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Abstract

DNA Sequencing became a very emerging topic in the past few years, especially after the vast advancements in
the development of Next-Generation Sequencing (NGS) techniques. Apart from the research that is currently in
progress which aims to improve these methods, a significant amount of study is devoted to the optimisation of
the algorithms that are used for the analysis of the resulted data. The aim of this project was to study the current
version of an Origin Classification script used for Genetic Sequencing purposes by performing deterministic and
memory profiling on it and spotting any specific operations that may add a significant overhead on its execution.
According to the results of this process, a number of different optimisations were applied and evaluated in order
to determine which of them were the most capable for a future adaptation to the script. The evaluation procedure
followed a very careful and sophisticated experimental approach. The process focused on the optimisation of
String Concatenation which is a very costly operation that was repeated multiple times within the script. The
evaluation process proved that the most optimal alternative to it was the use of List Comprehensions. This solu-
tion managed to improve the performance of the script to a very significant degree and it is highly recommended
for introduction to the system.
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Chapter 1

Introduction

DNA is a molecule that serves as the major carrier of genetic information in the living organisms. It is consisted
of two strands that are coiled around an imaginary axis. These strands contains a number of nucleotides; each one
of them is formed by one of the following nitrogen-containing nucleobases: guanine (G), adenine (A), cytosine
(C) or thymamine (T) [46].

DNA has recently become subject of particular interest for Computing Science. The rise of a new scientific field
that deals with the DNA sequencing of whole genomes for research and medical purposes and the computational
analysis behind it has led to extensive study and multiple publications regarding algorithms and technologies that
could be possibly proved useful to support all the underlying analysis. From a purely computing science perspec-
tive, this process acts as a very good example of the risks and challenges that lie behind a String Manipulation
problem in the larger scale.

The Wellcome Trust Centre for Molecular Parasitology (WTCMP), based at the University of Glasgow, uses a
computer-based sequence classification tool which acts as a pipeline for the manipulation of information stored
in DNA molecules. The samples they are working on are collected using Next-Generation Sequencing (NGS)
techniques. Their analysis aims to provide results for the occurrence of viruses like the trypanosome, leishmania,
toxoplasmosis and plasmodium.

This project aims to improve the performance of this tool in order to be capable of scaling up in the future. That
will be achieved by analysing and profiling the current version of the script to determine the points where the
performance is downgraded and proposing possible optimisations that are intended to mitigate their effect and
increase the efficiency of the script both in terms of speed and memory usage.

1.1 Report Outline

The rest of the report is structured as follows:

• Backgroud. A brief introduction to the process of Genetic Sequencing along with some important mile-
stones from its history including the Human Genome Project.

• Underlying Algorithms and Technologies. An overview of all the important algorithms and the different
technologies used by the script.

• Current System Evaluation. A thorough evaluation of the current system with a detailed discussion of
the results generated from its Deterministic and Memory Profiling.
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• Study of Possible Optimisations. A list of possible optimisations for improving the performance of the
script along with an experimental process of applying and evaluating them within the context of the Origin
Classification tool.

• Conclusions. A summary of all the key conclusions and personal reflection that resulted from the optimi-
sation process and the project in general.

• Future Work. Some suggestions for further optimisations that could be applied in any future iterations of
the project.
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Chapter 2

Background

The following chapter provides a brief historical overview on the field of Genetic Sequencing. It describes the
different Sequencing Techniques that were implemented over the years and the context in which each of them
was developed and applied. A big portion of this chapter is dedicated to the Human Genome Project which is
considered to be a great milestone in the history of DNA Sequencing.

2.1 First-Generation Genetic Sequencing

The numerous new advancements in medicine, virology and biotechnology demanded the analysis of the DNA
sequences. Therefore, in the 1970s, Scientists started to develop a new process, called ”Genetic Sequencing”,
that is dealing with the specification of the precise order of nucleotides within a single DNA molecule. The first
attempts were made by two American molecular biologists, Allan M. Maxam and Walter Gilber that proposed
the Maxam-Gilbert method and Frederic Sanger, an English biochemist, who suggested the Sanger method [17].
The Sanger method will be discussed further in one of the next subsections.

2.2 Human Genome Project

Along with the different developments on the techniques used in Genetic Sequencing over the years, the rapid
improvements on the performance of microchips and processors enabled the faster manipulation of enormous
amounts of data that resulted from the process [69]. The DNA Sequencing reached a peak with the beginning
of the US Human Genome Project. The project was proposed by the National Research Council in 1988 as an
attempt to map the human genome and was officially planned as a 15-year project in 1990 by the U.S. Department
of Energy and the National Institutes of Health [12].

A large number of volunteers from diverse backgrounds and localities was recruited to provide DNA samples
for sequencing. In order to ensure that the identity of these volunteers would not be disclosured, a very careful
process was followed to protect their anonymity. Almost 5 to 10 times more people had donated blood than the
number of samples that were used to make sure that even the volunteers themselves could not know whether their
samples were eventually used or not [25].

It was completed in April 2003, two years ahead of schedule. All the data produced was made openly available on
the Internet almost immediately. Its results fueled the discovery of more than 1800 diseases. Due to the success
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of this project, researchers are now capable of finding the genes that are suspected for causing an inherited disease
in only a few days [26].

2.3 Next-Generation Genetic Sequencing

In the early 90s a new wave of Genetic Sequencing techniques were proposed and patented. The manufacture of
computer machines of high computational performance provided the means for creating sequencing systems that
can process huge amount of data instantaneously. Some of them were, eventually, patented as Commercial DNA
Sequencers by the beginning of the 21st Century. These techniques are capable of providing high-throughput se-
quencing in which DNA and RNA can be sequenced more quickly and cheaply than in the traditional techniques
that were proposed during the First Generation era [15].

2.4 Sequencing Techniques

2.4.1 Chain Termination

In 1977, Frederic Sanger proposed the very first DNA sequencing technique both known as Chain Termination
or Sanger method. The development of this technique is considered to be one of the greatest milestones in the
history of Genetic Sequencing since it is the one on which all the other techniques were based and it is up until
today the most commonly used method [68].

There are four types of deoxynucleotides (dGTP, dATP, dCTP and dTTP) and dideoxynucleotides (ddGTP,
ddATP, ddCTP and ddTTP); one for each of the four nucleic bases (G, A, C and T). This specific type of
altered nucleotides have the special property of preventing the addition of any further nucleotides when they are
integrated into a sequence [65]. This technique also requires the conversion of double-stranded DNA into single
stranded DNA by denaturing it with Sodium Hydroxide (NaOH) to break the weak linkages and bonds [16].

The Sanger Reaction is prepared by adding together the single strand of DNA that was produced above with
DNA primers which are short pieces of DNA that are complementary to this strand, a mixture of a particular
dideoxynucleotide (ddNTP) with its own normal deoxynucleotide (dNTP) and the rest of the deoxynucleotides.
This reaction is repeated four times; one for every dideoxynucleotide. Then, the PolyAcrylamide Gel Elec-
trophoresis (PAGE) process is performed in order to separate the components of this mixture with respect to
their size [67]. The gel is analysed using the process of Autoradiography where only the bands with the radioac-
tive label on the 5’ prime end will be presented. The above steps can indicate the particular order in which a
dideoxynucleotide was added by noticing which band has migrated the furthest and, accordingly, assume that its
complementary base appears on the 3’ prime end. The 5’ prime and the 3’ prime that were mentioned earlier
refer to the carbon number in the DNA’s sugar backbone where the former has a phosphate group attached to it
whilst the latter is attached to a hydroxyl one [56]. By repeating this process, one is capable of reading the whole
DNA sequence that was used as input [11].

2.4.2 Pyrosequencing

In 1996, Mostafa Ronaghi and Pål Nyrén who were located at the Royal Institute of Technology in Stockholm
published a new Genetic Sequencing technique called Pyrosequencing. This method takes advantage of the
identification of pyrophosphate (PPi) released during DNA Sequencing [47].
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Firstly, a DNA segment is undergoing the process of Amplification. During Amplification, a region of DNA
that contains a gene is duplicated. In parallel, the template that is going to be used for the Pyrosequencing is
attached to a conezyme R called biotin [61]. This process is known as Biotinylation [63]. After the modification
of the molecular structure of DNA through Denaturation, the resulted amplicon that is consisted of a single DNA
strand is isolated and cross-bred with a sequencing primer, a short nucleic acid that acts as the starting point
for DNA synthesis [52]. Later, the result of this hybridisation is incubated with various enzymes, including the
Adenosine Triphosphate (ATP) sulfurylase. After a while, a deoxyribonucleotide triphosphate (dNTP) is added
to the above reaction and causes the release of pyrophosphate (PPi). ATP sulfurylase converts PPi to ATP and
generates visible light. The amount of light produced is proportional to the amount of ATP [44].

The light is detected by a Charge Coupled Device (CCD) camera which represents them visually in a Pyrogram
that shows the raw output data. The enzyme of Apyrase causes the periodical degradation of any unincorporated
nucleotides. By the end of the process, the complete nucleotide sequence is built and determined by the peaks of
the signal in the aforementioned Pyrogram [44].

Figure 2.1: A representative Pyrogram of the 5HTT gene promoter [32]

From its very early steps, Pyrosequencing was considered to be of very high potential. And indeed the history
did not disprove this claim since up until today it is one of the most precise Genetic Sequencing techniques due
to the facy that it provides 99.75% accuracy for each individual DNA read [18]. In addition, the length of a
single read is equal to 7000dp which is one of the longest available. On the other hand, it is also significantly
more expensive than other Sequencing methods with a cost of $3 per test [54].

2.4.3 Sequencing by Synthesis

Sequencing by Synthesis (also known as Illumina Sequencing [9]) is by far the most commercially used DNA
Sequencing technique [19]. It was initially developed by Shankar Balasubramanian and David Klenerman, two
professors at the University of Cambridge, who were using fluorescently-labeled nucleotides to study the motion
of polymerase at a single molecule level. Polymerase is an enzyme that helps the creation of new DNA molecules
from the four nucleotide bases (G, A, C, T) by having the existing DNA as a template [70]. The success of
this method led them to investigate whether this approach could be used for Genetic Sequencing and, eventually,
theorise their findings [19]. They made an attempt to commercialise their solution by establishing a new company
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named Solexa in 1998. Almost 10 years later, in 2007, Illumina acquired Solexa [19] and made its name a
synonym for Sequencing by Synthesis.

In order to perform this sequencing technique, it is essential to break the DNA into smaller, more manageable
fragments. These are usually consisted of 200 to 600 base pairs. They are attached to some small sequences of
DNA which are called adaptors. To become single-stranded, these fragments are denatured by being incubated
with Sodium Hydroxide (NaOH). As soon as this process is done, the fragments are washed across the flowcell
to cause the complementary DNA binding to primers on the surface. Any remaining DNA that is not attached
anywhere is removed. The portions of DNA that were indeed attached to the flowcell are replicated so that small
clusters of identical DNA are built. At the process of Sequencing, every cluster would emit a signal that can
be detected by a camera. Later, a number of unlabeled nucleotide bases and DNA polymerase are appended to
increase the length and join the strands of DNA. The resulted double-stranded DNA is split into single-stranded
DNA with the use heat. This creates a huge number of identical clusters of DNA sequences [70].

Primers as well as fluorescently-labeled terminators that stop the DNA synthesis are added to the flowcell where
the former are attached to the DNA that is being sequenced. The aforementioned DNA polymerase binds to the
primer and attaches the terminator to a new DNA strand where it prevents the addition of any extra bases to
it [70].

Lasers scan the flowcell to activate the fluorescent label. The fluorescence substance is captured by a camera and
saved on a computer. The four bases can be distinguished because their corresponding terminator emits different
colour. Finally, the terminator group is removed from the first base and the next one is appended alongside. This
process is repeated multiple times until the point where all of the clusters have been sequenced successfully. The
generated sequence can be aligned to a reference sequence that search for any modifications or matches in the
DNA [70].

2.4.4 Ion Torrent Sequencing

One of the most recently discovered Sequencing Technologies is the Ion Torrent Sequencing (also known as Ion
Semiconductor Sequencing). It was discovered by Ion Torrent Systems Inc. in 2010 [2]. Unlike other Genetic
Sequencing techniques, this method does not make use of optical signals at all. On the contrary, it is built on the
fact that when dNTP is added to a polymer of DNA, Hydrogen cations (H+) are released [14].

This technique is based on the translation of chemically encoded information (G, A, C, T) into digital information
(0, 1) using a semiconductor chip. A semiconductor is a solid chemical element that enables the conduction of
electricity under specific conditions but not in others. It is extremely useful for controlling the flow of electrical
current [60].

