, i.e., solution at least $\frac{1}{2}M = 6$
- $\frac{3}{2}$ -approximation algorithm^b, i.e., solution at least $\frac{2}{3}M = 8$
 - not approximable within $\frac{21}{19} \epsilon$, for any $\epsilon > 0$, unless P = NP

^aD.F. Manlove and G. O'Malley. Student project allocation with preferences over projects. Journal of Discrete Algorithms, 6:553–560, 2008

^bK. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the student-project allocation problem with preferences over projects. Journal of Discrete Algorithms, 13:59–66, 2012.

A general construction of our IP model

• create binary-valued variables to represent the assignment of students to projects;

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
 - find a matching;

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
 - **1** find a matching;
 - 2 ensure matching does not admit a blocking pair;

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
 - **1** find a matching;
 - 2 ensure matching does not admit a blocking pair;
 - **3** ensure matching does not admit a coalition;

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
 - **1** find a matching;
 - 2 ensure matching does not admit a blocking pair;
 - **3** ensure matching does not admit a coalition;
- describe an objective function to maximise the size of the matching.

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

We encode each (s_i, p_j) as a variable $x_{i,j} \in \{0, 1\}$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
$s_3: p_3$	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

We encode each (s_i, p_j) as a variable $x_{i,j} \in \{0, 1\}$ $x_{1,3}$ $x_{1,2}$ $x_{1,1}$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

We encode each
$$(s_i, p_j)$$
 as a variable $x_{i,j} \in \{0, 1\}$
 $x_{1,3}$ $x_{1,2}$ $x_{1,1}$
 \downarrow

= 1, then s_1 is assigned to p_3

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

We en	ncode	each	(s_i, p_j)	as a	variab	ble $x_{i,j}$	$\in \{0,1\}$	}
а	$c_{1,3}$	$x_{1,2}$	$x_{1,1}$					
	\Downarrow							
	= 1	, then	s_1 is as	ssigne	ed to p)3		

= 0, then s_1 is not assigned to p_3

Stu	dents	s'p	references		Lec	turers' preferences
s_1 :	p_3	p_2	p_1		l_1 :	p_1 p_2
s_2 :	p_1	p_2			l_2 :	p_3
s_3 :	p_3					
				Project cap	pacit	ties: $c_1 = c_2 = c_3 = 1$.
				Lecturer ca	apac	cities: $d_1 = 2, d_2 = 1.$

We encode each (s_i, p_j) as a variable $x_{i,j} \in \{0, 1\}$	p_j) as a variable $x_{i,j} \in \{0,1\}$
$x_{1,3} x_{1,2} x_{1,1}$	1,1
\downarrow^{ψ} = 1, then s_1 is assigned to p_3	is assigned to p_3
= 1, then s_1 is assigned to p_3 = 0, then s_1 is not assigned to p_3	is not assigned to p_3

 $x_{2,1} = x_{2,2}$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

We	encode each (s_i, p_j) as a variable $x_{i,j} \in \{0, 1\}$
	$\begin{array}{cccc} x_{1,3} & x_{1,2} & x_{1,1} \\ & \downarrow & \end{array}$
	= 1, then s_1 is assigned to p_3 = 0, then s_1 is not assigned to p_3
	$\overline{x_{2,1}}$ $x_{2,2}$
_	$x_{3,3}$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

$$\sum_{p_j \in A_i} x_{i,j} \le 1 \quad (1 \le i \le n_1), \qquad \Longrightarrow$$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

$$\sum_{p_j \in A_i} x_{i,j} \le 1 \quad (1 \le i \le n_1), \qquad \implies x_{1,3} + x_{1,2} + x_{1,1} \le 1$$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

$$\sum_{p_j \in A_i} x_{i,j} \le 1 \quad (1 \le i \le n_1), \qquad \implies x_{1,3} + x_{1,2} + x_{1,1} \le 1$$

• capacities of projects are not exceeded

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

$$\sum_{p_j \in A_i} x_{i,j} \le 1 \quad (1 \le i \le n_1), \qquad \implies x_{1,3} + x_{1,2} + x_{1,1} \le 1$$

