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Abstract

Mass spectrometry (MS) is an analytical scientific tool for identifying the constituent molecules
that make up a given chemical or biological substance. Its application to to metabolomics, the
study of small molecules called metabolites that are found in biological systems, has many medical
applications and is therefore an area of much interest at present.

One of the main challenges associated with mass spectrometry is handling the large volumes of
data produced as output. This presents a number of issues in correctly identifying which metabo-
lites are present for a given sample.

The aim of this project is to use two algorithms, namely the Gibbs sampling algorithm and varia-
tional Bayes, to combine this output into a smaller number of groups called clusters. The algorithms
are used to group the output in such a way that each cluster relates to the same molecule. These
clusters can then be matched to possible molecules in order to identify the sample metabolite’s
make-up.

There are two main stages to this project. The first involves creating a software implementation
of the two clustering algorithms which can be applied to the output from a mass spectrometer for
a given sample of metabololites. The second stage involves matching the clusters obtained from
the implementations of the clustering algorithms to candidate molecules and analysing the results
obtained from this matching process.

Of particular interest is the adduct pattern associated with the matched molecule. Adducts are pro-
duced during the ionisation stage of the mass spectrometry process by bonding each of the sample’s
molecules with charged ions. This ionisation process is random, and there are various different
ions to which each molecule may be bonded with. It is believed that the pattern of the adducts
formed by each molecule may be used to distinguish between to isomers (molecules with the same
constituent molecules but having a different structure). By studying the adduct patterns identified
from running the clustering algorithms developed on two samples known to contain isomers, it is
believed that these adduct patterns may indeed have some predictive power. Having identified this,
this dissertations sets out some areas for further work with a few to investigating this further.
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Chapter 1

Introduction

1.1 Problem Context

1.1.1 Mass Spectrometry

Mass Spectrometry (MS) is an analytical scientific technique used to identify a chemical or biolog-
ical sample’s constituent molecules [8]. It has a wide range of applications in areas such as drug
discovery, disease diagnosis as well as general chemistry and biology theory. [4]

The main application area of MS considered in this dissertation is in the field of metabolomics - that
is, the study of small molecules called metabolites that are found in biological systems. Understand-
ing the structure of the full set of metabolites in a biological system (referred to collectively as the
metabolome) has many medical applications and is therefore an area of much interest at present. [3]

MS is carried out through the use of a scientific device called a mass spectrometer. A chemical
or biological sample whose chemical composition is to be studied can be added to the mass spec-
trometer and the device then carries out the mass spectrometry process on it. Once complete, the
spectrometer produces data which can then be studied in order to identify the sample’s chemical
structure. As described in [4], the main steps of the mass spectrometry process are as follows:

1. Introduction - This stage concerns the process by which the sample is added to the mass
spectrometer. Before introducing a sample to the spectrometer, it must first be separated into
its constituent molecules which are to be analysed (analytes). There are different methods for
doing this however the method considered in this dissertation is through Liquid Chromatog-
raphy - that is, this dissertation considers Liquid Chromatography Mass Spectrometry (LC-
MS). Liquid chromatography relies on the fact that the different analytes will pass through
a column in liquid form at different times due to their individual chemical properties (hence
separating them out). The amount of time required for an analyte to pass through the chro-
matography stage and enter the mass spectrometer is called its Retention Time (RT). The RT
value itself provides a large amount of useful information about the analytes and is of much
use in analysing MS data.
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2. Ionisation - Once separated out, each analyte is given a charge by ionising it (adding or
removing electrons from its atoms). This ionisation process is carried out by adding an
atom/molecule to each analyte with a given charge called an adduct. This process is random
and there are variety of different adducts an analyte may be bonded with. This ionisation
process means that there can be multiple peaks observed for each metabolite.

3. Mass Detection: This is carried out inside the spectrometer and is used to identify the mass
to charge ratio (mass per unit charge) for each of the now charged analytes by using cal-
culations on their movement through an electromagnetic field. This process gives a profile
of mass to charge ratios for a given retention time along with their intensities (the frequency
with which each ion is observed).

4. Data Processing The spectrometer outputs data a spectrum for each retention time which
shows intensity against mass to charge ratio. This plot Each individual intensity value ob-
served for an ion with a given mass to charge ratio is called a peak. (See Figure 1.1 for an
example.)

5. Quantification - The next step in the process is to interpret the output and identify the
molecules present in the sample by deriving their masses from the mass to charge ratio values
for each ion. Along with being computationally intensive due to large of data produced from
the mass spectrometer, accurately matching peaks to molecules presents a number of other
challenges.

The focus of this dissertation is on the Quantification step and how to match the peaks produced
from the mass spectrometer to a database of potential constituent molecules for a given sample.
The next section outlines the main challenges faced in this stage of the MS process and defines the
problem that this dissertation seeks to address.

1.2 Problem Definition

1.2.1 Motivation

Analysing the output in the Quantification step of the mass spectrometry process presents a number
of challenges. The aim of this step is to take the peaks produced from the analysis and match these
to molecules with a view to correctly identifying the constituent molecules of the sample being
studied.

In metabolomics, one method used is to compare the spectrum of peaks produced in the MS out-
put against a database of known masses of standard metabolites. An example of what an observed
spectrum of intensity peaks may look like is shown in Figure 1.1.

The aim is then to match the peaks to these molecules. For example, this can be done by compar-
ing the mass represented by each peak against the database of masses for known molecules. Other
properties such as retention time could also be compared.

There are some challenges associated with this method however. For example, there is still limited
knowledge about all of the naturally occurring metabolomes - indeed, the structure of the human
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Figure 1.1: Sample plot of a spectrum for a fixed RT value. Each vertical line shown represents an
intensity peak

metabolome is not yet fully understood. [3] This therefore places a restriction on our ability to
construct a fully comprehensive database containing all potential constituent molecules for a given
sample. Also, the results of a mass spectrometry experiment are greatly influenced by the experi-
mental conditions under which it is carried out. This presents a challenge in creating standardised
data for use in constructing a database. Despite these issues, a number of there are a number of
openly available metabolomics databases available (see [3] for further details) and one of which is
used for the analysis carried out in this dissertation.

Another challenge in metabolite identification from MS output is due to the large volume and com-
plexity of the data produced by the mass spectrometer. In particular, as stated in [1], the number
of peaks at different mass to charge ratios greatly outnumbers the collection of possible metabo-
lites in a given sample. As such, in matching peaks to metabolites the chance of a false-positive
(incorrectly matching a peak to given metabolite in the database) is high if this is not accounted for
in the analysis of the peaks. One reason for the large number of peaks observed can be attributed
to noise terms, impurities etc. that are not actually attributable to the molecule. Another reason is
due to the ionisation process. As described in Ionisation stage of the mass spectrometry process
discussed in the previous section, the same metabolite in a sample will likely form different adducts
(with different mass to charge ratios) and therefore will be represented by different peaks in the
MS output. Motivated by this, the problem considered in this dissertation centres on developing a
computational method for matching peaks to metabolites in such a way as to reduce the number of
false positives. [3]
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1.2.2 Problem Definition

As discussed in the above section, the large number of peaks produced from MS can lead to peaks
being incorrectly matched to molecules. The two main reasons for this are that not all peaks actu-
ally correspond to a an actual constituent molecule for the sample (they may be an impurity in the
experimental process) and that peaks corresponding to actual molecules relate to their mass after
the ionisation process (i.e. their mass plus the mass of an adduct) as opposed to their actual pre-
ionisation precursor mass.

With a view to creating a method for matching peaks to molecules which reduces the number
of false positives, this dissertation focuses on developing a computational tool which reduces the
number of peaks to be matched by combining them into clusters. These clusters are formed using
an algorithm which identifies peaks which are likely to relate to the same molecule by analysing
their mass, RT and intensity values as they are obtained from a mass spectrometer.

This dissertation sets out a statistical model which can be used allocating peaks to clusters. In
this model, each cluster is modelled as a bivariate normal distribution over pairs of precursor mass
and RT values. The precursor mass for a peak can be calculated from its mass to charge ratio
by applying a transform with parameters dependant on the adduct which has been applied to the
molecule. There are a finite number of possible adducts and therefore a finite number of possible
precursor masses associated with a given peak. The possible clusters that a peak can be belong to
can therefore be obtained by applying the transform to its mass to charge ratio associated with each
adduct and comparing this along with its RT value to the mean precursor mass and RT values of
each cluster. If the values associated with a peak after applying one of the transforms on its mass
are within acceptable range of those of a given cluster, then this cluster is a possible cluster to which
this particular peak may belong. For each peak, this comparison can be made against each cluster
for each transform in order to obtain a list of possible clusters to which the peak may belong. A
mathematical clustering algorithm can then be used to allocate a particular peak to one of its pos-
sible clusters. The algorithms used in this dissertation for this purpose are the Gibbs sampler and
the Variational Bayes clustering algorithms.

Having clustered the peaks together, the molecule identification problem has now been simplified -
we need now only consider matching the representative masses for each cluster to the molecule of
databases. If the clustering has been carried out correctly, the confidence that each cluster mass re-
lates to an actual molecule in the database will be greater than for that of an individual peak (which
may in itself we attributable to experimental error). Therefore, the use of clustering will reduce the
probability of false positives in matching and improve the overall accuracy of the MS process.