As it holds with other DNA Sequencing techniques, the input DNA is fragmented and some adaptors are attached
to each fragment. Then, each molecule is placed onto a bead and amplified by the application of emulsion
Polymerase Chain Reaction (PCR). Polymerase Chain Reaction is a fast and costless molecular technique to
amplify (copy) relatively short segments of DNA [66]. The emulsion version of this method uses tiny water
bubbles which float on an oil solution. Afterwards, each one of these beads is placed onto a single well of a
slide. Later, this slide is flooded into a mixture of a single species of dNTP, polymerase and buffers. Each H+

decreases the value of the ph and therefore it makes possible to determine whether any bases were added to the
sequence during each cycle and construct the values of the DNA sequence read.
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Chapter 3

Underlying Algorithms and Technologies

The Sequence Classification tool that was developed by the Wellcome Trust Centre for Molecular Parasitology
used some well-established algorithms to support the different functionalities of the tool. These algorithms were
traditionally applied for Sequence Classification purposes and are mostly related to String Manipulation.

Apart from these algorithms, the tool was built using various toolkits developed to support scientific projects.
These technologies are widely available from the Python Package Index (PyPI) and they can all be downloaded
by running the pip command either plainly or with elevated privileges using the sudo command:

$ pip install toolkit-name

$ sudo pip install toolkit-name

These toolkits and algorithms will be presented thoroughly in the next sections. Understanding what each of
them does, gives a very good and detailed insight on the functionalities of the tool themselves.

3.1 Algorithms

3.1.1 k-mer

The term k-mer is very frequently used within the fields of Computational Genomics and Computational Lin-
guistics. It refers to all the substrings of length k that can be possibly contained within a string. In Computational
Genomics, it is used to describe a DNA sequence of small length that is consisted of bases of a fixed number (k).

The mathematical origins of k-mer trace back to the concept of n-grams. The notion of n-grams is also very
widely used in Computational Linguistics. According to Jurafsky and Martin (2014), ”an n-gram is a sequence
of n words” [20]. As it can be concluded from this definition, a k-mer is just special case of an n-gram.

In order to determine and generate all the possible k-mers of a single read, one must use the corresponding k-mer
algorithm. This algorithm states that in order to produce all the possible k-mers of size k from a dna string of
length len(dna), one should iterate for length-k+1 times. In each iteration i, the substring of the dna that is
stored between the ith and i+kth indices of the original dna is appended to a dictionary of kmers. A Python
implementation of the kmer algorithm can be shown in the figure below:
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def kmer(dna, k):
kmers = {}
length = len(dna)

for i in range(0, length-k+1):
kmers.append(dna[i:i+k])

return kmers

Figure 3.1: A Python implementation of the k-mer algorithm

In the context of this project, kmerization is used to produce all the possible k-mers of size k from the input
DNA sequence that is consisted of the four nucleic bases (G, A, C, T). The number of occurrences for all the
generated kmers will be, then, counted by the script in order to be used for the classification process.

3.2 Technologies

3.2.1 Scientific Python

According to its documentation, Scientific Python (abbreviated as SciPy) is ”an ecosystem of open-source soft-
ware for mathematics, science and engineering” [51]. It was designed to provide a stack of useful tools and
technologies for people who wish to use Python for Scientific Computing purposes.

One of the fundamental packages that comprises this module is NumPy. It supports numerical computation
for mathematical topics such as Linear Algebra and Fourier Transformations. NumPy provides a powerful and
sophisticated Base N-dimensional array object that can serve as an multi-dimensional container of generic data
[27] and facilitate the manipulation of large arrays and numerical matrices [53].

Another extremely useful library that is part of the SciPy package set is pandas. pandas managed to combine
both easiness and high-performance for the implementation of data structures and data analysis tools [33]. The
two new data structures that are introduced are Series and DataFrame. The former is a single-dimensional
object that it is very similar to a column of a table or an array. The latter is a multi-dimensional data structure
consisted of rows and columns. In a higher level, a DataFrame is a collection of numerous Series [45].

Apart from the above, SciPy also offers a series of other useful libraries and tools targeted for scientific projects.
Matplotlib is an enhanced tool used for the creation of quality 2D plots in a variety of formats [23] and designs. In
order to support Symbolic Mathematics, SciPy also includes SymPy which is capable of providing the appropriate
scientific notation for both simple and complex operations in Mathematical context [58]. Last but not least
amongst the core packages provided by SciPy, IPython is a console for interactive computing that can be used
for Parallel Computing [59].

Due to all the aforementioned features, SciPy is very often used as a Dependency in projects that require extensive
and complex operations. Because of its ubiquity in the scientific community, SciPy has a large number of active
contributors that are constantly working on the enhancement and extension of the software so that it supports
even more aspects of Scientific Computation.
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3.2.2 scikit-learn

scikit-learn is an open-source Python library for Machine Learning designed to provide a wide range of either
supervised or unsupervised learning algorithms. It was firstly developed by David Cournapeu and it is currently
maintained by more than 30 active contributors.

The scikit-learn project is build upon SciPy and it acts as an extension of the aforementioned module to support
Machine Learning. It is a very powerful and robust tool designed to be used directly in production systems.

Although its interface is built on Python, it uses some technologies based on C that take advantage of the high
compilation and execution speed of such lower level languages in order to boost up the performance of the toolkit
whenever it is necessary. A common example of such technologies is C-Libraries that are used to support the
operation of NumPy arrays. Also, Cython which is based on C acts as an extension of the Python Programming
Language [13] and it is widely used by the most scikit-learn models due to its optimal speed.

scikit-learn is developed to support several aspects of Machine Learning. Firstly, it provides the appropriate
infrastructure that can perform the Classification of an object in the sense that it can identify the category to
which it belongs from a list of different categories as well as the automatic grouping of similar objects into sets
(Clustering). Additionally, it supports Regression which allows the statistical analysis of a property in order
to predict its values with respect to a variable that is strongly related and associated with it in the context of a
continuous function. Additionally, it prepares the input data for use for Machine Learning purposes by applying
Feature Extraction and Normalisation (Preprocessing) Last but not least, it provides tools that support some
statistical operations such as the reduction of the number of dimensions involved in a specific problem in order
to decrease the number of random variables that interfere and, subsequently, eliminate their effect on the final
results (Dimensionality Reduction) as well as a form of parameter tuning for comparing, assessing and selecting
between different parameters and models (Model Selection) [49].

scikit-learn is continuously growing to provide even more functionalities for use with projects that involve the
highly emerging techniques of Machine Learning. It is also very well-documented and accompanied by an
in-depth guide for its use through some of its most common application contexts.

The scikit-learn is a very important module for the operation of the Origin Classification tool. It provides the
Machine Learning infrastructure that performs the classification of the different samples through its Support
Vector Machine (SVM).

3.2.3 SAMtools

The short DNA sequence read alignments that are used as input for the Classification process are stored in SAM
files. SAM stands for Sequence Alignment/Map and the files that are associated with this extension are text-
formatted files which use TAB as their delimiter. Their two-part structure is consisted of the Header and the
Alignment. The Header section can be omitted whilst the Alignment Section is mandatory. What distinguishes
the Header section lines from the ones in the Alignment section of a SAM file is the fact the former start with
an @ character. The Alignment lines contain a number of fields with useful data about the reads associated with
them. From these fields, 11 should always be filled and appear in the same order because they carry some very
essential information about the alignment. In addition, there is a number of optional fields that can be either
completed or not which enhance the alignment process [62].

BAM (abbreviation for Binary Alignment/Map) is simply the binary equivalent of SAM files. This means that
while the SAM files are human-readable, BAM files are written in binary format. They are compressed using
BGZF which is a special type of block compression which is based on the gzip format [62]. The fact that BAM

9



files are compressed makes them more suitable and efficient for use along with relevant sequencing software than
their corresponding SAM files.

The two aforementioned file types are part of SAMtools. SAMtools is a collection of libraries that support the
interaction with sequencing data that are characterised by high-throughput. In its turn, it is included in HTSlib
package that is openly available for the developers.

In addition to the two aforementioned formats, SAMtools also provide a third, newer type named CRAM. CRAM
files are also written in binary format but they have some major advantages over the BAM type but still with-
out losing their full compatibility with the files of the other format. The transition from BAM to CRAM is
also effortless and quick. According to its specification, it offers lossless compression which is better than the
one provided by the BAM format. Finally, CRAM provides support for the loss of BAM data in a controlled
environment [48].

Figure 3.2: An example of a SAM file

3.2.4 Pysam

Apart from the specification of the SAM, BAM and CRAM files, Samtools also provides C-API, a Python
module for reading and processing them. The main disadvantage of this library is the fact that it is pretty
heavyweight. In order to overcome the different hardships caused by the use of this package, a lighter wrapper
of C-API was implemented. This module is called Pysam and it is protected by an MIT Licence [34].

According to its documentation, Pysam follows a very simple workflow for manipulating data stored in the
previously mentioned file types. The user creates a new instance of the AlignmentFile object by giving the
BAM file as an argument in order to open it. Then, he/she simply iterates over all the reads that correspond to
a specific region using the fetch() method. Each subsequent iteration returns an AlignedSegment object that
represents one read from the input file. Apart from reading from a BAM file, Pysam also provides a writer
functionality that allows the writes on an Alignment file [35].

3.2.5 Amazon Web Services

The Amazon Web Services is a collection of reliable and scalable services that are intended to support Cloud
Computing applications. They are hosted by Amazon and they were officially launched in 2006. Amazon Web
Services are currently spread across 12 different geographical locations [7].

Some of the provided services are described below:
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Amazon Elastic Compute Cloud (EC2) provides resizable computing capacity in the cloud. The flexible way
that it was designed makes the process of cloud computing easier for the developers. It is possible to increase
or reduce the used capacity to serve any changes in the requirements immediately. New server instances can be
obtained and launched within minutes [4].

Amazon Simple Storage Service (S3) offers robust, highly-scalable and completely secure cloud storage. It offers
three ranges of storage classes designed to suit different requirements. Amazon S3 Standard is built for general-
purpose storage of data that are accessed frequently. Amazon S3 Standard - Infrequent Access (Standard - IA)
is the best option for data that are intended to live for a long amount of time but without being accessed very
frequently. Finally, Amazon Glacier aims to be used for long term archiving [6].

Amazon Elastic MapReduce (EMR) is a web-based service that supports the high-speed and cost-effective pro-
cess of vast amount of data. It offers the appropriate infrastructure to support Big Data tasks by providing a
modified version of the Apace Hadoop framework. It distributes large amounts of data across different EC2 in-
stances for processing. It is also possible to use alternative Big Data processing frameworks such as the Apache
Spark and Presto [5].

Amazon DynamoDB is a No-SQL database which is extremely flexible in its use. It is suitable for applications
that require high latency and consistence. It is a form of cloud database that support the use of both key-value
and document store models [3].

The Origin Classification tool script is currently hosted on Amazon Web Services where it is benefited by some
of the tools and technologies that are provided. For instance, it makes use of numerous EC2 clusters to run the
script as well as S3 buckets to store the input files on.
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Chapter 4

Current System Evaluation

The Origin Classification tool which is the system under investigation is written in Python (filename: bedNbam-
Classifier.py) and it is used to classify input samples whose DNA sequence alignment data are stored in BAM
files into either origins or non-origins for a specific given parasite with respect to the coordinates provided in two
separate BED files.

In order to start proposing modifications that would optimise the execution of the script, the current system
needed to be evaluated. The evaluation of a system can be done by assessing some of its different aspects and
producing various metrics. Some qualities of a system that can be studied during this process are its performance
and the design of its User Interface. The aspects that would eventually be investigated are determined by taking
the objectives of the Evaluation into consideration.

For the purposes of this project, the most appropriate aspect to be assessed is current system’s performance. Since
there is an intention of scaling up the system, its Performance should be evaluated in order to prove whether it is
capable of undergoing the aforementioned extension. This process is called Performance Testing.

According to Meier et al., Performance Testing is the process that is concerned with the technical investigation
that is conducted in order to determine the ability of a product to execute quickly, scale up and remain stable. It
deals with the achievement of the desired response times, throughput and resource-utilisation levels as required
by the objectives of the system under testing [24]. Most of the Performance Testing methods are based on the
application of a specific load upon the system and the generation of metrics for the qualities under investigation.
This load could be either data for input, users for concurrent access or something else relevant to the specific
system’s context.

The type of Performance Testing that is chosen to be used for evaluating the Sequence Classification Tool was
Load Testing. It involves the application of a normal stress (”load”) to the software in order to determine whether
it will behave as it was expected to under ordinary conditions [55]. The load in this case was a set of BED files
and a set of BAM files. The BED files contain tables of chromosome coordinates which are either origins or
non-origins. The BAM files are consisted of sequence alignment data which are either used for training or testing
purposes.