• capacities of projects are not exceeded

$$\sum_{i=1}^{n_1} x_{i,j} \le c_j, \quad (1 \le j \le n_2)$$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

$$\sum_{p_j \in A_i} x_{i,j} \le 1 \quad (1 \le i \le n_1), \qquad \Longrightarrow \ x_{1,3} + x_{1,2} + x_{1,1} \le 1$$

• capacities of projects are not exceeded

$$\sum_{i=1}^{n_1} x_{i,j} \le c_j, \quad (1 \le j \le n_2) \implies x_{1,1} + x_{2,1} \le 1$$

Students' preferences	Lecturers' preferences
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2
s_2 : p_1 p_2	l_2 : p_3
s_3 : p_3	
	Project capacities: $c_1 = c_2 = c_3 = 1$.
	Lecturer capacities: $d_1 = 2, d_2 = 1.$

• capacities of lecturers are not exceeded

Stud	ents' preferences	Lecturers' preferences		
s_1 :	p_3 p_2 p_1	l_1 : p_1 p_2		
s_2 :	$p_1 p_2$	l_2 : p_3		
s_3 :	p_3			
		Project capacities: $c_1 = c_2 = c_3 = 1$.		
Lecturer capacities: $d_1 = 2, d_2 = 1.$				

• capacities of lecturers are not exceeded

$$\sum_{i=1}^{n_1} \sum_{p_j \in P_k} x_{i,j} \le d_k \qquad (1 \le k \le n_3),$$

Students' preferences	Lecturers' preferences		
s_1 : p_3 p_2 p_1	l_1 : p_1 p_2		
s_2 : p_1 p_2	l_2 : p_3		
s_3 : p_3			
	Project capacities: $c_1 = c_2 = c_3 = 1$.		
	Lecturer capacities: $d_1 = 2, d_2 = 1.$		

• capacities of lecturers are not exceeded

$$\sum_{i=1}^{n_1} \sum_{p_j \in P_k} x_{i,j} \le d_k \qquad (1 \le k \le n_3),$$
$$\implies x_{1,2} + x_{1,1} + x_{2,1} + x_{2,2} \le 2$$

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

• define $\theta_{i,j} = 1 - \sum_{p_{j'} \in S_{i,j}} x_{i,j'}$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

• define
$$\theta_{i,j} = 1 - \sum_{p_{i'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 - x_{2,1} = 1.$$

Students' preferences $s_1: p_3 p_2 p_1$ $s_2: p_1 p_2$ $s_3: p_3$ Lecturers' preferences l_1 : p_1 p_2 l_2 : p_3

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

• define $\theta_{i,j} = 1 - \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 - x_{2,1} = 1.$ • create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j - \sum_{i'=1}^{n_1} x_{i',j}$

Students' preferences $s_1: p_3 p_2 p_1$ $s_2: p_1 p_2$ $s_3: p_3$ Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

• define $\theta_{i,j} = 1 - \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 - x_{2,1} = 1.$ • create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j - \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1.$

Students' preferences $s_1: p_3 p_2 p_1$ $s_2: p_1 p_2$ $s_3: p_3$

Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

- define $\theta_{i,j} = 1 \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 x_{2,1} = 1.$
- create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1$.

• define
$$\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'};$$

Students' preferences s_1 : p_3 p_2 p_1 s_2 : p_1 p_2 s_3 : p_3 Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

- define $\theta_{i,j} = 1 \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 x_{2,1} = 1.$
- create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1$.
- define $\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'}; \quad T_{1,1} = \{p_2\}$

Students' preferences s_1 : p_3 p_2 p_1 s_2 : p_1 p_2 s_3 : p_3 Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

- define $\theta_{i,j} = 1 \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 x_{2,1} = 1.$
- create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1$.
- define $\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'}; \quad T_{1,1} = \{p_2\} \implies \gamma_{2,1,1} = x_{2,2} = 1.$

Students' preferences s_1 : p_3 p_2 p_1 s_2 : p_1 p_2 s_3 : p_3 Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

- define $\theta_{i,j} = 1 \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 x_{2,1} = 1.$
- create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1.$
- define $\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'}; \quad T_{1,1} = \{p_2\} \implies \gamma_{2,1,1} = x_{2,2} = 1.$