1.3 Overview

This dissertation will set out the development of a software product which can be used to imple-
ments the peak clustering algorithms for a given set of MS peak data.

Chapter 2, discusses the current approaches to taken to peak matching. Here, an existing soft-
ware tool for analysing MS data that also seeks to cluster peaks before matching them to molecules
is discussed.
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Chapter 3 sets provides an overview of the requirements of the software product developed and
describes how they were gathered.

Chapter 4 provides an overview the key design decisions made in developing the software prod-
uct.

Chapter 5 describes the mathematical foundation of the clustering techniques used and their imple-
mentation as a computer program. Mathematical derivations of the Gibbs sampler and variational
Bayes algorithms are first provided. It is then described how these mathematical algorithms have
been translated to a software implementation, with details of the software design, algorithms and
data structures used in the implementation being discussed.

Chapter 6 describes presents an evaluation of the software tool developed and interprets the out-
put it produces.

The final chapter, Chapter 7, evaluates the current status of the software tool and provides sug-
gestions for further work.
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Chapter 2

Survey

Developing effective algorithms that can be used to match peaks from mass spectrometry data to
molecules is an area of much interest. As discussed in [1], the main differences in the algorithms
developed to do this is in how they handle the cases where multiple peaks in the MS output can
correspond to the same molecule (e.g. because of adducts formed during the Ionisation process).
If the presence of these peaks in the data is not allowed for when developing an algorithm, then
this will likely lead to a number of false positive matches. This is because the masses of these
peaks may closely resemble those of other molecules when they are compared against a database
of known molecular masses.

The use of clustering methods for this purpose is a relatively new area. In this dissertation, the
Gibbs sampling and variational Bayes algorithms will be used to address this issue by clustering
together peaks that likely to belong to the same molecule.

One existing software package which clusters peaks before matching them to molecules is mz-
Match. It does this using a different method to the approach taken in this dissertation however. As
described in [2], it does this using a greedy clustering algorithm. This algorithm seeks to identify
peaks relating to the same molecule using the fact that such peaks should have similar retention
times and intensity profiles (intensity values plotted at each retention time). The main steps in the
algorithm, as set out in [2], are as follows:

1. while not all peaks have been clustered

1.1. Identify the first peak with the greatest intensity value

1.2. Using this peak form a new cluster

1.3. For each non-clustered peak, compare its intensity profile to that of the cluster-forming
peak (by calculating the Pearson correlation, see [2])

2. Terminate

The main issue with this algorithm, as identified in [2], is that once a cluster of peaks has been
formed then all of the peaks contained in it are no longer considered for the rest of the algorithm.
For example, it may be the case that a particular peak is not allocated to a cluster because of how
it compares with the peak used to form the cluster. However, had it been compared with one of
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the other peaks in the cluster then it would have been clustered with this peak. This effect results
in some peaks not being allocated with any others and are allocated to their own individual cluster.
Peaks allocated to such clusters can introduce false-positive classifications when matching against
a database of molecules.

In comparison with this method, the Gibbs sampler and variational Bayes clustering methods con-
sidered in this dissertation follow a Bayesian approach. In each iteration of these algorithms, the
current cluster allocations can be updated in light of new information. This will help address the
issue identified with the algorithm used in the mzMatch software. On the whole, using the Gibbs
sampler and variational Bayes algorithms with return fewer matches than the greedy algorithm used
in mzMatch however fewer matches will be false positives.
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Chapter 3

Requirements

3.1 Requirements Gathering

The requirements for the peak clustering software product that has been developed were gathered
through consultation with the project client - Dr Simon Rogers from the School of Computing at
the University of Glasgow.

Several meetings were held during which the client described problems relating to peak cluster-
ing of mass spectrometry data. Following each meeting, the problems described by the client were
considered and the key requirements which the software product needed to fulfil were elicited. A
software solution would then be prepared to meet the identified requirements and demonstrated
to the client. Following each demonstration, the client could suggest changes where the software
didn’t quite meet their needs and propose further areas for consideration that would then lead on
the further requirements being established. Repeating this process, the requirements were gathered
and refined iteratively throughout the development of the project.

3.2 Product Requirements

Initially, the main requirements for the software related to implementing the Gibbs sampling and
variational Bayes algorithms and using these implementations to cluster peaks of data and match
these clusters to molecules. In addition to the requirement that the software must implement these
algorithms, other requirements such as the format of the peak data that must be read, how long the
software should take to run and the format of the output it must produce were also identified.

Once these initial requirements had been met, further requirements were identified which would
build on what had been developed so far. For example, an area of interest to the client was whether
the adduct patterns identified for each molecule obtained from the peak clustering process had any
predictive ability for identifying molecules. Further software requirements were identified in order
to attempt to answer this question.
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The main requirements that had to be met by the software product are as follows:

1. The product must be able to read the raw peak data produced from a mass spectrometer from
a text file with a predefined format.

2. The product must contain an implementation of the Gibbs sampling algorithm and be able
to use this to allocate the peaks to clusters using their precursor mass, retention time and
intensity values.

3. The product must be capable of running in excess of 30 peak data files in a single run.

4. The product must be capable of processing 30 peak data files with 1 hour.

5. The product must contain an implementation of the variational Bayes algorithm and be able
to use this to allocate the peaks to clusters using their precursor mass, retention time and
intensity values.

6. The product must produce as output from each clustering algorithm text files showing which
peak the cluster has been allocated to.

7. For a given sample, the product must be able to match a the clusters identified to its con-
stituent molecules.

8. The product should produce plots showing the frequency that each adduct is observed for a
given molecule across a number of input peak data files

9. The product should produce plots showing the mean and variance of the intensity observed
for each adduct for a given molecule across a number of input peak data files

14



Chapter 4

Design

This section provides an overview of the key design decisions made in the development of the peak
clustering software product.

4.1 Object Orientation

It was decided that an object orientated approach would be taken in the design and development of
the software.

As described in the previous chapter, key requirements for the software product are that it must
implement the Gibbs sampling and variational Bayes clustering algorithms. Prior to development,
these algorithms were first derived mathematically. It was decided that using an object orientated
approach would provide a strong framework for translating the mathematical models into software.
This was done by identifying the key elements being described by the models and then translating
these into classes. For example, the aim of the models is to allocate peaks from raw mass spectrom-
etry data to clusters. In light of this, a Peak and a Cluster class were the first classes identified for
implementing the clustering algorithms.

Having identified the main classes, the next step was the to identify the properties that each class
should have to be able to implement the algorithms. For example, it was identified that each peak
should have a mass, retention time and intensity value and therefore these should be added as prop-
erties of the Peak class.

Having formulated an initial class diagram, this was used to begin implementing the algorithms as
software. The class structure was then modified and updated throughout development with classes
being added and updated in the overall design as required. Details of the overall class diagrams
used in the development of the software product can be found in section B.1 of Appendix B.

An alternative design choice would have been to have implemented the algorithms procedurally.
This approach would likely have have provided some memory efficiencies and hence faster running
times than the current object orientated approach. However, it was decided that this would would
be out-weighed by the overall design benefits offered by object orientation. In particular, the ability
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to encapsulate the key model parameters within classes is particularly helpful in gaining an overall
understanding of what each element of the software product does without having to delve deeply
into the code. Hence, it was decided that use of object orientation would provide an overall higher
degree of clarity than offered by a procedural approach and that this would more compensate for
any slight performance trade-offs.

4.2 Overall Structure

Another key design design was how the overall software product would be structured. The are es-
sentially two main steps that the software had to implement to meet its requirements. It first has
to read in the raw peak data and then cluster these peaks using the the clustering algorithms. Hav-
ing done this, the next step is then to allocate clusters to molecules and generate useful output on
the adduct patterns of the molecules. It was decided that this process would be implemented as a
pipeline as shown below:

In the above pipeline, it can be seen that the output text files from the cluster allocation output are
used as input for the molecule matching process. An alternative design would have been to instead
to combine the clustering and molecule matching steps into one single process as shown below:

However, it was decided that making the two steps independent from one another would offer a
number of advantages. In practice it may be desirable to run either of the two steps on its own. If
they were combined into a single process then it would be necessary to wait for both processes to run
each time. This approach also reduces coupling in the system since the molecule matching process
is only dependent on the text files produced by the clustering algorithms. Hence, the underlying de-
sign of the clustering model could be modified and there would be no need to make any changes to
the molecule matching process (as long as the format of the text files it produced remains the same).

Details of each file used in the implementation of the design are included in section B1.3 of Ap-
pendix B.
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Chapter 5

Implementation

This section describes the mathematical framework behind the peak clustering algorithms which
are used in the software product that has been developed. Two clustering models have been used in
the software’s implementation, namely, the Gibbs sampling and Variational Bayes algorithms.

First, a derivation of the overall statistical model used to implement these methods will first be
provided. This statistical model will then be used as a basis for describing the two algorithms
mathematically. Having laid the mathematical foundations, it will then be described how the two
algorithms have been implemented in software in terms of their overall design and the key data
structures which have been used in their implementation.