In addition to the selection of the appropriate type of Testing, the metrics that are going to be generated need
to be decided as well. Whichever these metrics are, they are produced during a call of the specific process that
is undergoing investigation. In order to be able to scale up the project, three important aspects of the software
required assessment; the speed of execution, the number of operation calls and the memory usage. All the
metrics collected at this stage will be used as a baseline for comparisons for all the optimised versions that would
be presented in the following chapter.
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4.1 Preparing the System Environment

To perform the experiments on the current system but also to try out the different optimisations in a later stage,
an Amazon Web Services EC2 cluster was provided (zoe.wtcmp.net) as well as a user account (zoeg) with
full administrative permissions and an environment free from any programs and other installations. The files that
consisted the Origin Classification tool were migrated to the cluster as a directory using the recursive scp linux
command that is shown in the following figure:

$ scp -r /local/path/to/the/folder/
zoeg@zoe.wtcmp.net:/path/on/the/cluster/↪→

Figure 4.1: The recusrive scp command used to send the tool files on the cluster

Before trying to run the script on the cluster, all of its dependencies needed to be installed on the cluster to
guarantee that no problems would arise during its execution. These dependencies were:

• Python (>= 2.6)

• scipy

• scikit-learn

• pysam 0.8.3

• pandas

• numpy (required for scikit-learn and pandas)

• biopython 1.65

Figure 4.2: All the dependencies that are needed for the execution of the script.

The structure of the script command allows the configuration of certain parameters for its execution. Three files
were needed as input. Two BED files named Lmaj origins.bed and Lmaj nonorigins.bed provided the ori-
gin and the non-origin coordinates respectively. These files are denoted on the script command with the flag
–classBed. Additionally, a BAM file named LmjFcombi.g2.bam was used as training file for the purposes of
the Machine Learning features provided by the script and declared with the –testBam flag of the script com-
mand. Some other parameters that can be configured by the script command are the name of the machine
(–machineOut) that will be instantiated by the application of the Machine Learning process on the script, the
length of kmers used in the process of kmerization (–kmerSize) and the number of CPU cores that will act as
processing units during the execution of the script.

A minimal version of the command used to run the script is shown below:

$ python bedNbamClassifier.py --trainBam LmjFcombi.g2.bam --classBed
Lmaj_origins.bed --classBed Lmaj_nonorigins.bed --machineOut LmjF_run1
--kmerSize 6 --cpu 2

↪→

↪→

Figure 4.3: A minimal version of the bash command used to run the Origin Classification tool
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4.2 Deterministic Profiling

The concept of Deterministic Profiling of a program is based on the fact that every event that happens during its
execution including function calls, function returns and exception throwing is being monitored on the background
and the accurate timings are measured for the intervals between these incidents [37]. This type of Profiling deals
with providing the developer with all the related metrics; from precise values for the timing to call count statistics.

The measuring of timing is of particular importance since it can be source of useful conclusions regarding
the performance of a script. Since time as a metric is strongly correlated with whether a software solution is
considered to be efficient or not, being able to collect precise timings for each portion of the code and determine
whether it is costly for the execution of the program can be very beneficial.

In addition to the time, another important metric for software delopment is call count. It calculates how many
times a particular operation is repeated amongst the same block of code. This measurement can be proved to be
very useful for identifying any bugs in the code by spotting any unexpected call counts. Furthermore, it can be
used to find any hot loops that will require extra, careful optimisation in order not to give any extra overhead to
the execution of the program.

Python provides a very extensive support for the Deterministic profiling of its scripts. It offers two very powerful
built-in modules that can take up this type of tasks and return detailed reports about the performance. The first
one is called cProfile and it is the one that is recommended by the official Python Documentation itself since the
overhead that it adds to the execution of the program it profiles is fairly reasonable. This is why it is capable of
undertaking the profiling of long-running programs. The optimal performance of this module can be explained
by the fact that it is actually an extension built in the C programming language and therefore it does not add any
extra load to the compiler for its interpretation. The latter module is profile, a pure Python module. Even though
its interface is actually immitated by cProfile, the module itself is not very actively used since it adds a significant
overhead to the execution of a program. An advantage of this method over the previous one is the fact that it
can be extended in a very easy way. Additionally, there is a third module that is responsible for Python profiling
called hotshot. It was initially developed to minimise the overhead in a higher degree but due to a critical bug
identified in the timing core, it was completely abandoned after a while. It is currently not maintained and one
of the most possible scenarios for its future is that it is going to be dropped out completely at some point [43].

For the purposes of this project, the module that was chosen to be used for evaluating the performance of the
original script was cProfile. No changes on the script were necessary in order to use this Profiler since it is
included in the Python language pack by default. A cProfile report presents a number of different information
and statistics regarding the script it profiles.

cProfile also provides the option of sorting the output with respect to one or more of the aforementioned statistics.
This feature was exploited in order to determine which operations were the most costly in terms of timing
(execution time) and frequency (call count). These two criteria corresponded to ‘cumtime’ and ‘calls’ listed in
the table below.

Valid Flag Argument Meaning Valid Flag Argument Meaning
‘calls’ call count ‘line’ line number

‘cumtime’ cumulative time ‘name’ function name
‘filename’ file name ‘nfl’ name/file/line
‘module’ file name ‘stdname’ standard name
‘pcalls’ primitive call count ‘tottime’ internal time

Figure 4.4: The different statistics provided by cProfile in the form of keys to be used for sorting its output [43]
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4.2.1 Total Execution Time

The execution time of a program can affected by several different factors. These factors are either program-
related or they originate from the machine that the code runs on.

One of these factors is the programming language on which a program is written on. The selection of the most
appropriate programming language for a particular purpose is a vital issue in software development. Concepts
such as performance, scalability and portability should be taken into consideration when a software engineer
chooses a programming language for a specific task. There is a large number of trade-offs amongst the different
languages and one should be aware of what he or she is sacrificing by selecting a specific language for his/her
project. From the previously mentioned qualities of a programming language, the one that affects the execution
time of a program the most is performance. Therefore, for achieving small execution time, one should prefer a
language that guarantees high performance over any other characteristics.

Another important issue that affects the execution of a program is the machine it runs on. It is surprising how
different the execution time for the same program may be between different machines depending on their specifi-
cations. For example, the processing unit can affect the execution of a program to a great extend since the number
of cores it possesses determines the level of threading and multi-tasking it allows. Additionally, the speed of the
processor on a specific machine affects the time a single operation takes to execute.

Finally, an essential aspect that controls the speed with which a program executes is the complexity of the
algorithm that it is built on. The efficiency of the algorithm can control how quickly or how slowly a program
will run. This final factor is the one that provides the most freedom and the largest number of opportunities to the
developer to leverage it since it is solely affected by his/her judgment. This is the property that the Deterministic
Profiler uses to evaluate the execution performance of a program. It calculates the time intervals and counts the
number of calls during the runtime; features that are mostly dependent on the nature of the algorithm in use.

Despite the aforementioned known qualities that control the execution performance of a program, the element of
randomness still persists. Even when running the same program (same programming language and underlying
algorithm) in the same machine, it is highly probable and almost expected to measure different execution times
amongst several, consecutive runs. Therefore, it can be said that the timing of the execution of a program has
a stochastic behaviour since it involves the random element that makes the precise prediction of the actual
execution time almost impossible, no matter how many details are currently known about its structure and nature
[10]. This variation is extremely difficult to be accurately explained because it usually originates from certain
conditions that are formed during an individual execution of a program and it cannot be repeated again. Due to
their unknown origins, one cannot really tackle the problem of random interference. But still, it is feasible to
mitigate its influence on the metrics that are collected during Profiling by repeating the process multiple times
and study the aggregated results rather than the individual ones.

This is the approach that was used for profiling the Origin Classifier Tool. A bash script was written that was
configured to repeat the Deterministic Profiling on the program for 20 iterations and store the results on separate
files marked by the number of the corresponding iteration within the same results folder.

$ for i in {1..20}; do python -m cProfile -s cumtime bedNbamClassifier.py
--trainBam LmjFcombi.g2.bam --classBed Lmaj_origins.bed --classBed
Lmaj_nonorigins.bed --machineOut LmjF_run1 --kmerSize 6 --cpu 2 >
<results_folder>/<results file name>_run$i.txt 2>&1

↪→

↪→

↪→

Figure 4.5: A bash script that initiates 20 consecutive runs of the Deterministic Profiler with the ‘cumtime’
sorting flag.
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Figure 4.6: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the Original script.

To draw some conclusions regarding the performance of the system in general, it was required to produce some
aggregated results for the above measurements. Therefore, the Mean Value and the Standard Deviation were
calculated. Additionally, to study the behaviour of the script in terms of individual operations, the report file for
one of the performed runs ought to be selected to be studied further. In order to find the most representative one
amongst the all the generated files, the absolute difference in the execution time between each individual run and
the mean value of the execution time was calculated and the run whose difference was the smallest was chosen
to be used as the baseline of the study. The results of the previous process can be seen in the table below:

Figure 4.7: The aggregated results of the execution time (in seconds) from the Deterministic Profiling of the
Original script.

A combination of all the aforementioned results was used to plot the a column chart that presents the execution
time for all the different runs along with a straight line that represents the Mean Value for the execution time as
it calculated above. The unit used to measure the execution time of each run on the graph is seconds since it is
the one that was originally used by cProfile itself.

As it can be seen on the graph, most of the runs had a better performance than the average. The Mean Value
became higher though due to the existence of two runs (Run 1 and Run 14) whose execution took significantly
longer time than the others. A possible explanation for the existence of delays on these two particular runs may
have been the presence of random system factors. For example, a process that may have run on the background
during the execution of these two runs may have reduced the processing resources available for them and they
were forced to slow down. But these processes do not usually last for long and that is why they did not affect
the rest of the runs. By taking all the values into consideration, it is safe to say that their distribution is normal
since each individual value is no further than 3 times the value of Standard Deviation from the calculated Mean
Value [21]. Even the two outliers that were mentioned above fall within this interval.
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Figure 4.8: A Graph that shows the Total Execution Time (in seconds) of the Original System for 20 Consecutive
Runs

Now that the overall properties and distribution of values were analysed and the appropriate conclusions were
drawn regarding them, it was also important to study the metrics collected from an individual run. Since, as it
was observed above, the most representative amongst the runs appeared to be the 11th one, its generated report
was used for further investigation. A shorter version of this report can be found in the appendix section.

As it can be seen from the report, the operations that have the largest total cumulative execution time is kmer-
izeAlignments and kmerize() functions. If one takes a closer look at the structure of the kmerizeAlignments()
that is provided in the following figure, he/she can notice that it is consisted of a for each loop that calls the
kmerize() multiple times. Therefore, it can be deduced that one of the possible reasons for which this function
takes this significant amount of time to be executed is the multiple invocation of kmerize(). Apart from this, the
delay may also originate from the String Concatenation operation that is present in Line 5 which, as part of the
loop, is repeated multiple times as well. String Concatenation might be cause of delay for the kmerize() function
itself (Line 6) since it is also performed multiple times inside this function.

1 def kmerizeAlignments(alignmentsIterator, k):
2 kmerizedText = ""
3 for alignment in alignmentsIterator:
4 kmerData = kmerize(alignment.query_sequence,k)
5 kmerizedText = kmerizedText + kmerData + ’\n’
6 return kmerizedText

Figure 4.9: The kmerizeAlignments() function
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1 def kmerize(dna, k):
2 thisString = ""
3 for i in range(0, len(dna)+1-k, k):
4 start = max(0, i)
5 stop = min(len(dna), i + k) + 1
6 thisString = thisString + dna[start:stop] + " "
7 return thisString

Figure 4.10: The kmerize() function

4.2.2 Operation Call Count

Another important deterministic metric that should be used in order to evaluate the performance of the existing
system is the number of times that each operation is called within the program. This number denotes the fre-
quency of each operation and illustrates the amount of overhead that each one of them adds to the execution of
the program.

In contrast with the measurement of execution time, the process of counting the number of operation calls within
a program is not a stochastic process. No matter how many times a program is run or the existence of any random
interference, if there is no error in the code itself that prevents it from running properly, the final count of the
operation calls should be the same. Therefore, the collection of results for this specific metric required only a
single run that was accomplished using the following bash script:

$ python -m cProfile -s calls bedNbamClassifier.py --trainBam
LmjFcombi.g2.bam --classBed Lmaj_origins.bed --classBed
Lmaj_nonorigins.bed --machineOut LmjF_run1 --kmerSize 6 --cpu 2 >
<results_folder>/<results file name>_call_run.txt 2>&1

↪→

↪→

↪→

Figure 4.11: A bash script that initiates a single run of the Deterministic Profiler with the ‘calls’ sorting flag.

The final report (a part of it is provided in the Appendix) states that the most common amongst the different
operations present in the script are the min() and max() functions. These are two built-in functions that are
always available by Python. As it can be seen in the specification of kmerize() that is provided above, these
two methods are called multiple times within this function and the effects of their multiple invocation aggregated
may add some important additional delay to the execution of the whole script. Furthermore, the third most called
function is the append() from the Python array object. Due to the fact that the appending of an element to an
array does not occur in-place but it actually creates a new array, a chain of significant, undesired side effects
on the execution of the system may be caused that could include delays on the execution of the program and
additional memory usage.