(i)
$$\theta_{i,j} + \alpha_j + \gamma_{i,j,k} \le 2;$$

Students' preferences s_1 : p_3 p_2 p_1 s_2 : p_1 p_2 s_3 : p_3 Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each
$$(s_i, p_j)$$
, where l_k is the lecturer who offers p_j , we
• define $\theta_{i,j} = 1 - \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 - x_{2,1} = 1.$
• create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j - \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1.$
• define $\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'}; \quad T_{1,1} = \{p_2\} \implies \gamma_{2,1,1} = x_{2,2} = 1.$
(i) $\theta_{i,j} + \alpha_j + \gamma_{i,j,k} \le 2;$ (ii) $\theta_{i,j} + \alpha_j + (1 - \beta_{i,k}) + \delta_k \le 3;$

Students' preferences s_1 : p_3 p_2 p_1 s_2 : p_1 p_2 s_3 : p_3 Lecturers' preferences $l_1: p_1 p_2$ $l_2: p_3$

Project capacities: $c_1 = c_2 = c_3 = 1$. Lecturer capacities: $d_1 = 2, d_2 = 1$.

For each (s_i, p_j) , where l_k is the lecturer who offers p_j , we

- define $\theta_{i,j} = 1 \sum_{p_{j'} \in S_{i,j}} x_{i,j'} \implies \theta_{2,1} = 1 x_{2,1} = 1.$
- create $\alpha_j \in \{0, 1\}$, enforce $c_j \alpha_j \ge c_j \sum_{i'=1}^{n_1} x_{i',j} \implies \alpha_1 = 1$.
- define $\gamma_{i,j,k} = \sum_{p_{j'} \in T_{k,j}} x_{i,j'}; \quad T_{1,1} = \{p_2\} \implies \gamma_{2,1,1} = x_{2,2} = 1.$

(i)
$$\theta_{i,j} + \alpha_j + \gamma_{i,j,k} \le 2;$$
 (ii) $\theta_{i,j} + \alpha_j + (1 - \beta_{i,k}) + \delta_k \le 3;$
(iii) $\theta_{i,j} + \alpha_j + (1 - \beta_{i,k}) + \eta_{j,k} \le 3.$

D. Manlove, D. Milne, S. Olaosebikan

Integer Programming

BCTCS 2018 18 / 26

Envy graph

• admits topological ordering \implies it is acyclic \implies no coalition.

admits topological ordering ⇒ it is acyclic ⇒ no coalition.
For each (s_i, s_{i'}), if s_i envies s_{i'}, create e_{i,i'} ∈ {0,1} and enforce
e_{i,i'} + 1 ≥ x_{i,j} + x_{i',j'} i ≠ i'

Envy graph

- admits topological ordering \implies it is acyclic \implies no coalition.
- For each $(s_i, s_{i'})$, if s_i envies $s_{i'}$, create $e_{i,i'} \in \{0, 1\}$ and enforce

• $e_{i,i'} + 1 \ge x_{i,j} + x_{i',j'}$ $i \ne i'$

• to hold the label of each vertex in the topological ordering, create an integer-valued variable v_i and enforce

•
$$v_i < v_{i'} + n_1(1 - e_{i,i'})$$
 n_1 – number of students.

Objective function

• summation of all the $x_{i,j}$ binary variables

$$\max \sum_{i=1}^{n_1} \sum_{p_j \in A_i} x_{i,j}$$

• summation of all the $x_{i,j}$ binary variables

$$\max \sum_{i=1}^{n_1} \sum_{p_j \in A_i} x_{i,j}$$

• it seeks to maximise the number of students assigned to projects

• summation of all the $x_{i,j}$ binary variables

$$\max \sum_{i=1}^{n_1} \sum_{p_j \in A_i} x_{i,j}$$

• it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of SPA-P, there exists an IP formulation J of I such that an optimal solution in J corresponds to a maximum stable matching in I, and vice-versa.