5.1 Statistical Model

5.1.1 Key terms and Assumptions

It is assumed that a collection of N peaks representing combinations of mass, retention time and
intensity values are produced as output from the mass spectrometer. The mass values observed cor-
respond those of each molecule’s adducts however it is their precursor masses that are of interest.
For a given adduct, A, a transformation TA exists which may be used to obtain the precursor mass
from the observed adduct mass. However, the adduct corresponding to each peak is not known at
the outset and it will therefore be necessary to establish candidate adducts for each peak as part
of the modelling process. The mass and retention time values associated with the ith peak (Xi

m

and Xi
RT respectively) are assumed to be independent random variables and will be modelled as a

random pair XA
i = (TA(Xi

M ), Xi
RT ) , where i = 1, 2, ..., N .

The aim of the clustering model is to allocate each of these N peaks to K clusters (K ≤ N )
under the assumption that the peaks belong to one of K bivariate normal distributions. That is a
normal-mixture model will be fitted to the data. A mixture model is a general class of statistical
model in which the population of interest can be split into sub-populations (or clusters) and a model
can then be applied to each of these sub-populations individually. (See chapter 18 of [6] for further
details on mixture models.) In this case, the model assumes that the population of peak data can be
subdivided into K clusters in each of which a bivariate normal distribution can be fitted.
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Each peak n must be allocated to exactly one of the K clusters. The cluster allocation for peak
n is modelled as a vector zn of dimension K. Assuming that this peak belongs to cluster k, zn will
contain a one in entry k, indicating that this is the peak’s allocated cluster, and a zero in all other
entries. That is, each entry of zn is an indicator variable

znk =

{
1, if peak n is in cluster k
0, otherwise

and
∑K

k=1 znk = 1.

Prior to the cluster modelling process, a subset of possible clusters that each peak can belong to
will first be identified. (See section 5.3.3 for details.) Hence, for each n, znk will be known to be
zero at the outset for a number of values of k and a subset of the values {1, 2, ...,K} need only
be considered for each peak. Also, each peak can only belong to each cluster k under a single
mass transformation Tk. So, if a peak belongs to cluster k, then the appropriate adduct transfrom
Tk and its corresponding precursor mass Tk(xm) is known. The mass and RT values for a peak n
associated with a cluster k are then:

Xk
n = (Tk(X

n
M ), Xn

RT ). (5.1)

The prior probability that a peak, n, is allocated to each cluster , is described by a vector of prob-
abilities πn, where each element πk represents the probability that a peak is allocated to cluster k
(1 ≤ k ≤ K) and

∑n
k=1 πk = 1.

The distribution of zn is modelled in terms of these probabilities as a multinomial distribution
where, for each n ≤ N :

p(zn|π) ∝
K∏
k=1

πk.

A multinomial distribution is a generalisation of a binomial distribution where the number of pos-
sible outcomes are extended from two to K ≥ 2. Here it assumed that each outcome can only
have a single observation, that is, there is only peak per cluster. (See [6] for further details on the
multinomial distribution.)

Each vectorπn is assumed to follow a Dirichlet distribution with parameter vectorα = [α/K,α/K, ..., α/K]T

where α is a know positive constant. (The Dirichlet distribution is the conjugate prior of the multi-
nomial distribution, see [6] for details). The probabilities for each π are expressed as

p(π|α) ∝
K∏
k=1

παk−1k .

For the distributions of theK clusters to which the peaks are to be allocated, it is assumed that mass
and retention time of the data belonging to each of these can be modelled using a bivariate normal
distribution. Each cluster has an individual mean vector:

µk = [µkM , µ
k
RT ]T where (k = 1, 2, ..,K),

where µkM and µkRT are the respective mass and RT mean parameters. The mean parameters for the
clusters are unknown and it is assumed that the uncertainty in each can be expressed as a normal
distribution as:

µkM ∼ N(µk0, σ
k
0,M )
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and
µkRT ∼ N(µk0, σ

k
0,RT ).

The variance is assumed to be known from the outset and is the same for each cluster. Each cluster’s
covariance matrix is:

Σ =

(
σ2M 0
0 σ2RT

)
where σ2M and σ2RT are the mass and retention time variances respectively.

5.1.2 Peak Clustering Joint Distribution

Having set out the assumptions, the peak clustering problem can now be modelled in terms of the
observed peak data X , the collection of cluster indicator variables for each peak Z, the cluster
probability vectors π and the cluster means µ. The precursor mass of a given peak can

The collective uncertainty in these variables can is described by their joint distribution:

p(X,Z,π,µ) = p(X|Z,π,µ)p(Z|π)p(π|α)p(µ|µ0,Σ0) (5.2)

where

p(X|Z,π,µ) =

N∏
n=1

K∏
k=1

N(Xk
n|µk,Σ)znk , (5.3)

p(Z|π) =
N∏
n=1

K∏
k=1

πznkk , (5.4)

p(µ|µ0,Σ0) =
K∏
k=1

N(µk|µ0,Σ0) (5.5)

where N(.) denotes a bivariate normal distribution.

Substituting 5.3, 5.4 and 5.5 into 5.2 gives

p(X,Z,π,µ) =
N∏
n=1

K∏
k=1

(πkN(Xk
n|µk,Σ))znk

K∏
k=1

N(µk|µ0,Σ0)p(π|α). (5.6)

Having derived the joint distribution for the cluster model, the aim is now to be able to fit this to
a given set of peak data and hence establish the distribution parameters for each cluster and which
peaks belong to each cluster. This will be done using both the Gibbs Sampling and Variational
Bayes algorithms.

5.2 Gibbs Sampling Algorithm

The first algorithm that will be used to estimate the parameters of the cluster model described in 5.6
is the Gibbs Sampling algorithm. The overall aim of this algorithm is to draw multiple samples for
each variable of interest from the joint distribution and then use these to obtain an estimate of each
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parameter. This may be done by, say, taking the average or mode of the samples drawn.

The joint distribution is approximated by first making initial estimates for each of the model param-
eters and then sampling from the marginal distributions for each model parameter conditioned on
all other parameters. This is first repeated for each marginal distribution over an initial number of
iterations called the burn-in period. The burn-in period is the number of iterations required for
the distribution of the samples being drawn to converge to the joint probability distribution under
consideration. After the burn-in period, the model can then be run for a further period during which
each of the samples will now be drawn from the required joint distribution and the results can now
be recorded.

As an illustration, consider a general model with data vector X and parameter vector a. The
joint distribution to be sampled from is p(X,a).

Let aik denote the value of the kth parameter after the ith iteration. At iteration i, samples are
drawn from the distributions. (See [6] for further details.)

p(ak|ai1, ai2, ..., aii−1, ai−1i+1, ..., a
i−1
k ,X) for 0 ≤ k ≤ K.

As an overview of the process:
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It should be noted that at each sampling step in the algorithm the most recently sampled param-
eter values are used in the marginal distributions. That is, once each parameter is sampled, this
new value immediately replaces the old value held for that parameter for all subsequent iterations
(including the current iteration).

5.2.1 Gibbs Sampler Derivation for the Peak Clustering Model

The marginal distributions required for the Gibbs sampler for the peak clustering model are as
follows:

p(znk = 1|X,µ, z−n,π) ∝ πkN(xkn|µk,Σ) (5.7)

p(µk|X,Z,µ−k,π) ∝
N∏
n=1

(p(xn
k|µk,Σ))znk ∗ p(µk|µ0,Σ0) (5.8)

∼ N(xkn|µ̃k, Σ̃) (5.9)

p(πn|X,Z,µ,π−n) ∝
K∏
k=1

π
∑N
n=1 znk

k ∗
K∏
k=1

παk−1k (5.10)

=
K∏
k=1

π
αk+

∑N
n=1 znk−1

k (5.11)

∼ Dirichlet(α̂) (where α̂k =
∑N

n=1 znk, k = 1, ...,K). (5.12)

The relationship (4.8) can be shown by first multiplying out (4.7) as follows:

p(µk|X,Z,µ−k,π) ∝
∏
j

(p(xkn|µk,Σ))zjk ∗ p(µk|µ0,Σ0)

∝
∏
j

exp

(
−zjk(xkM,j − µkM )2

2σ2M

)
∗

N∏
n=1

exp

(
−znk(xjRT − µkRT )2

2σ2RT

)

Now by expanding out the above expressions and equating coefficients with that of a standard
normal pdf:

1√
2πσ̃2

exp

(
−(x− µ̃)2

2σ̃2

)
,

the marginal distribution of µk can be written as a bivariate normal distribution with mean and
variance parameters µ̃k and Σ̃k respectively. The individual mass and RT parameters are:

σ̃2k,M =
σ2Mσ

2
0,M

σ2M + σ20,M
∑

j zjkx
k
M,j

, µ̃k,M = σ̃2M

(
µ0,M
σ20,M

+

∑
j zjkx

k
M,j

σ2M

)
(5.13)

and

σ̃2k,RT =
σ2RTσ

2
0,RT

σ2RT + σ20,RT
∑

j zjkxRT,j
, µ̃k,RT = σ̃2RT

(
µ0,RT
σ20,RT

+

∑
j zjkxRT,j

σ2RT

)
. (5.14)

Having derived the marginal distributions, it is now possible to use these to carry out the Gibbs
sampling process using these as discussed in the previous section. However, it is possible to sim-
plify these further.
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The above marginal distribution for znk in can be simplified 5.7 by integrating out both the π
and and µ terms. As shown in A.1.1 of teh Appendix, using the fact that the pdf of a Dirichlet
distribution with parameter vector α is of the form

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

xαk−1k (where Γ(.) is the gamma function),

the π term may be integrated out and re-expressed as:

(αk + c−nk )∑
j(αj + c−nj )

. (5.15)

The c−nj used in the above expression gives the the number of peaks (excluding peak n) which are in
cluster j and is known as the cluster count and represents an important step in the Gibbs sampling
algorithm.