4.3 Memory Profiling

Apart from the deterministic profiling of a system, there is another type of profiling that could be proved to be of
particular interest for the evaluation of a system. The Memory Profiling of a program monitors the consumption
of memory by its different operations [42]. It can easily determine which of them are memory-exhaustive by
producing a precise metric for the total memory they use during runtime.
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The Memory Profiler that will be used for the evaluation the Origin Classification Tool is memory profiler. It
is a pure Python module that does line by line analysis of a script [42] and generates the appropriate memory
consumption report in Bibytes. Its one (and only) highly recommended dependency is psutil which can be
imported at the top of the script body as it is shown below:

import psutil

The memory profiler module itself is available from the Python Package Index (PyPI) and can be downloaded
using the pip (alone or accompanied by the sudo command for declaring system administrator permissions):

$ (sudo) pip install toolkit-name

This profiler cannot assess the whole script in one go but it can profile one individual function at a time. There-
fore, for the case of the Origin Classification tool, only the kmerize() and kmerizeAlignments() functions can
be evaluated at two different runs. In the script body, the function that is going to be profiled should import the
module and be marked with the corresponding @profile decorator. The modifications that should be made to
each of the aforementioned functions before running the Profiler are shown below:

from memory_profiler import profile
@profile
def kmerizeAlignments(alignmentsIterator, k):

kmerizedList = ""
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList = kmerizedList + kmerData + ’\n’

return kmerizedList

Figure 4.12: The appropriate additions to the kmerize() function in order to invoke the memory profiler.

from memory_profiler import profile
@profile
def kmerize(dna, k):

thisString = ""
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisString = thisString + dna[start:stop] + " "

return thisString

Figure 4.13: The appropriate additions to the kmerizeAlignments() function in order to invoke the mem-
ory profiler.

Since these two functions include for each loops, the total memory consumption can be seen only at the section
of the report that is dedicated to their last iteration. The corresponding sections from the two generated reports
can be seen below:
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Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

115 104.5 MiB 0.0 MiB @profile
116 def kmerize(dna, k):
117 104.5 MiB 0.0 MiB thisString = ""
118 104.5 MiB 0.0 MiB for i in range(0, len(dna)+1-k, k):
119 104.5 MiB 0.0 MiB start = max(0, i)
120 104.5 MiB 0.0 MiB stop = min(len(dna), i + k) + 1
121 104.5 MiB 0.0 MiB thisString = thisString + dna[start:stop] + " "
122 104.5 MiB 0.0 MiB return thisString

Figure 4.14: The section of the report generated by the memory profiler for the kmerize() function that refers
to its last iteration.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

126 104.8 MiB 0.0 MiB @profile
127 def kmerizeAlignments(alignmentsIterator, k):
128 104.8 MiB 0.0 MiB kmerizedList = ""
129 104.8 MiB 0.0 MiB for alignment in alignmentsIterator:
130 104.8 MiB 0.0 MiB kmerData = kmerize(alignment.query_sequence,k)
131 104.8 MiB 0.0 MiB kmerizedList = kmerizedList + kmerData + ’\n’
132 104.8 MiB 0.0 MiB return kmerizedList

Figure 4.15: The section of the report generated by the memory profiler for the kmerizeAlignments() function
that refers to its last iteration.

As it can be noticed on the figures provided above, the two functions seem to consume a significant amount
of memory to satisfy their resource needs. Therefore, they seem to be memory-exhaustive. Again, a possible
explanation for this observation is the multiple String Concatenation that takes place in their body. Apart from
the time delay, it is also capable of causing excessive memory withholding because of the continuous alloca-
tion/reallocation of memory to objects.
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Chapter 5

Study of Possible Optimisations

After the evaluation of the current system was completed, the findings from this process were used to propose
the appropriate optimisations that were believed to bring improvement in its performance to the greatest degree
possible.

A careful process was followed for implementing and assessing all the optimisations that would be presented in
the next sections. Firstly, they were applied directly on the original script by making sure that nothing irrelevant
with them would be changed. Later, these optimisations were assessed by running the cProfile Deterministic
Profiler against the new version of the script 20 times and collecting the values for the execution time of all the
different runs. As it was discussed in the previous chapter, that repetition of the Profiling process was done in
order to eliminated the random system interference on the results for as much as possible. Subsequently, some
aggregated values such as the Mean Value and the Standard Deviation of the execution time for all the runs
were calculated. A column chart that represented the execution time per run was plotted in a graph that also
included their Mean Value as a bold straight line and the boundaries of Standard Deviation as two dashed lines
above and below it. The graphical representation of the results was extremely useful in order to spot general
patterns and common behaviours amongst the different runs. If the Mean Value of the execution time for the
new Configuration showed some improvement over the corresponding value of the baseline system then the
performance results of the system under investigation became subject of statistical analysis.

This analysis was consisted of various steps. Firstly, a null hypothesis was formed which claimed that ”the
applied optimisation did not improve the performance of the system”. In parallel, the alternative hypothesis was
also constructed which acted as the opposite of the null one. It claimed that ”the applied optimisation actually
improved the performance of the system”. This hypothesis is considered as one-tailed since it implies that an
expected result will be found (i.e. the proposed system will provide better performance than the baseline).
Then, a Paired Samples T-Test was conducted to prove or disprove the significance of the results. A constant a
= 0.05 that represents the significance level was used for comparison with the value p which was the outcome of
the T-Test. If the value of p was less than the constant a then the null hypothesis was rejected in favour of the
alternative hypothesis. If this was the case then it was statistically proved that the results from the performance
testing of the new system were significant and the proposed optimisation can be accepted as a viable solution.

An additional assessment of the optimisations was conducted to evaluate their correctness. In order to ensure
that the modifications did not alter the output of the kmerization process, a few changes were made to the two
versions of script (the original and the modified one) that wrote the produced kmers into two separate files.
In their turn, the two generated files were compared using the diff linux command (as it can be seen in the
figure below) with the purpose of having their similarity assessed. If these two files were identical (i.e. the
diff command returned nothing) then it meant that the proposed modifications did not interfere somehow in the
kmerization process resulting in any errors on its prescribed functionality.
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$ diff kmerize_original_output kmerize_optimisation_name_output

Figure 5.1: The syntax of the diff linux command used for comparing the outputs of kmerization for the original
and the proposed version of the script

Finally, the memory usage of the functions on which the different modifications were applied was monitored with
the use of the memory profiler that was introduced in the previous chapter. The optimisation under investigation
should be proved efficient both in terms of execution time and memory usage, therefore the latter factor must be
assessed as well. In case a possible optimisation provides high performance but also uses an excessive amount
of memory, second thoughts should be made before adapting this alternative due to the fact that the machine on
which the script will run may not be capable of executing it.

5.1 String Immutability

As it was observed at the current system evaluation stage, one of the operations that seemed to be the most
time- and memory- consuming for the Origin Classification script was String Concatenation. It was also one
of the operations that were repeated more often, therefore it added a very significant amount of overhead to the
execution of the program.

String Concatenation is the process of joining two or more strings into a new string that is consisted of the two
string slices combined together [36]. This pattern and technique is very frequent in software development since
a lot of applications deal with String Manipulation in general. However, it is considered to be a very costly
operation due to the String Immutability.

In Programming, an Immutable Object is an object whose state cannot be modified after it is constructed. This
means that in order to change the value of an immutable object, one must create a new object instead of updating
the existing one in-place [28]. These actions are not instructed explicitly by the programmer but they are still
performed in the background; in bytecode level. The operation of creating a new object can be costly, especially
if it is repeated multiple times during the execution of a program.

String Immutability is a common property between a large number of different programming languages. Python
is one of them. Since the current stable version of the Origin Classification tool is written in Python 2, the issue
with String Immutability persists and it is fairly acute as the results from the current system evaluation suggest.

A study of various possible alternatives have been made so that the best one would be eventually selected to
replace the simple String Concatenation in the script. Each of them was introduced to the program and ran
against the same data set to produce the metrics of interest that were described earlier.

5.1.1 String List

Amongst the most commonly used data structures within Python’s programming environment is List. List is
defined as a container of objects that stores the given elements in a specific order. It is member of the Python
Sequence Types along with String literals, Unicode Objects, Tuples, Bytearrays and xrange objects [39]. Python
Lists are pretty versatile since they are capable of keeping elements of different type together in the same list
object without any problems [64].

A Python List can be represented as a list of values which are separated by commas and enclosed in square
brackets, as it can be seen in the examples below:
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list1 = [1, 2, 3, 4]
list2 = ["jan", "feb", "mar", "apr"]
list3 = [’m’, ’t’, ’w’, ’f’]
list4 = ["jan", 1, "feb", 2, "mar", 3, "apr", 4]

Figure 5.2: Some examples of Python Lists that illustrate the versatility of Python Lists

Each element in a Sequence Type such as the Python List is assigned an integer number which denotes its
position. This number is called index and can take values from 0 to N-1 where N is the number of elements
stored in the List. These indices are used to access the elements of the list, either individually or as list slices, as
it is shown below:

print(list1[0])
>> 1
print(list2[1:3])
>> ["feb", "mar"]
print(list3[1:])
>> [’t’, ’w’, ’f’]
print(list[:3])
>> ["jan", 1, "feb"]

Figure 5.3: Some examples of accessing elements in Python Lists

It should be noted that in the case of list slices, the index range used is inclusive on the left boundary and exclusive
on the right. This means that the element that corresponds to the first index is returned whilst the element stored
in the second index is not.

Due to all this flexibility, Python Lists were considered to be a good alternative to the naive String Appending
applied on the original version of the script. Each kmer produced in the kmerize function instead of being
appended to a huge string of kmers that are separated by a single whitespace character (“ ”) was added to a
Python String List instead as a separate element. In the following subsections, two different applications of
these scenario on the tool script will be discussed, performed and evaluated. The difference between these two
approaches is the way they handle the appending of an element to the list and the joining of two Python Lists.

First Version of String List Optimisation

The first approach to the application of Python String Lists on the script provided that their join would be per-
formed using the plus (+) operator that underlies the append of the former list to the other. This method is very
similar to the Naive String Concatenation that was described earlier but in this case it involved the appending of
two dynamic data structures instead of plain immutable strings.

An identical functionality to the one provided by the plus (+) operator is offered by the built-in extend() method.
The former approach is preferred though, since in the bytecode level, the first technique involves only a single
INPLACE ADD() instruction whilst the second uses an extra function call.

The modifications applied to the script for the introduction of Python Lists can be shown below:
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def kmerize(dna, k):
thisStringList = [] # MODIFICATION
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisStringList.append(dna[start:stop]) # MODIFICATION

return thisStringList

Figure 5.4: The modifications that were made on the kmerize() function in order to accommodate the first
approach to the application of String Lists.

def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = []
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList = kmerizedList + kmerData # MODIFICATION

return kmerizedList

Figure 5.5: The modifications that were made on the kmerizeAlignments() function in order to accommodate
the first approach to the application of String Lists.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData = trainingData + kmerizeAlignments(alignmentsIterator,
kmerSize) # MODIFICATION↪→

target_labels.append(classesList.index(thisClass))

Figure 5.6: The modifications that were made on other sections of the script in order to accommodate the first
approach to the application of String Lists.

The String Concatenation at the kmerize() function was replaced by a list append operation that added each kmer
as a new string element to the list. Then, each list of kmerData that was created inside the kmerizeAlignments()
function by iterating over the alignmentsIterator was appended to a larger list called kmerizedList. This
process was repeated for every BAM file given as input. Each of these lists was appended to a universal list of
all the kmers called trainingData using the plus (+) operator again.

The accuracy assessment of this technique that was described at the beginning of the chapter suggested that the
kmerization process in this method produced the exact same results as the original script.

The implementation and assessment process described earlier was applied and the following results were col-
lected and plotted:
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Figure 5.7: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the first approach to the application of String Lists optimisation.

Figure 5.8: The aggregated results from the Deterministic Profiling of the script that adopted the first approach
to the application of String Lists optimisation.

Figure 5.9: A Graph that shows the Total Execution Time (in seconds) of the System after the application of the
first approach to the application of the String List optimisation for 20 Consecutive Runs.