IP model was implemented using the Gurobi optimisation solver
www.gurobi.com

- IP model was implemented using the Gurobi optimisation solver
 www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed

- IP model was implemented using the Gurobi optimisation solver
 www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
 - with the coalition constraints (63.50 seconds)
 - without the coalition constraints (2.61 seconds)

- IP model was implemented using the Gurobi optimisation solver
 www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
 - with the coalition constraints (63.50 seconds)
 - without the coalition constraints (2.61 seconds)
- size of a maximum stable matching = size of a matching that admits no blocking pair, but potentially admits a coalition

- IP model was implemented using the Gurobi optimisation solver
 www.gurobi.com
- to investigate how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed
- IP solver on instance size involving 1000 students
 - with the coalition constraints (63.50 seconds)
 - without the coalition constraints (2.61 seconds)
- size of a maximum stable matching = size of a matching that admits no blocking pair, but potentially admits a coalition
- for the purpose of this experiment, we removed the coalition constraints from our IP solver

Experimental results: Randomly-generated SPA-P instances

Experimental results: Randomly-generated SPA-P instances

Experimental results: SPA-P instances derived from real datasets

Experimental results: SPA-P instances derived from real datasets

• actual student preference data from previous runs of project allocation in the School of Computing Science, University of Glasgow; lecturer preference data was derived from this information

Experimental results: SPA-P instances derived from real datasets

• actual student preference data from previous runs of project allocation in the School of Computing Science, University of Glasgow; lecturer preference data was derived from this information

					Random					Most popular					Least popular				
Year	$ n_1 $	n_2	n_3	l	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E
2014																			
2015	76	197	46	6	76	76	76	76	72	76	76	76	76	72	76	76	76	76	75
2016																			
2017	90	289	59	4	89	87	85	80	76	90	89	86	81	79	88	85	84	80	77

Table 1: A, B, C, D and E denotes the solution obtained from the IP model, 100 runs of $\frac{3}{2}$ -approximation algorithm, single run of $\frac{3}{2}$ -approximation algorithm, 100 runs of 2-approximation algorithm, and single run of 2-approximation algorithm respectively. Also, n_1, n_2, n_3 and l is number of students, number of projects, number of lecturers and length of the students' preference lists respectively.

D. Manlove, D. Milne, S. Olaosebikan

Discussions and Conclusions

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$ -approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$ -approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$ -approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)
- IP model can be employed in practice

- the approximation algorithms outperform the expected bound
- the $\frac{3}{2}$ -approximation algorithm finds stable matchings that are very close in size to optimal, even on a single run
- IP solver on instance size involving 10,000 students (100 seconds)
- IP model can be employed in practice
- potential coalitions can subsequently be dealt with in polynomial-time

• Approximation algorithm with improved bounds?

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - $\bullet\,$ each project and lecturer has capacity 1 $\bigstar\,$
 - all preference lists are of bounded length

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar
 - what if there is a constant number of lecturer?

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length ${\pmb{\times}}$
 - what if there is a constant number of lecturer?
 - might be solvable in polynomial-time with one lecturer?

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar
 - what if there is a constant number of lecturer?
 - might be solvable in polynomial-time with one lecturer?
 - remains hard to solve with two lecturers, even if each project has capacity 1

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar
 - what if there is a constant number of lecturer?
 - might be solvable in polynomial-time with one lecturer?
 - remains hard to solve with two lecturers, even if each project has capacity 1 \checkmark

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar
 - what if there is a constant number of lecturer? \times
 - might be solvable in polynomial-time with one lecturer?
 - remains hard to solve with two lecturers, even if each project has capacity 1 \checkmark

- Approximation algorithm with improved bounds?
- Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?
 - each project and lecturer has capacity 1 $\pmb{\times}$
 - all preference lists are of bounded length \bigstar
 - what if there is a constant number of lecturer? \times
 - might be solvable in polynomial-time with one lecturer?
 - remains hard to solve with two lecturers, even if each project has capacity 1 \checkmark
 - more parameters yet to be explored..

BCTCS 2018 25 / 26

David Manlove¹, Duncan Milne and Sofiat Olaosebikan². An Integer Programming Approach to the Student-Project Allocation Problem with Preferences over Projects. To appear in proceedings of ISCO 2018: the 5th International Symposium on Combinatorial Optimisation, Lecture Notes in Computer Science, Springer, 2018.

Corresponding author: Sofiat Olaosebikan Website: www.dcs.gla.ac.uk/~sofiat Email: s.olaosebikan.1@research.gla.ac.uk

D. Manlove, D. Milne, S. Olaosebikan

¹Supported by grant EP/P028306/1 from the Engineering and Physical Sciences Research Council.

²Supported by a College of Science and Engineering Scholarship, University of Glasgow.