The µk term can also be replaced in a similar way by considering its posterior distribution con-
ditioned on all values of X = x excluding the data point under consideration. This can be derived
by following the same steps as for the derivation of (4.12). After following this through, the indi-
vidual mass and RT parameters may be shown to be:

σ̂2k,M =
σ2Mσ

2
0,M

σ2M + σ20,Mc
−n
k

, µ̂k,M = σ̂2M

(
µ0,M
σ20,M

+

∑
j 6=n zjkx

k
M,j

σ2M

)
(5.16)

and

σ̂2k,RT =
σ2RTσ

2
0,RT

σ2RT + σ20,RT c
−n
k

, µ̂k,RT = σ̂2RT

(
µ0,RT
σ20,RT

+

∑
j 6=n zjkxRT,j

σ2RT

)
. (5.17)

Using 5.16 and 5.17, the µ term in 5.7 may now be removed by conditioning Xn on all other
values ofX and then using then applying 5.8 along with properties of normally distributed random
variables as follows:

Xn|X−n = ((X − µk) + µk)|X−n (5.18)

= [N(µ̂kM , σ
k
M + σ̂kM ), N(µ̂kRT , σ

k
RT + σ̂kRT )]T (5.19)

= N(µ̂k,Σ + Σ̂k). (5.20)

Step (4.25) follows from the result that if X ∼ N(a, b2) and Y ∼ N(c, d2) then X + Y ∼
N(a+ b, c2 + d2). (See [5] for details.) Hence, 4.6 can now be written as:

p(znk = 1|X,µ, z−n,π) =
αk + c−nk∑K

j=1(αj + c−nj )
∗N(xn|µ̂k, Σ̂k). (5.21)

Using 5.21 greatly reduces the number steps required in the Gibbs sampler since it is no longer
necessary to sample from the marginal distributions for µk and πk (4.8 and 4.11). As an overview,
at each iteration of the Gibbs sampling algorithm, first the cluster counts c−nk are updated and these
are then used to calculate the terms in 5.21 in order to obtain the probabilities p(znk = 1|...). These
can then be used to draw a sample of zn from its corresponding multinomial distribution.
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5.2.2 Peak Cluster Model Gibbs Sampling Algorithm

Based on 5.21, the full Gibbs sampling algorithm is as follows:

1. Initialise the znk and c−nk for each n = 1, ..., N and k = 1, ...,K with initial estimates.

2. For each iteration i

2.1. For each n ≤ N :

2.1.1. For each k ≤ K:
2.1.1.1. Remove znk from c−nk
2.1.1.2. Calculate each probability pnk := p(znk = 1|...) using 5.21

2.1.2. Sample zn from Multinomial(pn1, pn2, ..., pnK)

2.1.3. Update the c−nk using the new values of znk for each k

3. While i less that total number of iterations, repeat step 2

4. Terminate

5.3 Variational Bayes

The second inference method considered in this dissertation is the Variational Bayes algorithm.
The aim of this method is to fit 5.6 to a given data set by first approximating it by a function
Q(Z,π,µ) = Qz(Z)Qπ(π)Qµ(µ). In this sense, it is an approximation to the Gibbs sampler and
will be used to provide a second independent implementation of the clustering model. In general,
the Variational Bayes also offers faster convergence that the Gibbs sampler.

The motivation for this method comes from maximising the log-likelihood function for the model.
By taking natural log of 5.6, this can be expressed as:

ln(p(x, z,µ,π)) ∝
∑
n

∑
k

znk[ln(πk)+ln(N(xkn|µk,Σ))]+
∑
k

ln(p(µk|µ0,Σ0))+ln(p(π|α)).

(5.22)
As shown in section A.1.2 of the Appendix, a lower bound, on ln p(x) can be derived in terms of an
arbitrary distribution Q(θ) and the Kullback-Leibler (KL) divergence between Q(θ) and p(θ|x),
where the model parameters z,µ and π into single vector θ. The KL divergence measures the
similarity between two distributions and takes the value zero if the two distributions are identical
and is negative otherwise. The aim is to choose Q so as to maximise the KL bound by varying and
hence obtain an approximation to the posterior distribution p(θ|x). (See [7] for details.)

5.3.1 Derivation of Variational Bayes Algorithm for Peak Clustering

The aim is choose a function of the peak clustering model parameters, Q(Z,µ,π), which min-
imises the KL bound and therefore approximates the model’s posterior distribution. In this disser-
tation, Q(.) will be taken to be of the form Qπ(π)Qz(z)Qµ(µ). It should be noted, however, that
this introduces an independence assumption between the model parameters which is unlikely to be
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completely accurate. This form will however offer a close enough approximation and will make the
algorithm more computationally straight-forward to carry out.

As stated in [7], it can be shown that the Qi(.) (i = z, π, µ) which minimise the KL divergence and
give the closest approximation to the posterior distribution are of the form:

Qi(i) ∝ exp{ EQj(j)Qk(k)[ln(p(X,Z,µ,π))]} ( i, j, k ∈ {z,µ,π}, i 6= j, k) (5.23)

Now using 5.23 and 5.22 it is now possible to derive each of Qπ(π)Qz(z)Qµ(µ) in turn.

For Qπ, the expression becomes:

Qπ(π) ∝ exp{EQz(z)Qµ(µ)[
∑
n

∑
k

znk(ln(πk)) + ln(p(π|α)]}

= exp{
∑
n

∑
k

〈znk〉 ln(πk))} ∗ p(π|α)

=
∏
k

π
αk+

∑
N 〈znk〉−1

k

Hence Qπ(π) is a Dirichlet distribution with parameter vector α̃ = [α̃1, α̃2, ..., α̃K ]T where each
α̃k is of the form:

α̃k = αk +
∑
n

〈znk〉. (5.24)

Similarly, for Qµ:

Qµ(µk) ∝ exp{EQz(z)Qπ(π)[
∑
n

znk ln(N(xkn|µk,Σ)) + ln(p(µk|µ0,Σ0))]}

=
∏
n

N(xkn|µk,Σ)〈znk〉 ∗ p(µk|µ0,Σ0)

Using the same method as in the previous section for the Gibbs sampler of equating coefficients with
the standard form of the pdf of a normal distribution, it can be shown that Qµ(µk) can be written
as a bivariate normal distribution with mean and variance parameters µ̃k and Σ̃k respectively. The
individual mass and RT parameters are:

σ̃2k,M =
σ2Mσ

2
0,M

σ2M + σ20,M
∑

j〈zjk〉xkM,j

, µ̃k,M = σ̃2M

(
µ0,M
σ20,M

+

∑
j〈zjk〉xkM,j

σ2M

)
(5.25)

and

σ̃2k,RT =
σ2RTσ

2
0,RT

σ2RT + σ20,RT
∑

j〈zjk〉xRT,j
, µ̃k,RT = σ̃2RT

(
µ0,RT
σ20,RT

+

∑
j〈zjk〉xRT,j
σ2RT

)
. (5.26)

Lastly, for Qz:

Qz(z) ∝ exp{EQπ(π)Qµ(µ)[
∑
n

∑
k

znk(ln(πk) + ln(N(xkn|µk,Σ)))]}

= exp{
∑
n

∑
k

znk(〈ln(πk)〉+ 〈ln(N(xkn|µk,Σ))〉)}
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As shown in A.1.3, this can be rearrange to show that Q(zn) follows a multinomial distribution
with parameters γnk/

∑
j γnj where

ln(γnk) = ψ(α̃k)− ψ(
∑
j

α̃j)−
(xMn )2 − 2xMn µ̃M,k + µ̃2M,k + σ̃2M,k

2σ2M

−
(xRTn )2 − 2xRTn µ̃RT,k + µ̃2RT,k + σ̃2RT,k

2σ2RT
− ln(2πσMσRT ).

(In the above ψ(.) is the digamma function, see [9] for details.) The expected value for each is znk
is then:

〈znk〉 =
γnk∑
j γnj

(n = 1, 2, ..., N and k = 1, 2, ...,K). (5.27)

It should be noted that the 〈znk〉 are dependent on the parameter values for both π and µ and vice
versa. Hence, the algorithm involves first calculating updated values of the α̃k, µMk and µRTk terms
and the using these to update the 〈znk〉. Having done this, the new 〈znk〉 can now be used to update
the α̃k, µMk and µRTk terms. This process can then be repeated until the parameters each converge.