The graph suggests that most of the runs had smaller execution time than the average; only 6 of them actually
exceeded it. The rise in the Mean Value though can be explained by the fact that these 6 runs have significantly
higher execution time than the others and so they managed to increase the Mean Value with their variance. From
these, only 3 have exceeded the upper boundary that was set by the top line of Standard Deviation range.
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Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

113 347.230 MiB 0.000 MiB @profile
114 def kmerize(dna, k):
115 347.230 MiB 0.000 MiB thisStringList = []
116 347.230 MiB 0.000 MiB for i in range(0, len(dna)+1-k, k):
117 347.230 MiB 0.000 MiB start = max(0, i)
118 347.230 MiB 0.000 MiB stop = min(len(dna), i + k) + 1
119 347.230 MiB 0.000 MiB thisStringList.append(dna[start:stop])
120 347.230 MiB 0.000 MiB return thisStringList

Figure 5.10: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the first version of the Python List optimisation.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

127 346.527 MiB 0.000 MiB @profile
128 def kmerizeAlignments(alignmentsIterator, k):
129 346.527 MiB 0.000 MiB kmerizedList = []
130 347.230 MiB 0.703 MiB for alignment in alignmentsIterator:
131 347.230 MiB 0.000 MiB kmerData = kmerize(alignment.query_sequence,k)
132 347.230 MiB 0.000 MiB kmerizedList = kmerizedList + kmerData
133 347.230 MiB 0.000 MiB return kmerizedList

Figure 5.11: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the first version of the Python List optimisation.

As it can be seen from the above results, the proposed modifications did not actually lead to any improvements
on the execution of the script. On the contrary, they actually caused an extra delay which resulted to a total
execution time which was almost 3 times larger than the execution time of the original script measured earlier.
The same thing held for the memory usage since the results from the Memory Profiling showed that the amount
of memory used by the modified script was also 3 times higher than the one of the original script. Therefore, it
is safe to say these modification cannot be considered as an optimisation over the original script.

A possible explanation for the inefficiency of this method is the fact that the string list appending technique
used is an operation that is analogous to the Concatenation of Strings but for Python Lists. Hence, the action
of appending two lists using the plus (+) operator actually created a new list to insert the joined version of the
two others. This imposed some negative implications in both the execution time of the script and its memory
usage. When it comes to the cost of this operation when compared to the Naive String Appending technique,
the former one probably used more time since it involved the initialisation and the memory allocation of whole a
data structure rather than of a single string object.

Second Version of String List Optimisation

Since the reason why the first version of the Python List optimisation did not manage to improve the mean
execution time of the script was the fact that the string appending using the plus (+) operator actually created a
new list to insert the combined version of the two lists, it was necessary to find a way to append a Python list to
another without creating a new list instance.
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The second approach simply suggests the assignment of the second list to a list slice at the end of the first list.
The list slice starts from the index which is equal to the length of the first list which basically means that the
second list is assigned to a new position at the end of this list as it would be done if a new element was simply
inserted to the first list. This approach seems to avoid all the overhead added to the execution of the program
using the previous approach since it does not a create a new list from scratch.

An example that applies the described operation can be seen below:

l1 = [1,2]
l2 = [3,4]
l1[len(l1):] = l2

print(l1)
>> [1,2,3,4]

Figure 5.12: An example of appending a list to another without creating a new list

It is worth mentioning that this method is not the same as inserting the second list into a position at the end of the
first list since that would store the entire list in a single position of the former list. Python would then recognise
the second list as a single element added to the other list; a list stored along with some strings in a bigger list. This
action is completely valid and acceptable in the context of Python. The difference between these two operations
is illustrated below:

l1 = [1,2]
l2 = [3,4]
l3 = [5,6]
l1[len(l1):] = l3
l2[len(l2)] = l3

print(l1)
>> [1,2,5,6]

print(l2)
>> [3,4,[5,6]]

Figure 5.13: An example that illustrates the difference between inserting a list into another as a new element and
inserting a list into another as a list slice

In order to introduce this approach to the script, the following modifications needed to take place:

def kmerize(dna, k):
thisStringList = [] # MODIFICATION
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisStringList.append(dna[start:stop]) # MODIFICATION

return thisStringList # MODIFICATION

Figure 5.14: The modifications that were made on the kmerize method of the script in order to accommodate the
second approach to the application of String Lists.
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def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = [] # MODIFICATION
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList[len(kmerizedList):] = kmerData # MODIFICATION

return kmerizedList

Figure 5.15: The modifications that were made on the kmerizeAlignments method of the script in order to
accommodate the second approach to the application of String Lists.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData[len(trainingData):] =
kmerizeAlignments(alignmentsIterator, kmerSize) # MODIFICATION↪→

target_labels.append(classesList.index(thisClass))

Figure 5.16: The modifications that were made on other sections of the script in order to accommodate the second
approach to the application of String Lists.

As it can be noticed, the only thing that was different in the implementation of the second approach was the way
the list appeding was performed.

The accuracy assessment of this technique proved that the kmerization process in this method produced the
same results as the original script.

Again, the optimisation was evaluated using the usual method. The results are provided below in both textual
and graphical form:

Figure 5.17: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the second approach to the application of String Lists optimisation.

Figure 5.18: The aggregated results from the Deterministic Profiling of the script that adopted the second ap-
proach to the application of String Lists optimisation.
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Figure 5.19: A Graph that shows the Total Execution Time (in seconds) of the System after the application of the
second approach to the application of the String List for 20 Consecutive Runs.

The proposed optimisation has managed to reduce the Mean Value of the execution time to the 57% of its
original value. That means that it provided a significant improvement over the original system since it almost
doubled the execution speed.

The process that was described at the beginning of this chapter was used to assess the significance of the previous
observation. The null hypothesis that it needed to be disproved here was that replacing the string concatenation
operations used in the script with this version of String Lists will not improve the performance of the script. On
the contrary, the alternative hypothesis suggested that this change will actually make a positive impact on the
performance of the script. A Paired Samples T-Test was performed and the calculated p value was equal to
3x10-33. This value is smaller than the constant a = 0.05, therefore the null hypothesis was rejected in favour of
the alternative one. Therefore, the proposed optimisation improved the performance of the script and this impact
was considered as statistically significant.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

113 346.578 MiB 0.000 MiB @profile
114 def kmerize(dna, k):
115 346.578 MiB 0.000 MiB thisStringList = []
116 346.578 MiB 0.000 MiB for i in range(0, len(dna)+1-k, k):
117 346.578 MiB 0.000 MiB start = max(0, i)
118 346.578 MiB 0.000 MiB stop = min(len(dna), i + k) + 1
119 346.578 MiB 0.000 MiB thisStringList.append(dna[start:stop])
120 346.578 MiB 0.000 MiB return thisStringList

Figure 5.20: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the second version of the Python List optimisation.
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Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

127 345.012 MiB 0.000 MiB @profile
128 def kmerizeAlignments(alignmentsIterator, k):
129 345.012 MiB 0.000 MiB kmerizedList = []
130 345.715 MiB 0.703 MiB for alignment in alignmentsIterator:
131 345.715 MiB 0.000 MiB kmerData = kmerize(alignment.query_sequence,k)
132 345.715 MiB 0.000 MiB kmerizedList[len(kmerizedList):] = kmerData
133 345.715 MiB 0.000 MiB return kmerizedList

Figure 5.21: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the second version of the Python List optimisation.

Additionally, this approach to the use of String list was also more efficient in terms of memory usage from the
first one since it managed to reduce the amount of memory used by almost 1MiB, as it can be noticed in the
results of Memory Profiling.

5.1.2 Mutable String Class

A few programming languages provide alternative types that act as mutable Strings. For example, Java provides
StringBuffer [29] and StringBuilder [30] to overcome its String object immutability. Over the years, Python has
offered its own alternatives to this issue.

The Mutable String Class was derived from the User String Class. It was built to redefine the String objects so
that they would become mutable. This class was created for purely educational purposes so that it would act as an
example for explaining the concept of inheritance in Python [40]. This was the reason why it was not suggested
as a solution for actual programmatic tasks.

Even though it seemed to have mitigated the problem of String Immutability, the implementation of Muta-
bleString() class had a number of drawbacks associated with it. Instances of this class could not be used as
keys for dictionaries since, by definition, dictionaries can accept only immutable types as their keys. In order to
accomplish this, the hash () method was removed from their implementation so that any attempt to use this
object as a key for a dictionary was rejected [40]. Additionally, some methods defined within this class behaved
just like the corresponding methods applied on the normal Immutable Strings; they provided the return of new
strings rather than an in-place update of the string as they were supposed to do.

As some related reading suggests, the Mutable String had no significant benefit to provide over the standard String
even though one might think that it would. It did not improve the memory usage or the runtime performance at
all. On the contrary, it was highly likely to reduce the performance of the system further [8].

Initially, the plan was to introduce the MutableString() on the script for experimental purposes. Unfortunately,
this scenario needed to be abandoned due to the fact that the MutableString class has been deprecated since the
release of the 2.6 version of Python and was removed completely in Python 3. The Origin Classification script
uses Python 2.6 and therefore that made the application of this technique impossible [40].

Python 3 has a mutable String type to offer as well that is named bytearray. Sadly, it is not supported by the
Python version that the script uses and therefore it could not be used for the purposes of this project.
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5.1.3 Character Array

In Python, an array sequence type is used to represent an array of basic values. These values can be either
integers, floating point numbers or characters. Its behaviour is very similar to a list but with a major difference:
the objects stored in it should be of the same type. This type is declared when the object is created by passing a
type code character as an argument to the array constructor.

The array type defines the fromstring() method which appends the characters from a given string to the character
array. This functionality was be exploited in order to replace the Naive String Concatenation in the Origin
Classification Script.

The modifications to be applied on the code are shown below:

from array import array # MODIFICATION
def kmerize(dna, k):

thisCharArray = array(’c’)
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisCharArray.fromstring(dna[start:stop]) # MODIFICATION
thisCharArray.append(’\n’) # MODIFICATION

return thisCharArray

Figure 5.22: The modifications that were made on the kmerize() function of the script in order to accommodate
the application of Character Array.

def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = array(’c’)
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList.extend(kmerData)
kmerizedList.append(’\n’)

return kmerizedList

Figure 5.23: The modifications that were made on the kmerizeAlignments() function of the script in order to
accommodate the application of Character Array.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData[len(trainingData):] =
kmerizeAlignments(alignmentsIterator, kmerSize).tostring().split()
# MODIFICATION

↪→

↪→

target_labels.append(classesList.index(thisClass))

Figure 5.24: The modifications that were made on other sections of the script in order to accommodate the
application of Character Array.

The String Concatenation at the kmerize() function was replaced by an array appending operation that took
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every kmer as an argument and added each single character to the Character Array. Along with the characters
of each kmer, an extra whitespace character was added in order to separate it from the next one. Then, each
Character Array of kmerData that was created inside the kmerizeAlignments() function by iterating over the
alignmentsIterator was added to a larger character array called kmerizedList using the extend() method. These
process was repeated for every BAM file given as input. Each of these Character Arrays was converted into a
string which was then split in order to produce a universal list of all the kmers called trainingData.

The accuracy of this method was assessed as well and it was proved to return the same output from the kmeriza-
tion process as the baseline.

In order to assess the efficiency of the above modifications, the same process as the one used for the previous
optimisations was used:

Figure 5.25: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the Character Array optimisation.

Figure 5.26: The aggregated results from the Deterministic Profiling of the script that adopted the Character
Array optimisation.

By comparing the Mean Values of the baseline system and the system that uses the Character Array for String
Concatenation, one can notice that the average execution time has been to reduced to almost 76% of its original
value. This was a fairly respectable improvement over the original system but it was not as large quantitatively as
the second approach on the String List that was proposed in a previous subsection. This lack of efficiency in the
Performance that was shown by the Character Array when it was compared to the String List can be explained
by the different policy that it is followed by the Python List during the appending of new elements. As soon as
all the allocated elements get used, the Python List allocates a few extra elements [57] and this speeds up the
appending process.
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Figure 5.27: A Graph that shows the Total Execution Time (in seconds) of the System after the application of
Character Array optimisation for 20 Consecutive Runs.

According to the graph, the distribution of the values of the execution time was slightly different this time.
Even though most of the execution time values were located in the range denoted by the Standard Deviation
boundaries, there are a few outlier runs that had either significantly larger execution time with respect to the
Mean Value or significantly lower. However, this was not reflected on the Mean Value due to the fact the their
different kind of variations seemed to counterbalance each other.

But before it is fully accepted, the usual statistical analysis process should have been repeated to prove its
significance. The null hypothesis there was that the replacement of the plain String Concatenation with the
Character Array optimisation did not improve the performance of the system and the alternative hypothesis was
that it did. The p-value in this case was equal to 4.31x10-28 which is smaller than the value of the constant a,
therefore the null hypothesis was rejected and the alternative one was proved to be correct. Thus, the solution
that provides the use of Character Arrays is acceptable as an optimisation over the original script.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

114 345.262 MiB 0.000 MiB @profile
115 def kmerize(dna, k):
116 345.262 MiB 0.000 MiB thisCharArray = array(’c’)
117 345.262 MiB 0.000 MiB for i in range(0, len(dna)+1-k, k):
118 345.262 MiB 0.000 MiB start = max(0, i)
119 345.262 MiB 0.000 MiB stop = min(len(dna), i + k) + 1
120 345.262 MiB 0.000 MiB thisCharArray.fromstring(dna[start:stop])
121 345.262 MiB 0.000 MiB thisCharArray.append(’\n’)
122 345.262 MiB 0.000 MiB return thisCharArray

Figure 5.28: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the Character Array optimisation.
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Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

129 345.637 MiB 0.000 MiB @profile
130 def kmerizeAlignments(alignmentsIterator, k):
131 345.637 MiB 0.000 MiB kmerizedList = array(’c’)
132 345.637 MiB 0.000 MiB for alignment in alignmentsIterator:
133 345.637 MiB 0.000 MiB kmerData = kmerize(alignment.query_sequence,k)
134 345.637 MiB 0.000 MiB kmerizedList.extend(kmerData)
135 345.637 MiB 0.000 MiB kmerizedList.append(’\n’)
136 345.637 MiB 0.000 MiB return kmerizedList

Figure 5.29: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the Character Array optimisation.