5.3.2 Variational Bayes Peak Clustering Algorithm

Having derived expressions for all of the key terms of the variational Bayes algorithm, the key steps
are as follows:

1. Estimate initial values for the α̃k, µMk and µRTk terms using 5.24, 5.25 and 5.26 respectively.

2. Use the current values of α̃k, µMk and µRTk to calculate the 〈znk〉 using equation A.11.

3. Use the 〈znk〉 to calculate updated values for α̃k, µMk and µRTk .

4. If not converged yet repeat steps 2. and 3.

5. Terminate

5.3.3 Clustering

As stated previously, the peaks are to be clustered using their precursor mass, retention time and
intensity values. A transformation is available which will be used to obtain the precursor masses
from the observed mass to charge ratios. However, while this is computationally straight-forward
to implement, one issue with this is that its parameters depend on the particular adduct to which the
peak being considered corresponds. This is not known, and there will therefore be a potentially very
large number of different clusters to which each peak could belong to depending on what transfor-
mation is being used to obtain its precursor mass. Fortunately, this number can be greatly reduced
by using the restriction that the M+H adduct must be present in each cluster. The M+H adduct
is by far the most frequently observed and will always be observed for each molecule. Hence, it
would not make sense for a cluster to not contain the M+H adduct.

Making use of this restriction, an initial list of N potential clusters with initial cluster means
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µk0 = [µk0,M , µ
k
0,RT ] can be constructed. This can be done by applying the M+H adduct trans-

form to the observed mass to charge ratio of the kth peak and setting this equal to µk0,M . The value
of µk0,RT will also be set equal to the kth peak’s retention time. A list of possible clusters to which
each peak can now be obtained by considering each peak and cluster allocation in turn.

Another assumption which further reduces the number of clusters to which a peak can belong is that
the M+H peak in each cluster must also have the largest intensity value. This assumption means that
each peak can only be allocated to a given cluster (that is not its own M+H cluster) if its intensity
value is less than that of the M+H peak. Further restrictions are that a peak’s precursor mass and re-
tention time must be within fixed intervals [µk0,M−δMk , µk0,M−δMk ] and [µk0,RT−δRTk , µk0,RT−δRTk ].
In carrying this the cluster algorithms in practice, is assumed that a peak’s precursor mass must be
within 5 parts per million of the µk0,M , that is if:

precursor mass− µk0,M
µk0,M

≤ 5× 10−6, (5.28)

and its retention time must be within 10 seconds of µk0,RT .

5.3.4 Possible Cluster Identification Algorithm

Based on these assumptions, the following algorithm for identifying the possible clusters to which
peak can belong has been constructed:

1. For each of the N possible peaks:

1.1. For each peak, add each cluster it belongs to under the M+H transform to its list of
possible clusters.

1.2. For each cluster where the peak is not the corresponding M+H adduct peak:

1.2.1. Compare the peak’s intensity to that of the cluster
1.2.2. If it is greater then go back to 1.2 and move to the next cluster
1.2.3. Compare the peak’s retention time to that of the cluster
1.2.4. If it is outside the cluster’s retention time window go back to 1.2 and move to the

next cluster
1.2.5. For each precursor mass transform except the M+H transform:

1.2.5.1. Apply the transform to the peak’s mass to charge ratio
1.2.5.2. If the transformed mass is out with the cluster’s mass acceptable mass window

go back to 1.2.5 and move to the next transform
1.2.5.3. Else, add the cluster to the list of the peak’s possible cluster and record the

corresponding transform

2. Terminate

Applying the above algorithm will greatly reduce the number of possible clusters to which it will
belong. For each peak, the corresponding cluster constructed by applying the M+H transform to its
observed mass to charge value will always be in its list of possible clusters. There may also be a
small number of there clusters to which a given peak may also belong if it meets each of the steps
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in part 1.1 of the above algorithm. However, there will be many peaks which do not have any other
possible clusters and it is now known now known to which cluster they must belong without having
to apply any clustering algorithm. This also means the matrix of the p(znk = 1|...) probabilities
will be sparse and that a much smaller subset of peak and cluster combinations need now only be
considered when implementing either the Gibbs sampling or variational Bayes algorithms. This can
be used to improve the performance of each algorithm’s implementation.

5.3.5 Identifying Cluster Masses

The motivation for clustering the observed peak data is to be able to match each peak to a molecule.
This will be done by assigning a mass value to each cluster and then comparing this to a database of
mass values for the sample’s known constituent molecules. Hence, it is necessary to assign a mass
to each cluster following peak allocation.

For variational Bayes, a clear choice is to use µ̃k,M , the expected value of Qµ(µk) as shown in
5.25. For Gibbs sampling there are a few possible alternatives. For example, the precursor mass of
the M+H adduct could be used. However, here the posterior distribution of the mass mean, µ̃k,M
will be used. This value is calculated at for each cluster at each iteration. On the final iteration,
the peak’s cluster is set to be the most probable cluster (i.e. the cluster to which the peak has been
allocated most often over all of the iterations). The cluster mass is set to be the average over the
posterior mass values recorded for this cluster over all of the iterations.

5.4 Implementation

In implementing the algorithms described above, it was necessary to think carefully about which
data structures should be used. As described in Chapter 4, an object orientated approach was taken
with the main classes being used in developing the cluster model being:

• Peak: Used to represent each peak in the input data

• Cluster: Used to represent each cluster

• PossibleCluster: Used to represent clusters to which a peak can possibly belong to. This class
is used to connect Peak objects with Cluster objects.

• Transform: Used to represent a transform which may be applied to a peak in order to calculate
its precursor mass

The first step in the implementation was to read in the data for each of the input text files and create
all of the Peak and Transform objects and then storing the Peak objects in a list (peaks) and the
transforms in a dictionary (transforms). The transforms dictionary takes a string representing the
corresponding adduct name, hence the M+H transform object can be extracted it by passing it the
string ”M+H”. The Cluster objects can now be created from each of the Peak objects in turn, using
applying the M+H transform to obtain the values for each Cluster’s mass mean, and these were then
stored in a list called clusters.
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Algorithm 5.3.4, for identifying each peak’s possible clusters, could then be implemented using
the lists peaks and clusters along with the dictionary transforms. This was done by looping over
peaks and checking this against each element of clusters as described in 5.3.4. Once it was iden-
tified that a Peak could belong to a Cluster under a particular Transform, a PossibleCluster object
was created and added to Peak object’s list of possible clusters (a property of each Peak object of
type list called possible clusters).

Having identified all of the PossibleCluster objects for each Peak, the Peak objects were then
separated into those with only one PossibleCluster and those with more than one PossibleClus-
ter. This was done by checking whether the length of their possible clusters list was equal to
1 or greater than 1 and then allocating them to one of two further lists, only one cluster and
more than one cluster. As discussed above, if a Peak only has one PossibleCluster then there
is no need to go through the steps in the either in clustering algorithms for it. Hence, both the im-
plementations of the Gibbs sampling and variational Bayes algorithms could be made more efficient
by focussing only on the Peak objects in more than one cluster.

The next stage in the implementation was to construct the Gibbs sampling and variational Bayes
algorithms. As noted above, it was important to take advantage of the fact that many peaks can
only belong to one possible cluster and, even for those with more than possible cluster, the list of
possible clusters will be very sparse in each case.

In a first attempt at implementing these algorithms, an array was used to store the values of the
znk and 〈znk〉 pramaters for the Gibbs sampler and variational Bayes methods respectively. How-
ever, this was very memory inefficient and led to the algorithms running very slowly. This issue is
addressed by introducing the PossibleCluster class and adding the list possible clusters as a prop-
erty of the Peak class. With this structure, it is possible to only loop through each peak and its
possible clusters rather than going through every peak/cluster combination in ether clustering algo-
rithm.

The implementations of the Gibbs sampling and variational Bayes algorithm are very similar in
their overall structure. They both begin by allocating peaks with only one possible cluster to their
single cluster and then applying the steps set out in 5.2.2 and 5.3.2 to peaks with more than one
cluster and their corresponding lists of possible clusters.

The key step in each algorithm involves looping over each Peak with more than on cluster and
its corresponding PossibleCluster objects. The probabilities needed to determine the cluster allo-
cation at each iteration are then stored in a dictionary. This dictionary takes references to each
PossibleCluster object as its keys and the corresponding probabilities that each Peak belongs to
each PossibleCluster as its values. Creating this dictionary allows the probabilities for each Possi-
bleCluster object to be stored without holding a large number of zero entries (as would be the case
if a matrix was used).

5.5 Testing

The main test for the clustering algorithms developed was to compare the results produced with
those from an independent implementation of the Gibbs sampler which had been developed. This
implementation had been run on a test data set of peak data and the results of its cluster allocations
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were available. In order to test the implementations of the Gibbs sampler and variational Bayes
algorithm, a program was written to compare the cluster number assigned to each peak in both
implementations and then computes the an overall percentage of the total number of peaks that the
two files agree on for the test file as a whole. The results for the Gibbs sampler and Variational
Bayes algorithms are shown in B.2.1 of Appendix B. As can be seen, the percentages matches are
approximately 98% and 95% for the Gibbs and variational Bayes algorithms. This suggests that the
implementations offer a strong level of agreement with this implementation with differences likely
to be mainly attributable to stochastic variation in the Gibbs algorithm.

Assertions were also added to the probabilities calculated in the two clustering algorithms for the
probabilities calculated in each. These were added to verify that none of these values are less than
zero. Both algorithms run without throwing an exception relating to these assertions.
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Chapter 6

Evaluation

6.1 Overview

This section evaluates the cluster model described in the previous section by assessing the output it
produces from running raw peak data produced from a mass spectrometer.

Peak data has been provided for two standards, that is, chemical solutions for which the constituent
molecules are known, and this has been run through the clustering model. The peak data for each
standard is spread across multiple files with each file corresponding to a individual run through the
mass spectrometer. Hence, each standard has been processed through the mass spectrometer sev-
eral times and each file represents an independent sample of the peak data produced from the mass
spectrometry process.

The process implemented by the peak clustering software tool that has been developed has two
main stages. The first stage takes the raw peak data and, using either of the Gibbs sampling or Vari-
ational Bayes algorithms, clusters the peaks using their precursor mass, retention time and intensity
values. The output from this step is a list containing each peak along with its allocated cluster and
the associated adduct transform which places it in its allocated cluster. Also produced is a list of
each cluster along with its associated mass, retention time and list of adducts. Each cluster corre-
sponds to an individual molecule.

The second stage in the process is now to match each cluster to a molecule. This is done by match-
ing the cluster masses output from the first stage to a list of each standard’s constituent molecules
and their known mass. This comparison is done by calculating the percentage difference between
cluster mass and known molecule. A match has been found if this difference is within 5 parts per
million (PPM). This is if

Cluster Mass− Known Mass
Known Mass

≤ 5× 10−6. (6.1)

It should be noted that not every cluster will be allocated to a molecule under this method. This
is in part because of noise in the raw peak data. As discussed previously, the mass spectrometry
process is highly sensitive to the experimental conditions in which it is carried out. Some of the
peaks produced may, for example, correspond to impurities present in the sample or some other
factor affecting with the experiment conditions. Hence, it is not unusual for a large number of the
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clusters to be matched to a molecule.

Having matched clusters to molecules, it is now possible to analyse the adduct patterns for each
molecule. A question of particular interest is whether a given adduct pattern has any predictive
capability for molecule identification, particularly between isomers. Two molecules are isotopes if
they have the same constituent molecules (and hence the same mass) but have a different chemical
structure.

The output from each of these two stages in terms of their ability to provide meaningful insight
into peak data produced by a mass spectrometer.

6.2 Evaluation of the Peak Clustering Process

The first part of the evaluation will focus on assessing the output from the initial peak clustering
process.

6.2.1 Comparison of Peak Clustering Results for the Gibbs Sampling and Varia-
tional Bayes Algorithms

The raw peak data has been run using both the Gibbs Sampling and variational Bayes algorithms.
Having done this, it is now possible to compare the output from the two algorithms. As the varia-
tional Bayes algorithm is essentially an approximation of the Gibbs sampler, it would be expected
that the results of the two algorithms should be very similar if both models have been correctly
implemented.

To test this, a collection of five standard 1 and five standard 2 files have been run through both
algorithms. A program has been written to compare the cluster number assigned to each peak using
each of the two methods. For each file, it counts each time a peak has been allocated to the same
cluster using both algorithms and then computes an overall percentage of the total number of peaks
that the two methods agree on for the file as a whole. The results are shown in B.2.2 of Appendix B.

As shown by these results, the two methods agree on 95% of the peaks in each file, which indi-
cates a strong level of agreement. Some difference between methods is expected due to stochastic
variation in the Gibbs sampler and also due to fact that variational Bayes is an approximation.

The fact that both methods give very similar output helps to cross-validate their output. Both mod-
els have different implementations and the fact that they agree provides a string indication that they
have been implemented correctly. In light of the fact that their outputs are very similar, from this
point on the evaluation will focus only on the output from using the Gibbs sampling algorithm.

6.2.2 Identifying Presence of Underlying structure in the Data

In order to further assess the effectiveness of the Gibbs sampling algorithm, a further test was car-
ried out to check whether the clusters it identifies are representative of an underlying structure in
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the peak data (due to peaks belonging to the same molecule) or whether they were due to chance
or an error in the algorithm’s implementation. If there was no structure in the data then it would
be expected that the number of peaks clustered together would be significantly lower than if such
a structure was present. One way to remove any structure in the peak data is to randomise it. This
randomised data can then be run through the Gibbs sampler and the output compared with the stan-
dard data.

In order to create a mix of the of the peak data, the retention time values have been randomly
permuted for all of the peaks. This has been done for a number of standard 1 and standard 2 files
and this data has then been run through the Gibbs sampling clustering algorithm. For each cluster
obtained in the output from processing this data, a count of the number of peaks that have been
allocated has been made. The same counts have been made for the clusters produced from the
non-randomised data. A plot of cluster size against the natural logarithm of the number of clusters
observed to be of this size was made for each file. (The natural logarithm has been taken in order
aid comparison in light of the large number of peaks belonging to each file.) Shown below is a plot
for the first file - the plots for the other files are similar and are shown in B.2.3 of Appendix B.
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As can be seen from the above plots, the largest cluster size for the the randomised data is three
compared with seven for that of the regular peak data. Also, the size of the bar plots for the regular
data is larger than that of the randomised data for all cluster sizes except one. It should be again
noted that this chart has been plotted on a log scale and the difference between the two bar sizes
at a cluster size of one is much larger than it appear on the chart - both data sets contain the same
number of clusters and this difference accounts for the excess shown in the plots for the regular data
over those for the randomised data at all other cluster sizes. Also of note is the difference between
the plots at a cluster size of zero. Given each peak must be allocated to exactly one cluster, a larger
number of empty clusters must then correspond to a larger number of clusters with more than one
peak.

Therefore the above plots indicate that randomising the data significantly reduces the number of
peaks being allocated to the same cluster by the Gibbs sampling algorithm. This suggests that there
is an underlying structure present in the regular peak data and that this structure is being detected
by the clustering algorithm.

6.3 Assessing Adduct Consistency Across the Files

Having allocated peaks to clusters, the next stage in the process is to allocate clusters to molecules
and then plot the adduct patterns for each molecule. Before doing so, however, the files were
checked for consistency. It may have been the case that one file was corrupted due to, say, the pres-
ence of an external substance. Such an error would affect the adduct patterns observed. This would
impact the ability to draw any conclusions from adduct patterns produced across all of the files. In
order to check this, the frequency with which each adduct was observed was plotted for each file.
Any deviation between these plots would indicate a potential issue with either the experimental set
up or the clustering model used to produce the analysis. These plots are shown in B.2.3 of Appendix
B. Whilst some degree of variation is expected, it can be seen from these plots that there is a strong
degree of consistency across the files.

For example, shown below are plots of the counts for two separate standard 1 files:

(a) Plots of each adduct’s frequency
from the first file for standard 1.

(b) Plots of each adduct’s frequency
from the fith file for standard 1.
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6.4 Assessing Ability to Identify Isotopes

A question of much interest is whether the adduct pattern observed for a molecule has any predic-
tive power. In particular, given only the adduct patterns for two molecules which are isotopes, is it
possible correctly identify each molecule using only their adduct patterns? With a view to answer-
ing this question, various plots associated with the adduct patterns of isotopes in the two standards
have been plotted. Each of the two standards contain different molecules however there are sixteen
molecules in standard 1 which have a corresponding isotope in standard 2.

Plots showing the percentage frequency that each adduct is present for a given molecule have been
produced and are shown in B.2.3 of Appendix B. Also, plots of the intensities each isotope’s stan-
dard 1 and standard 2 molecule were also made - each point plotted has an x-value and y-value
corresponding to the standard 1 and standard 2 molecule’s mean intensity across all files. These
are as shown in B.2.3 of Appendix B. (Blank plots shown for a particular molecule indicate that
neither isomer was identified in the samples.)Each of the plots produced can now be studied in
order to assess whether there are any significant difference between the adduct patterns produced
for isomers. For example, shown below are the plots for leucine and isoleucine (chemcical formula
C6H13NO2):

Firstly, as can be seen in the above figure the M+H adduct is always present in both isomers as
expected. Also looking further at the above adduct pattern, there is a significant difference between
the peaks observed for M+ACN+H, and it would appear that this adduct is much more common for
L-leucine than for L-isoleucine. This type of significant difference is of interest as it may suggest
that a significant presence of the M+ACN+H is an indicator that the molecule observed is L-leucine
rather than L-isoleucine. The rest of the plots can also be studied in a similar manner with a view
to identifying substantial differences in adduct patterns such as this.