The results from the Memory Profiling of the script suggested that this method made use of less memory than
the two approaches on the use of String List. It reduced the total memory usage by 1MiB. This is due to the
fact that Python arrays use a memory allocation strategy which provides that their storage is done by allocating
contiguous blocks of Memory. This strategy is more efficient memory-wise than the strategy used by the Python
Lists which simple use pointers to different blocks where the contained objects are actually stored [57]. Also
Python Lists are more memory-consuming because they allocate extra elements automatically, before there is an
explicit need for them, and in case they are not eventually used, they just waste memory.

5.1.4 Pseudo File

As it was previously mentioned, Java Programming Language offers dynamic objects that act as a mutable
versions of Strings. One of them is the String Buffer. Python provides an object type that is very similar to
it named cStringIO. This module acts as a pseudo file in the sense that it reads from and writes to a so-called
”Memory File” but without actually producing an output file. There is also a similar module called StringIO
but the former one is preferred due to its speed and efficiency that makes it more suitable for use for heavier
purposes.

It is worth saying that the contents of a String Buffer cannot be read directly but they would rather need to be
extracted from the ”Memory File” using its getvalue() method.

The modifications needed to be made on the script are the follows:

from cStringIO import StringIO # MODIFICATION
def kmerize(dna, k):

thisStringIO = StringIO() # MODIFICATION
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisStringIO.write(dna[start:stop]) # MODIFICATION
thisStringIO.write(’\n’) # MODIFICATION

return thisStringIO # MODIFICATION

Figure 5.30: The modifications that were made on the kmerize function the script in order to accommodate the
application of Pseudo File.
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def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = StringIO() # MODIFICATION
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList.write(kmerData.getvalue()) # MODIFICATION
kmerizedList.write(’\n’) # MODIFICATION

return kmerizedList

Figure 5.31: The modifications that were made on the kmerizeAlignments function of the script in order to
accommodate the application of Pseudo File.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData[len(trainingData):] =
kmerizeAlignments(alignmentsIterator, kmerSize).getvalue().split()
# MODIFICATION

↪→

↪→

target_labels.append(classesList.index(thisClass))

Figure 5.32: The modifications that were made on other sections of the script in order to accommodate the
application of Pseudo File.

The accuracy of this method was also proved since it returned the same output from the kmerization process.

The Deterministic Profiling of the new version of the script returned the following results:

Figure 5.33: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the Pseudo File optimisation.

Figure 5.34: The aggregated results from the Deterministic Profiling of the script that adopted the Pseudo File
optimisation.
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Figure 5.35: A Graph that shows the Total Execution Time (in seconds) of the System after the application of
Pseudo File optimisation for 20 Consecutive Runs.

As it can be noticed by the graph, the Pseudo File technique resulted to only a single outlier that has a large
absolute difference from the Mean Value. This may have led to the largest value of Standard Deviation so far
and subsequently the greater area that was bounded within its upper and lower limits.

The use of this pseudo file approach was proved to be efficient since it improved the execution time of the script
by reducing it to the 77% of the corresponding value of the original system. It was an acceptable improvement
but again it was not as large as the ones noticed before. This was due to the fact that cStringIO was not built
for providing better performance over another operation; it was simply created to support the cases when an API
requires files as input whilst a developer is intended to pass strings.

In order to fully accept these results, the usual statistical analysis process should have been conducted to prove
their significance. The null hypothesis there was that the replacement of the plain String Concatenation with
the Pseudo File approach did not improve the performance of the system and the alternative hypothesis was
that it did. The p-value in this case was equal to 8.69x10-28 which is smaller than the value of the constant a,
therefore the null hypothesis was rejected and the alternative one was proved to be correct. Thus, the solution
that provides the use of Pseudo File is acceptable as an optimisation over the original script.
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Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

114 347.062 MiB 0.000 MiB @profile
115 def kmerize(dna, k):
116 347.062 MiB 0.000 MiB thisStringIO = StringIO()
117 347.062 MiB 0.000 MiB for i in range(0, len(dna)+1-k, k):
118 347.062 MiB 0.000 MiB start = max(0, i)
119 347.062 MiB 0.000 MiB stop = min(len(dna), i + k) + 1
120 347.062 MiB 0.000 MiB thisStringIO.write(dna[start:stop])
121 347.062 MiB 0.000 MiB thisStringIO.write(’\n’)
122 347.062 MiB 0.000 MiB return thisStringIO

Figure 5.36: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the Pseudo File optimisation.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

129 345.609 MiB 0.000 MiB @profile
130 def kmerizeAlignments(alignmentsIterator, k):
131 345.609 MiB 0.000 MiB kmerizedList = StringIO()
133 345.609 MiB 0.000 MiB for alignment in alignmentsIterator:
134 345.609 MiB 0.000 MiB kmerData = kmerize(alignment.query_sequence,k)
135 345.609 MiB 0.000 MiB kmerizedList.write(kmerData.getvalue())
136 345.609 MiB 0.000 MiB kmerizedList.write(’\n’)
137 345.609 MiB 0.000 MiB return kmerizedList

Figure 5.37: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the Pseudo File optimisation.

The Memory Profiling suggests that the Pseudo File approach had a memory performance that was close to the
Average of the aforementioned methods. Unfortunately, it was still not as optimal as the memory usage of the
Original script.

5.1.5 List Comprehensions

List Comprehensions provide a concise alternative to the Python List construction. In a nutshell, List Compre-
hensions is essentially a tool for transforming each member of a sequence or an iterable into another list by
applying some specific operations on them.

Some examples can be seen in the figure below:
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l1 = [x**2 for x in range(10)]
l2 = [x for x in range(1, 10)]

print(l1)
>> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

print(l2)
>> [1, 2, 3, 4, 5, 6, 7, 8, 9]

Figure 5.38: Some examples of List Comprehensions that illustrate their functionality

In these examples, List Comprehensions apply a specific operation on each member of the range of numbers they
are given in the for loop and return a list with the resulted values.

The List Comprehension technique was applied to the script and the modifications that have been made in order
to accommodate it are shown below:

def kmerize(dna, k):
return [dna[max(0, i):min(len(dna), i + k) + 1] for i in range(0,

len(dna)+1-k, k)] # MODIFICATION↪→

Figure 5.39: The modifications that were made on the kmerize function of the script in order to accommodate
the application of List Comprehensions.

def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = [] # MODIFICATION

return [’’.join(kmerize(alignment.query_sequence,k)) for alignment
in alignmentsIterator] # MODIFICATION↪→

Figure 5.40: The modifications that were made on the kmerizeAlignments function of the script in order to
accommodate the application of List Comprehensions.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData[len(trainingData):] =
kmerizeAlignments(alignmentsIterator, kmerSize) # MODIFICATION↪→

target_labels.append(classesList.index(thisClass))

Figure 5.41: The modifications that were made on other sections of the script in order to accommodate the
application of List Comprehensions.

The correctness of this method was proved by applying the usual accuracy assessment. The output returned was
identical to the one of the original system.
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Figure 5.42: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the List Comprehensions optimisation.

Figure 5.43: The aggregated results from the Deterministic Profiling of the script that adopted the second ap-
proach to the application of List Comprehensions optimisation.

Figure 5.44: A Graph that shows the Total Execution Time (in seconds) of the System after the application of
List Comprehensions optimisation for 20 Consecutive Runs.

The graph shows a pretty normal distribution of values with only a single outlier that was located outside the
Standard Deviation boundaries. It can be assumed that in case this outlier did not existed or its variance from
the rest of the values was smaller then probably the Mean Value would be even smaller.

As it can be seen by the above plot and results, the use of List Comprehensions brought some significant im-
provements on the performance of the script. The Mean Value of the Execution time was reduced to the 47%
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percent of the Mean Value of the baseline system and thus it can be deduced that the execution speed was more
than the double of its original value.

In order to explain the above observation, an online research for relevant literature was conducted. One source
suggested that the optimality that lies behind the use of List Comprehensions over the simple list creation through
a for loop is due to the operations that happen in the lower, bytecode level. According to an experiment conducted
by Leary, List Comprehensions perform better because they are not required to load the append attribute off of the
list (LOAD ATTR bytecode) and call it later as a function (CALL FUNCTION bytecode) as it is happening
with the simple method but it actually generates a special LIST APPEND bytecode that enables the faster
appending of the new elements onto the resulted list [22].

An final step before accepting the obvious superiority of the List Comprehensions was the repetition of the
usual statistical analysis process for proving the significance of its results. The null hypothesis there was that
the replacement of the plain String Concatenation with the List Comprehensions method did not improve the
performance of the system and the alternative hypothesis was that it did. The p-value in this case was equal to
8.21x10-37 which is smaller than the value of the constant a, therefore the null hypothesis was rejected and the
alternative one was proved to be correct. Thus, the solution that provides the use of List Comprehensions is also
statistically approved as an optimisation over the original script.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

113 109.344 MiB 0.000 MiB @profile
114 def kmerize(dna, k):
115 109.344 MiB 0.000 MiB return [dna[max(0, i):min(len(dna), i + k) + 1] for i in range

(0, len(dna)+1-k, k)]

Figure 5.45: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the List Comprehensions optimisation.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

125 109.191 MiB 0.000 MiB @profile
126 def kmerizeAlignments(alignmentsIterator, k):
127 109.191 MiB 0.000 MiB kmerizedList = []
128 109.316 MiB 0.125 MiB return [’’.join(kmerize(alignment.query_sequence,k)) for

alignment in alignmentsIterator]

Figure 5.46: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the List Comprehensions optimisation.

The memory performance of this technique was also the most optimal amongst the different optimisations since
it managed to use only around 4MiB of more memory than the original system in contrast with the rest of the
methods that allocated 3 times more memory than the baseline system.
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5.1.6 Linked List

But apart from the alternatives to the String Concatenation that Python itself can provide to the developer, it is
also possible to make use of user-defined data structures. The structure that will be discussed in this section is the
Linked List. A Linked List is a dynamic data structure that can store elements in a linear way. Its elements are
called nodes and they are generic containers of data. Each of these nodes is comprised of the value it stores and
(at least) a reference to the next node. A Linked List can be either Singly or Doubly linked. The former variation
provides only a reference to the next node whilst the latter provide an extra reference to the previous node that
makes it connected in both directions.

One significant benefit from the use of a Linked List data structure is the fact that the capacity is completely
dynamically allocated in the sense that it is not assigned an initial capacity but, it grows or shrink with respect to
the nodes that are inserted to or removed from it, instead [1].

A significant drawback of the Linked List structure is the fact that the elements that are stored within this list
cannot be accessed individually. Instead, it uses a sequential access model where when one needs to access
a particular element within the list, he/she visit all the references, one by one, in order to reach the node of
interest [1]. This is not a problem in the specific case since the system always iterates over all the elements of
the structure without any need to access a single item individually.