In order to further test the potential for using adduct patterns to distinguish between isomers, a
further experiment was carried out. First the peak data files were subdivided into 18 training files
and 13 test files. First the probabilities of the presence of each adduct in each isomer were calcu-
lated across all of the training files. The test was then to use these probabilities to determine whether
each molecule was the standard 1 or the standard 2 isomer based on the presence or absence of each
adduct observed in the test data. That is, say for a given molecule in a given test data file, a binary
string for each adduct i was observed:

b = (b1, b2, ...).
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Suppose also that the probabilities computed from the test data that each adduct is present for a
standard 1 and standard 2 molecule are

p1 = (p1,1, p1,2, ...) and p2 = (p2,1, p2,2, ...)

respectively. Then two scores can be computed, each using p1 and p2, as follows:

S1 =
∑
i

pbi1,i(1− p1,i)
1−bi and S2 =

∑
i

pbi2,i(1− p2,i)
1−bi , (6.2)

with S1 and S2 giving respective measures of how likely the test molecule is to be the standard 1
or standard 2 isotope (the larger score indicating which isomer the molecule is).

Running the above test across all of the test files for both L-leucine and L-isoleucine leads to leucine
being correctly identified as standard 1 on 80% of the standard 1 test files and L-isoleucine being
correctly identified as standard 2 on 71% of the standard 2 test files. By comparison, carrying out
the same test for other standard 1 and 2 isomers such as L-Valine and Betaine (chemical formula
C5H11NO2) leads to correct classification in 60% and 57% of test files respectively. Shown bellow
are the plots showing the percentage of time each adduct is present for C5H11NO2:

As can be seen from the above plot, it is notable that there appears to be a larger presence of the
M+HC13 and M+ACN+H adducts in L-Valine than in betaine. However, these differences are not
quite as pronounced as for that of the M+HC13 peaks plotted for L-leucine and L-isoleucine how-
ever - this may provide an explanation as to why identification has been more successful for these
two molecules.

The plots and test carried out go some way to suggest that the adduct patterns may be of use in
identifying isomers. However, it should be noted that significant amount of further work would
need to be carried out first. One issue with carrying out the above tests was that there were a
significant number of molecules in the standard 2 files which were not matched to any particular
cluster. Hence, the plots showing the frequency of each adduct’s presence for each molecule must
be handled with care since. For example, there may be cases where the standard 1 molecule was
matched to a cluster across all files but standard 2 was only matched in one of its files. This would
mean that the standard 2 frequencies were only based on a single observation and hence it would
be difficult to draw meaningful comparisons between the isomers adduct patterns in this situation.
Given extra time, it would be desirable to run the model on more data files with a view to obtaining
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a more even number of cluster matches in order to be able to better compare the adduct patterns
more effectively. In short, the results produced indicate that the predictive ability of adduct patterns
is an area of potential interest where there is much scope for further work to be carried out.
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Chapter 7

Conclusion

7.1 Current Status

The Gibbs sampling and Variational Bayes algorithms have both been implemented for the peak
clustering model and both run on a number of samples of MS peak data for two standards. Hav-
ing then compared the output from running these two algorithms, they were observed to that they
produce very similar results. This was as expected as the variational Bayes algorithm is essentially
an approximation of the Gibbs sampler. Following this comparison, it was decided to focus on the
Gibbs sampler for the remainder of the analysis.

Having now implemented the clustering algorithm, the next step was to fit the clusters generated to
the known constituent molecules for each standard. Having done this, the adduct patterns associ-
ated with each molecule could now be examined.

A question of particular interest was whether these adduct patterns could be used to correctly iden-
tify each molecule in a given pair of isomers. That is, given only the adduct patterns for two
molecules known to belong to a particular isomer pair, can each molecule correctly be identified
from this information alone? The work carried out provides an indication that this is indeed pos-
sible. However, further is required in order obtain a more definitive analysis to this question. The
next section sets out some suggestions for further work that could be carried out in the future in
order to make further progress towards this.

7.2 Suggestions for further work

7.2.1 Further Work for Improving the Clustering Algorithms

There is scope for some further work to be carried out with a view to improving the implementa-
tions of the Gibbs sampling and variational Bayes algorithms.

In order to further evaluate the variational Bayes algorithm, it is possible to explicitly derive the
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lower bound used in its construction. This can then be calculated at for each iteration of the algo-
rithm (see A.1.2 in Appendix A). If the algorithm has been implemented correctly, then this should
increase at each iteration until it converges - indicating that the algorithm itself has converged to a
solution. Plotting this will provide further confirmation that the algorithm has been implemented
correctly.

For the Gibbs sampler, the burn-in period has been chosen to be 500 iterations as it is believed
that this is more than sufficient for the algorithm to converge to its stationary distribution. However,
this could be determined more precisely. For example, multiple Gibbs samplers with different ini-
tial cluster allocations could be initialised. Each of these could then be run for a first block of 100
iterations. Then, select one or more peak which could belong to more than one cluster (i.e. peaks
which don’t only belong to a single cluster with probability one) and compare the probabilities that
they belong to each cluster across each of the runs. The probabilities for each peak and cluster clus-
ter are calculated as the number of times that the peak is allocated to a cluster divided by a count
of the total number of iterations run. If the probabilities across the runs across the runs are similar
then this suggests that the Gibbs sampler has converged to its stationary distribution after this first
block of 100 iterations. If they have not converged, then the algorithms can be re-started from their
current position and re-run for a further 100 iterations but with the counts (the iteration count and
the number of times each peak is allocated to each cluster) used in calculation of the probabilities
reset to zero. This process can then be repeated until convergence is observed.

7.2.2 Further Work for Assessing Predictive Ability of Adduct Patterns

As discussed in the previous chapter, the work carried out in this dissertation suggests that the
adduct patterns observed may be of use in identifying isomers. The next stage now would be to
identify isomers where the adduct patterns have been particularly successful in their identification
and then obtain extra experimental mass spectrometry data on these in order to further analyse them.
However, there is a significant financial cost associate with processing samples through the mass
spectrometer. In light of this, further work would be needed here in order to further establish which
molecules are should be assessed further.

It was discussed in the previous chapter how the scores set out in equation 6.2 could be used to
assess the predictive power of adduct patterns in distinguishing between isomer pairs. This in-
volves first computing probabilities of the presence or absence of each adduct for each molecule
using a collection of training files. Then, from the adduct patterns observed in the test files, the
scores can now be calculated for each molecule to measure whether they more closely resemble
the standard 1 or standard 2 isomer. It can then be assessed whether the scores obtained from the
adduct patterns correctly identify as the standard 1 and standard 2 molecule in each isomer pair.

In the data used to compute these scores there was imbalance between the number of molecules
allocated to clusters between the standard 1 and standard 2 files. For standard 2 files, there were
significantly fewer molecules matched to clusters and hence there was a lack of adduct patterns
available for the standard 2 molecules in carrying out this analysis. It is suspected that this is due
to an error in the standard 2 file data. Hence, one potential area for further work is in obtaining
further data sets of standard 2 molecules which provide a greater degree of molecule identification
and then using these as a basis for carrying out an analysis of the scores. This would allow a greater
number of molecule’s adduct patterns to be tested and would provide a more thorough analysis of
their predictive ability.
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In calculating the scores, the selection of training and test files from the available data files was
done arbitrarily. However, there will be variations between the files in the number of molecules
identified as well as in the adduct patterns associated with each molecule. Therefore, another area
for further work is to calculate the scores using different combinations of files being used as train-
ing and test data. For example, the proportion of the total files used that are to be used as test
and training data could first be decided on (e.g. 60% training and 40% test) and then files could
be randomly assigned to either the training or test group in keeping with these proportions. This
could be repeated several times with the classification results for each molecule, over the current
allocation of test files, being recorded each time. This would help eliminate the effect that different
combinations of training and test files may have on the analysis.

Also, at present, the scores for each molecule are being computed for individual test files. However,
it is also desirable to be able to be assess the classification of each molecule across all of the test files
as a whole. A further area for future work is therefore to construct a score which can be used for
the purpose. Rather using the binary presence or absence of each adduct, such a score would need
to use the frequency with which each adduct is observed across the test files for a given molecule.

In the analysis carried out only the presence or absence of each adduct for a given molecule has
been considered. For example, if a given adduct was observed for a molecule in 3 out of 5 files,
then the probability, p, of observing the adduct for this molecule is taken as 0.6. Hence, a binomial
model is being fitted to each molecule where the probability of observing a given adduct in x out of
n files is proportional to px(1−p)n−x. Another area for further work would be to extend this model
by incorporating the intensity peak data. The intensity data observed for a molecule in a given file
could be normalised by dividing each intensity by the M+H adduct intensity (the largest intensity
for each molecule). These normalised values could now be used as the probability values for each
adduct’s presence. That is, for each adduct, the intensity information will now give probabilities
pi for each adduct i which sum to one. Using these, a multinomial distribution could instead be
fitted for each molecule with the probability of observing the vector [x1, x2, ...]

T proportional to
px11 × p

x2
2 × ... ,where xi equals 1 or 0 for adduct i and indicates its presence or absence.
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Appendix A

First appendix

A.1 Key terms and Derivations

A.1.1 Gibbs Sampler - Marginalisation Step

The π term may be integrated out by proceeding as follows:

πk = p(znk = 1|z−n, α) (A.1)

=

∫
p(znk = 1|π)p(π|z−n, α)dπ (A.2)

=

∫
πk

Γ(
∑

k(αk + c−nk ))∏
k Γ(αk + c−nk )

∏
j

π
αj+c

−n
j −1

j dπ (where c−nj =
∑
i 6=n

zik) (A.3)

=
Γ(
∑

k(αk + c−nk ))∏
k Γ(αk + c−nk )

∫ ∏
j

π
αj+c

−n
j +δjk−1

j dπ (A.4)

(where δjk = 1 for j = k and is zero otherwise) (A.5)

The term inside the integral is itself a Dirichlet distribution with parameter αj + c−nj + δjk. Hence
this can be evaluated by comparing it to the normalisation constant term in Dirichlet pdf:

=
Γ(
∑

k(αk + c−nk ))∏
k Γ(αk + c−nk )

∗
∏
j(Γ(αj + c−nj + δjk))

Γ(
∑

j(αj + c−nj + δjk))
(A.6)

=
Γ(
∑

k(αk + c−nk ))

Γ(
∑

j(αj + c−nj + δjk))
∗
∏
j(Γ(αj + c−nj + δjk))∏

k Γ(αk + c−nk )
(A.7)

Finally, this expression may be further simplified by using the property of the gamma function that
Γ(α+ 1) = Γ(α):

=
Γ(
∑

j(αj + c−nj ))∑
j(αj + c−nj )Γ(

∑
j(αj + c−nj ))

∗
αkΓ(αk + c−nk )

Γ(αk + c−nk )
=

(αk + c−nk )∑
j(αj + c−nj )

. (A.8)
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A.1.2 Variational Bayes Lower Bounnd

The log-likelihood function may be written as:

ln p(x) = ln

∫
p(x,θ)dθ

= ln

∫
Q(θ)

p(x,θ)

Q(θ)
dθ

where Q(θ) is an arbitrary distribution. Now applying Jensen’s inequality (see [7] for details):

ln(Ep(z)[f(z)]) ≥ Ep(z)[ln(f(z))],

a lower bound on ln p(x) can be obtained as:

ln p(x) ≥
∫
Q(θ) ln(

p(x,θ)

Q(θ)
)dθ

= L(θ)

Hence
ln p(x)− L(θ) ≥ 0.

Expanding the left hand side of the above inequality gives:

ln p(x)− L(θ) = ln p(x)−
∫
Q(θ) ln(

p(x,θ)

Q(θ)
)dθ

= ln p(x)−
∫
Q(θ) ln(

p(θ|x)p(x)

Q(θ)
)dθ

= ln p(x)−
∫
Q(θ) ln(

p(θ|x)

Q(θ)
)dθ −

∫
Q(θ) ln(p(x))dθ

= −
∫
Q(θ) ln(

p(θ|x)

Q(θ)
)dθ

= −KL[Q(θ)][p(θ|x)] (A.9)

where KL[Q(θ)][p(θ|x)] is the Kullback-Leibler (KL) divergence between Q(θ) and p(θ|x).
(See [7] for details.)

A.1.3 Derivation of Qz

Qz(z) ∝ exp{EQπ(π)Qµ(µ)[
∑
n

∑
k

znk(ln(πk) + ln(N(xkn|µk,Σ)))]}

= exp{
∑
n

∑
k

znk(〈ln(πk)〉+ 〈ln(N(xkn|µk,Σ))〉)}

= exp{
∑
n

∑
k

znk(〈ln(πk)〉+ 〈ln(N(xkn,M |µMk , σ2RT ))〉+ 〈ln(N(xRTn |µRTk , σ2RT ))〉)}
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Writing

ln γnk = 〈ln(πk)〉+ 〈ln(N(xkn,M |µMk , σ2M ))〉+ 〈ln(N(xRTn |µRTk , σ2RT ))〉

= 〈ln(πk)〉 −
〈(xkn,M − µMk )2〉

2σ2M
−
〈(xRTn − µRTk )2〉

2σ2RT
− ln(2πσMσRT )

As π follows a distribution, it can be shown that

〈ln(πk)〉 = ψ(α̃k)− ψ(
∑
j

α̃j) (k = 1, 2, ...,K)

where ψ(.) is the digamma function. (See for details.) We then have that

ln γnk = ψ(α̃k)− ψ(
∑
j

α̃j)−
(xkn,M )2 − 2xkn,M 〈µMk 〉+ 〈(µMk )2〉

2σ2M

−
(xRTn )2 − 2xRTn 〈µRTk 〉+ 〈(µRTk )2〉

2σ2RT
− ln(2πσMσRT )

= ψ(α̃k)− ψ(
∑
j

α̃j)−
(xkn,M )2 − 2xkn,M µ̃M,k + µ̃2M,k + σ̃2M,k

2σ2M

−
(xRTn )2 − 2xRTn µ̃RT,k + µ̃2RT,k + σ̃2RT,k

2σ2RT
− ln(2πσMσRT ). (A.10)

Substituting this into the above equation for Qz gives

Qz(z) ∝ exp(
∑
n

∑
k

znk ln γnk)

=
∏
n

∏
k

γznknk

After normalising, it followsQ(zn) follows a multinomial distribution with parameters γnk/
∑

j γnj
and:

〈znk〉 =
γnk∑
j γnj

(n = 1, 2, ..., N and k = 1, 2, ...,K). (A.11)
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Appendix B

Second appendix

B.1 Class Diagrams

B.1.1 Clustering Step Class Diagram
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B.1.2 Molecule Allocation Step
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ReadMe 

The document sets out each of the files for the peak clustering tool developed. 

1. Peak_Cluster_Model.py 

This is the main file used to run the program. To run the program type “python 

Peak_Cluster_Model.py” in the command line. 

2. Adduct_Details.py 

Contains classes used in implementing the Gibbs sampling and vibrational Bayes algorithms. 

3. Adduct_Cluster_Data.py 

Used to read in peak data from the raw MS files. Stores creates the Peak, Cluster, 
PossibleCluster and Transform objects needed in the Gibbs sampling and Variational Bayes 
clustering algorithms. 
 

4. Gibbs_Sampling.py and Variational_Bayes.py 
Used to run the Gibbs sampling and variational Bayes algorithms respectively. Ensure peak 
data files to be run are contained in the Data folder. The output from the algorithm will be 
saved to the folder Data/Output. Two output files should be saved per folder- ending 
“RUN_JF” showing the cluster each peak is allocated to and another ending 
“cluster_mass_output” showing the details of each cluster’s mass. 
 

5. Molecule_Matching/Adduct_Molecules_all_files_UPDATED.py 
Contains classes used to allocate clusters to molecules and identify and analyse isomers. 
 

6. Molecule_Matching/get_adducts_and_molecules_all_files_UPDATED.py 
Used to allocate clusters to molecules and the produce details of each molecule's adduct 
frequencies across the files and its average intensities. Also used to identify and analyse 
isomer pairs. Various outputs summarising adduct details for isomers saved to folder 
Molecule_Matching/Output. 
 

7. Random_RT_Test.py 
Used to run the Gibbs sampler for randomised RT values. Output charts saved to folder 
Data/Output_random_RT_test. 
 

8. Randomised_RT_Values.py 
Reads in peak data from input files and creates peaks with randomised RT files for use in the 
Gibbs sampler. 
 

9. Molecule_Matching/verification/get_adducts_and_molecules_VERIFICATION.py 
Computes scores for each isomer in order to assess predictive ability of adduct patterns. 

  
10. Test_Clustering/compare_output.py 

Compare the cluster allocations between the outputs of two different runs of a clustering 
algorithm. 
 

 
 
 
 

B.1.3 Read Me
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B.2 Data and Reports

B.2.1 Comparison of Gibbs Sampler and Variational Bayes Algorithms with an In-
dependently Developed Clustering Algorithm

Gibbs Sampler File Name Percentage Match

testtxt_RUN_JF.txt 0.989397879576

Gibbs Sampler File Name Percentage Match

testtxt_VB_RUN_JF.txt 0.944788957792

B.2.2 Comparison of Gibbs Sampler and Variational Bayes Peak Clustering

Gibbs Sampler File Name Percentage Match with VB File

std1-file1.group.peakml_RUN_JF.txt 0.945189037808
std1-file2.group.peakml_RUN_JF.txt 0.947252306458
std1-file3.group.peakml_RUN_JF.txt 0.958894090111
std1-file4.group.peakml_RUN_JF.txt 0.954163248564
std1-file5.group.peakml_RUN_JF.txt 0.957179197287
std2-file1.group.peakml_RUN_JF.txt 0.947902385522
std2-file2.group.peakml_RUN_JF.txt 0.958153347732
std2-file3.group.peakml_RUN_JF.txt 0.942173479561
std2-file4.group.peakml_RUN_JF.txt 0.940278521693
std2-file5.group.peakml_RUN_JF.txt 0.958007459993
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B.2.3 Plots Showing Counts of Each Cluster Size for Randomised and Regular Peak
Data
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