The modifications made on the script can be shown below:

class Node:

def __init__(self, data=None, next_node=None):
self.data = data
self.next_node = next_node

def get_data(self):
return self.data

def get_next(self):
return self.next_node

def set_next(self, new_next):
self.next_node = new_next

Figure 5.47: A Python Implementation of the Node class
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class LinkedList:

head = None
size = 0

def __init__(self, head=None, size=0):
head = None
size = 0

def isEmpty(self):
return self.size == 0

def get_size(self):
return self.size

def insert(self, data):

node = Node(data, None)

if self.isEmpty():
self.head = node

else:
current = self.head

while current.get_next() is not None:
current = current.get_next()

current.set_next(node)

self.size = self.size + 1

def append(self, other):

if self.isEmpty() and other.isEmpty():
return

elif self.isEmpty():
self.head = other.head
return self

elif other.isEmpty():
return self

else:
current = self.head

while current.get_next() is not None:
current = current.get_next()

current.set_next(other.head)

Figure 5.48: A Python Implementation of the LinkedList class
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class LinkedList:
def tolist(self):

l = []
current = self.head

while current is not None:
l.append(current.get_data())
current = current.get_next()

return l

Figure 5.49: A Python Implementation of the LinkedList class (continued)

The modifications on the script that have been made in order to accommodate the Linked List data structure are
shown below:

def kmerize(dna, k):
thisLinkedList = LinkedList(None) # MODIFICATION
for i in range(0, len(dna)+1-k, k):

start = max(0, i)
stop = min(len(dna), i + k) + 1
thisLinkedList.insert(Node(dna[start:stop])) # MODIFICATION

return thisLinkedList # MODIFICATION

Figure 5.50: The modifications that were made on the kmerize function of the script in order to accommodate
the implementation of the Linked List.

def kmerizeAlignments(alignmentsIterator, k):
kmerizedList = [] # MODIFICATION
for alignment in alignmentsIterator:

kmerData = kmerize(alignment.query_sequence,k)
kmerizedList[len(kmerizedList):] = kmerData.tolist() #

MODIFICATION↪→

return kmerizedList

Figure 5.51: The modifications that were made on the kmerizeAlignments function of the script in order to
accommodate the implementation of the Linked List.

alignmentsIterator = thisBam.fetch(bedRecord[’chr’], thisStart, thisEnd
+ 1)↪→

trainingData[len(trainingData):] =
kmerizeAlignments(alignmentsIterator, kmerSize) # MODIFICATION↪→

target_labels.append(classesList.index(thisClass))

Figure 5.52: The modifications that were made on other sections of the script in order to accommodate the
implementation of the Linked List.
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This time, apart from modifying specific portions of the existing code, it was necessary to create two additional
classes to serve the implementation of the Linked List data structure. These were the Node and the Linked
List classes. The former constructs a Node instance by assigning the data and the next node attributes to it
and complementing it with Accessor and Mutator methods. The latter constructs the Linked List structure by
assigning the head attribute to it and an initial size of zero and supplementing it with three methods insert(),
append() and tolist() that support the operations of inserting an element to the Linked List, appending two
Linked Lists and converting a Linked List into to a plain Python list. It is important to state that in order to make
sure than the script will recognise the existence of the two new classes, it was required to append the code that
defines them before the section of the code that creates instances of them [41].

The actual application of the new structure on the script can be seen on the modifications made on the existing
code. In the kmerize() function, a new Linked List was created before the for-each loop. Each kmer that had
been constructed within the loop was inserted to it using the insert() method defined for this class. Each Linked
List instance created for a particular alignment iterator was appended to a larger Linked List called kmerizedList
using the append() method. Later, this list was converted into a plain Python List using the tolist() method and
appended as a list slice into the universal list of kmers for all the BAM files called trainingData.

The optimisation was assessed using the usual process:

Figure 5.53: The execution times (in seconds) for the 20 consecutive times for which the Deterministic Profiler
was run on the script that adopted the Linked List optimisation.

Figure 5.54: The aggregated results from the Deterministic Profiling of the script that adopted the Linked List
optimisation.
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Figure 5.55: A Graph that shows the Total Execution Time (in seconds) of the System after the application of
Linked List optimisation for 20 Consecutive Runs.

As the above results suggest, the implementation of a python version of a Linked List data structure did not
improved the execution of the script. On the contrary, it can be noticed that it actually added some overhead over
the execution of the script.

These results disproved the initial assumption that a Linked List, as a dynamic Data Structure, would benefit
the performance of the tool. This behaviour can be explained by the fact that, even though it was possible to
use this data structure in different sections of the script without any problems, it was necessary to convert it into
an iterable object type before passing it as an argument to the fit transform() method, according to the sci-kit
learn Documentation [50]. Therefore, by defining an appropriate tolist() method within the LinkedList class,
the Linked List can be converted into a Python List before being passed as an argument in the aforementioned
method. Unfortunately, this process itself added a significant overhead on the execution of the script and this
could have caused the extra delay. An additional reason why this implementation did not improved the perfor-
mance of the script at all is the fact the the results from the accuracy assessment of this technique were not 100%
positive and this may have also led to a degradation of the efficiency of the script.

45



Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

188 63.473 MiB 0.000 MiB @profile
189 def kmerize(dna, k):
190 63.473 MiB 0.000 MiB thisLinkedList = LinkedList()
191 63.473 MiB 0.000 MiB for i in range(0, len(dna)+1-k, k):
192 63.473 MiB 0.000 MiB start = max(0, i)
193 63.473 MiB 0.000 MiB stop = min(len(dna), i + k) + 1
194 63.473 MiB 0.000 MiB thisLinkedList.insert(dna[start:stop])
195 63.473 MiB 0.000 MiB return thisLinkedList

Figure 5.56: The section of the report generated by the memory profiler for the kmerize() function of the
System after the application of the Linked List optimisation.

Filename: bedNbamClassifier.py

Line # Mem usage Increment Line Contents
================================================

202 63.508 MiB 0.000 MiB @profile
203 def kmerizeAlignments(alignmentsIterator, k):
204 63.508 MiB 0.000 MiB kmerizedList = LinkedList()
205 63.508 MiB 0.000 MiB for alignment in alignmentsIterator:
206 63.508 MiB 0.000 MiB kmerData = kmerize(alignment.query_sequence,k)
207 63.508 MiB 0.000 MiB kmerizedList.append(kmerData)
208 63.508 MiB 0.000 MiB return kmerizedList

Figure 5.57: The section of the report generated by the memory profiler for the kmerizeAlignments() function
of the System after the application of the Linked List optimisation.

It is worth mentioning the remarkable improvement that the application of the Linked List data structure has
provided to the memory usage of the script. It managed to reduce the use of memory to the half of the original
one. This can be easily explained by taking the nature of the data structure into consideration. Up until the point
where elements are actually added to the Linked List, no memory is allocated to it. This means that this data
structure only takes up the amount of memory it necessarily needs to store its elements; no more, no less. This
can be certainly considered to be the most optimal memory allocation strategy since it does not waste any space,
no matter the present or the absence of any elements to be stored in the Linked List.
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Chapter 6

Conclusions

The project itself as well as the experimental procedure followed throughout its duration was source for a large
number of conclusions for the behaviour of the script itself as well as the process of optimisation and the scientific
method in general. In the following sections, these conclusions and the personal reflection of the author upon the
undertaken project will be provided and discussed.

6.1 Conclusions

Firstly, as far as the specific script is concerned, the most optimal solution to String Immutability was proved to
be the use of List Comprehensions. This optimisation provided a significant improvement over the performance
of the original script. To be more specific, it managed to double the execution speed which is remarkable for
a single optimisation. In addition, some runner-up optimisations were identified that increased the efficiency of
the script but not in this extend. These were the second approach to the application of Python String List, the
use of Character Array and the application of Pseudo File method.

On the contrary, some techniques such as the first approach to the application of Python String List and the
implementation of Linked List not only did they not improve the performance of the script but also added a
significant delay to its execution and increased the memory consumption. This was surprising due to the fact that
they were, initially, considered to be more optimal than the original system.

Furthermore, another concept that was stressed from the results was the computational importance of the study
of String Concatenation. It is extremely costly as an operation and especially when it is used to solve problems
in the larger scale it can be destructive for the efficiency of a software component. A concrete proof of this claim
is the significant overhead that it added to the Origin Classification tool. Since it was the dominant operation of
the script, the fact that it used an inefficient way to be performed caused enormous delays in the execution of the
whole script. The observed improvement on its performance after the application of the most optimal alternative
was amazing. Therefore, this led to the general conclusion which stated that pure String Concatenation should
be avoided to the greatest extend possible since it degrades the performance of the script without providing any
significant benefits over the other alternatives that produce the same result.

47



6.2 Reflection

The whole experimental process followed for the purposes of this project as well as the project itself has led
to some serious consideration of some aspects of the software optimisation and the experimental approach of a
scientific problem.

The process of Optimisation is by definition a complex problem. There are no general guidelines or guaranteed
solutions that always work. Everything depends on the nature and the context of the problem to which the
optimisation will be applied to. Different solutions can be proved optimal for different applications of the same
problem. Therefore, one should always experiment with various approaches in order to determine the most
appropriate solution.

Additionally, the Optimisation procedure is possible to provide some surprising results that are contradictory
to what it was expected. For instance, a modification that according to the programmer’s assumption would
certainly improve the performance of a script can be proved to actually downgrade it or the opposite. However,
this could provide food for thought since it requires a better insight on the lower level of execution that would
help in gaining useful knowledge regarding the smaller picture of how a certain operation works.

From a Scientific perspective, this project cultivated the idea that new knowledge not only does come from
proving the correctness of a hypothesis but also by disproving it. Forming a clear and correct idea on how certain
things work is an iterative process; it starts from some initial assumptions and results in the integration of the
whole picture. The intermediate steps of this procedure bring small snippets of knowledge that are used in the
following steps to solve the puzzle of the initial question that was the seed for the plantation of this process.

Finally, in terms of personal development, this project offered the chance to work on a real-life application of
Computing Science in Biology and Medicine by working on a product that was built to support the Scientific
Research. More specifically, this project enabled the author to deal with Genetic Sequencing, an emerging and
interesting topic in the aforementioned fields, and get a first-hand experience from its practical applications
by attending meetings of the Wellcome Trust Centre of Molecular Parasitology Bioinformatics team with the
purpose of discussing the operation of the script with its members. This was a pretty interesting experience
since it provided the opportunity for constructive interaction and cooperation between individuals from different
academic backgrounds (Computing Science and Biology) for considering different approaches that could be
taken for the solving the same problem.

Overall, the project was very challenging and interesting and it provided knowledge from different aspects and
academic disciplines.
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Chapter 7

Future Work

As this iteration of the project came to an end, a number of suggestions will be provided as seeds for study for the
people that may undertake the project in the future. The suggestions will have two scopes: short-term proposals
and long-term proposals. The difference between them is that the former can be applied on the tool immediately
whilst the latter require reformation of the code.

Firstly, it would be recommended to take up some investigations that originated from results from this iteration
of the project. For instance, it would be extremely useful to examine whether an alternative implementation of
the Linked List would be optimal for the performance of the script as it was proved to be in terms of memory
usage. Additionally, an additional optimisation iteration focused only on the improvement of the memory usage
of the script would certainly lead to some useful alterations.

As a supplement to the above recommendations, an investigation of how an appropriate implementation of a Trie
Data Structure could be possibly used to ease the process of storing kmers and how it will cooperate with the
CountVectorizer object from the sciki-learn library in order to perform the counting of the occurrences of each
kmer in the input file(s). The Trie is capable of storing each kmer efficiently in a tree-like manner so that the
kmers that appear more frequently in the input would be stored closer to the root node of this tree in order to be
traversed more quickly.

The first suggestion for new work provides the application of an object-oriented programmatistic style on the
script. That would involve the change of the script structure so that it will become more modular. This means that
the functionality of the script would be split into classes and functions. The aforementioned change would help
any future profilings of the script since some profilers such as the memory profiler can only assess individual
methods or functions rather than the whole script. That would also make the debugging easier since the errors are
more easily observable in smaller blocks of code and it would improve the the portability of the tool in general.

Another suggestion is to try the application of multithreading on the script. Python provides a collection of
modules to support threading in its scripts. The threading module that is based on the lower-level thread module
can be used for the manipulation of threads within the script [38]. The application of threads would enforce the
introduction of concurrency within the Classification tool by taking advantage of the different processing cores
of the machine that it runs on. For example, a Master thread could be assigned the delegation of each BAM
file to a different Worker thread to enable their processing in parallel. It should be kept in mind though that
all the data structures used within the script should be thread safe to avoid any undesirable results caused by
the concurrent access of threads on the same data at the same time and therefore, a careful research should be
conducted before in order to perform all the appropriate actions needed to ensure it. For example, as far as the
pandas data structures (Series and Dataframe) are concerned, their documentation suggests that ”As of pandas
0.11, pandas is not 100% thread safe” by definition and it recommends the use of locks to avoid any threading
issues [31].
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Moreover, since the project deals with the processing of significantly large amounts of data, a cluster computing
programmatic paradigm could be used to support the tool. The Apache Hadoop framework or the Apache
Spark could be introduced so that they would provide a Big Data infrastructure to the system. The latter one is
more preferred since it is more prominent in the Big Data area at the moment whilst the former is considered to
be deprecated.

Amongst the longer term suggestions is the migration to another programming language to exploit the different
advantages that they provide. For example, if the use of Apache Hadoop is seriously considered, it is worth
converting the code from Python to Java since the latter is the native language of the framework and it would
possibly make its use easier. The same holds for Apache Spark and Scala. Furthermore, one might consider
migrating to a lower-level language such as C to be benefited from the, by definition, faster execution of the
script.

The conversion of the script to a different language is difficult though. Apart from the effort of actually translating
the script from one language to another which can be considered as trivial, there is also the significant overhead
for figuring out how to preserve the functionality provided by the various external libraries such as the sci-kit
learn. Some of them are either not easily accessible from other languages or not available at all and that would
require some extra research for identifying any possible alternatives which can take a significant amount of time
that may not worth the trade-off.
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Chapter 8

Appendix

Deterministic Profiling - Cumulative Time - String Appending

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

24630610 function calls (24374600 primitive calls) in 21.783 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.017 0.009 21.794 21.794 bedNbamClassifier.py:2(<module>)
130 4.702 0.036 14.464 0.111 bedNbamClassifier.py:124(kmerizeAlignments)

195729 4.847 0.000 8.119 0.000 bedNbamClassifier.py:113(kmerize)
1 0.003 0.003 5.521 5.521 text.py:792(fit_transform)
1 1.767 1.767 5.438 5.438 text.py:737(_count_vocab)

130 0.002 0.000 2.006 0.015 text.py:237(<lambda>)
130 0.000 0.000 1.738 0.013 text.py:213(<lambda>)
141 1.737 0.012 1.737 0.012 {method ’findall’ of ’_sre.SRE_Pattern’ objects}

195859 0.173 0.000 1.377 0.000 calignmentfile.pyx:1683(__next__)
7 0.000 0.000 1.275 0.182 numpy_pickle.py:351(dump)
7 0.000 0.000 1.274 0.182 pickle.py:220(dump)

116577/7 0.127 0.000 1.274 0.182 numpy_pickle.py:255(save)
116577/7 0.293 0.000 1.274 0.182 pickle.py:269(save)
19383/4 0.060 0.000 1.273 0.318 pickle.py:345(save_reduce)

15/4 0.000 0.000 1.273 0.318 pickle.py:640(save_dict)
15/4 0.025 0.002 1.273 0.318 pickle.py:655(_batch_setitems)

Figure 8.1: Report from the Deterministic Profiling of the most Representative Run of the Original Script sorted
by the Cumulative Time
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Deterministic Profiling - Number of Calls - String Appending

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

24630610 function calls (24374600 primitive calls) in 21.600 seconds

Ordered by: call count

ncalls tottime percall cumtime percall filename:lineno(function)
5585942/5585336 0.822 0.000 0.823 0.000 {len}
5199869 1.149 0.000 1.149 0.000 {min}
5188297 1.177 0.000 1.178 0.000 {max}
5188104 1.109 0.000 1.109 0.000 {method ’append’ of ’array.array’ objects}
291246 0.048 0.000 0.048 0.000 {id}
216769 0.054 0.000 0.054 0.000 {method ’get’ of ’dict’ objects}
196860 0.128 0.000 0.128 0.000 {range}
195859 0.178 0.000 1.390 0.000 calignmentfile.pyx:1683(__next__)
195859 1.109 0.000 1.109 0.000 calignmentfile.pyx:1675(cnext)
195729 0.093 0.000 0.219 0.000 calignedsegment.pyx:981(__get__)
195729 4.846 0.000 8.078 0.000 bedNbamClassifier.py:113(kmerize)
195729 0.103 0.000 0.103 0.000 calignedsegment.pyx:494(makeAlignedSegment)
195729 0.125 0.000 0.125 0.000 calignedsegment.pyx:444(getSequenceInRange)
195729 0.052 0.000 0.052 0.000 calignedsegment.pyx:645(__dealloc__)
194324 0.083 0.000 0.083 0.000 {method ’write’ of ’file’ objects}

116577/7 0.293 0.000 1.279 0.183 pickle.py:269(save)

Figure 8.2: Report from the Deterministic Profiling of the most Representative Run of the Original Script sorted
by the Number of Calls
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Deterministic Profiling - Cumulative Time - Python List - First Approach

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

22856575 function calls (22851257 primitive calls) in 57.474 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 5.492 2.746 57.485 57.485 bedNbamClassifier.py:2(<module>)
130 39.568 0.304 51.488 0.396 bedNbamClassifier.py:127(kmerizeAlignments)

195729 5.897 0.000 10.186 0.000 bedNbamClassifier.py:113(kmerize)
195859 0.197 0.000 1.438 0.000 calignmentfile.pyx:1683(__next__)
5188297 1.213 0.000 1.213 0.000 {max}
5199869 1.162 0.000 1.162 0.000 {min}
195859 1.124 0.000 1.124 0.000 calignmentfile.pyx:1675(cnext)
5259266 0.960 0.000 0.960 0.000 {method ’append’ of ’list’ objects}

5431651/5431045 0.826 0.000 0.826 0.000 {len}
5 0.004 0.001 0.284 0.057 __init__.py:3(<module>)

195729 0.096 0.000 0.241 0.000 calignedsegment.pyx:981(__get__)
196860 0.153 0.000 0.153 0.000 {range}
195729 0.145 0.000 0.145 0.000 calignedsegment.pyx:444(getSequenceInRange)

18 0.007 0.000 0.130 0.007 __init__.py:1(<module>)
3 0.002 0.001 0.118 0.039 __init__.py:4(<module>)
3 0.001 0.000 0.118 0.039 __init__.py:5(<module>)

Figure 8.3: Report from the Deterministic Profiling of the first approach of the Python List optimisation sorted
by the Cumulative Time
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Deterministic Profiling - Cumulative Time - Python List - Second Approach

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

23052422 function calls (23047104 primitive calls) in 12.463 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.132 0.066 12.474 12.474 bedNbamClassifier.py:2(<module>)
130 0.365 0.003 11.839 0.091 bedNbamClassifier.py:127(kmerizeAlignments)

195729 5.649 0.000 9.866 0.000 bedNbamClassifier.py:113(kmerize)
195859 0.151 0.000 1.324 0.000 calignmentfile.pyx:1683(__next__)
5188297 1.212 0.000 1.212 0.000 {max}
5199869 1.170 0.000 1.170 0.000 {min}
195859 1.095 0.000 1.095 0.000 calignmentfile.pyx:1675(cnext)
5259266 0.956 0.000 0.956 0.000 {method ’append’ of ’list’ objects}

5627510/5626904 0.846 0.000 0.846 0.000 {len}
5 0.004 0.001 0.286 0.057 __init__.py:3(<module>)

195729 0.089 0.000 0.200 0.000 calignedsegment.pyx:981(__get__)
18 0.007 0.000 0.131 0.007 __init__.py:1(<module>)
3 0.002 0.001 0.119 0.040 __init__.py:4(<module>)
3 0.001 0.000 0.119 0.040 __init__.py:5(<module>)
1 0.000 0.000 0.116 0.116 text.py:13(<module>)
1 0.000 0.000 0.114 0.114 imputation.py:4(<module>)

Figure 8.4: Report from the Deterministic Profiling of the second approach of the Python List optimisation sorted
by the Cumulative Time
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Deterministic Profiling - Cumulative Time - Character Array

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

28436384 function calls (28431066 primitive calls) in 16.605 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.124 0.062 16.616 16.616 bedNbamClassifier.py:2(<module>)
130 0.398 0.003 15.749 0.121 bedNbamClassifier.py:129(kmerizeAlignments)

195729 7.280 0.000 13.595 0.000 bedNbamClassifier.py:114(kmerize)
5383963 1.658 0.000 1.658 0.000 {method ’append’ of ’array.array’ objects}
5187973 1.388 0.000 1.388 0.000 {method ’fromstring’ of ’array.array’ objects}
195859 0.154 0.000 1.336 0.000 calignmentfile.pyx:1683(__next__)
5188297 1.227 0.000 1.227 0.000 {max}
5199869 1.154 0.000 1.154 0.000 {min}
195859 1.094 0.000 1.094 0.000 calignmentfile.pyx:1675(cnext)

5431781/5431175 0.865 0.000 0.865 0.000 {len}
5 0.004 0.001 0.284 0.057 __init__.py:3(<module>)

1752 0.233 0.000 0.233 0.000 {method ’split’ of ’str’ objects}
195729 0.089 0.000 0.206 0.000 calignedsegment.pyx:981(__get__)

18 0.007 0.000 0.131 0.007 __init__.py:1(<module>)
3 0.002 0.001 0.118 0.039 __init__.py:4(<module>)

195729 0.118 0.000 0.118 0.000 calignedsegment.pyx:444(getSequenceInRange)

Figure 8.5: Report from the Deterministic Profiling of the Character Array optimisation sorted by the Cumulative
Time
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Deterministic Profiling - Cumulative Time - Pseudo File

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

28827972 function calls (28822654 primitive calls) in 16.706 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.123 0.062 16.717 16.717 bedNbamClassifier.py:2(<module>)
130 0.448 0.003 15.852 0.122 bedNbamClassifier.py:129(kmerizeAlignments)

195729 7.216 0.000 13.663 0.000 bedNbamClassifier.py:114(kmerize)
10767404 3.122 0.000 3.122 0.000 {method ’write’ of ’cStringIO.StringO’ objects}
195859 0.151 0.000 1.322 0.000 calignmentfile.pyx:1683(__next__)
5188297 1.231 0.000 1.231 0.000 {max}
5199869 1.183 0.000 1.183 0.000 {min}
195859 1.093 0.000 1.093 0.000 calignmentfile.pyx:1675(cnext)

5431781/5431175 0.902 0.000 0.902 0.000 {len}
5 0.004 0.001 0.286 0.057 __init__.py:3(<module>)

1752 0.234 0.000 0.234 0.000 {method ’split’ of ’str’ objects}
195729 0.088 0.000 0.199 0.000 calignedsegment.pyx:981(__get__)

18 0.007 0.000 0.132 0.007 __init__.py:1(<module>)
3 0.002 0.001 0.119 0.040 __init__.py:4(<module>)
3 0.001 0.000 0.119 0.040 __init__.py:5(<module>)
1 0.000 0.000 0.116 0.116 text.py:13(<module>)

Figure 8.6: Report from the Deterministic Profiling of the Pseudo File optimisation sorted by the Cumulative
Time
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Deterministic Profiling - Cumulative Time - List Comprehensions

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

17867497 function calls (17861750 primitive calls) in 9.926 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.017 0.008 9.937 9.937 bedNbamClassifier.py:2(<module>)
130 0.367 0.003 9.433 0.073 bedNbamClassifier.py:125(kmerizeAlignments)

195729 4.161 0.000 7.383 0.000 bedNbamClassifier.py:113(kmerize)
195859 0.148 0.000 1.311 0.000 calignmentfile.pyx:1683(__next__)
5188297 1.173 0.000 1.173 0.000 {max}
5199869 1.150 0.000 1.150 0.000 {min}
195859 1.092 0.000 1.092 0.000 calignmentfile.pyx:1675(cnext)

5432045/5431439 0.821 0.000 0.822 0.000 {len}
5 0.004 0.001 0.280 0.056 __init__.py:3(<module>)

195729 0.087 0.000 0.196 0.000 calignedsegment.pyx:981(__get__)
202051/202042 0.136 0.000 0.136 0.000 {method ’join’ of ’str’ objects}

18 0.007 0.000 0.128 0.007 __init__.py:1(<module>)
3 0.002 0.001 0.117 0.039 __init__.py:4(<module>)
3 0.001 0.000 0.117 0.039 __init__.py:5(<module>)
1 0.000 0.000 0.114 0.114 text.py:13(<module>)
1 0.000 0.000 0.112 0.112 imputation.py:4(<module>)
1 0.000 0.000 0.112 0.112 imputation.py:4(<module>)

Figure 8.7: Report from the Deterministic Profiling of the List Comprehensions optimisation sorted by the Cu-
mulative Time
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Deterministic Profiling - Cumulative Time - Linked List

Dumping vectorizer...done
Dumping transformer...done
Dumping vectors...done
Dumping target_labels and classes...done
Dumping classifier...done
Self accuracy: 100.00 %

208280456 function calls (208274540 primitive calls) in 97.757 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
2/1 0.007 0.003 97.768 97.768 bedNbamClassifier.py:2(<module>)
130 0.436 0.003 97.248 0.748 bedNbamClassifier.py:202(kmerizeAlignments)

195729 6.539 0.000 94.441 0.000 bedNbamClassifier.py:188(kmerize)
5187973 52.946 0.000 84.435 0.000 bedNbamClassifier.py:58(insert)

169065008 27.958 0.000 27.958 0.000 bedNbamClassifier.py:36(get_next)
195859 0.168 0.000 1.368 0.000 calignmentfile.pyx:1683(__next__)
5187973 1.314 0.000 1.314 0.000 bedNbamClassifier.py:29(__init__)
5775160 1.298 0.000 1.298 0.000 bedNbamClassifier.py:52(isEmpty)
5188297 1.255 0.000 1.255 0.000 {max}
5199869 1.210 0.000 1.210 0.000 {min}
195859 1.111 0.000 1.111 0.000 calignmentfile.pyx:1675(cnext)
4992244 1.062 0.000 1.062 0.000 bedNbamClassifier.py:39(set_next)

5432149/5431543 0.854 0.000 0.855 0.000 {len}
195729 0.586 0.000 0.729 0.000 bedNbamClassifier.py:74(append)

5 0.004 0.001 0.287 0.057 __init__.py:3(<module>)
195729 0.094 0.000 0.222 0.000 calignedsegment.pyx:981(__get__)

Figure 8.8: Report from the Deterministic Profiling of the Linked List optimisation sorted by the Cumulative
Time
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