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Abstract

The field of metabolomics studies the role of small molecules called metabolites. Mass spectrome-
try (MS) is widely used for identification and quantitation of metabolites. Extracting knowledge
from MS data is a difficult problem and a lot of research is done in the area of identification
of metabolites. However, precise quantitation of the identified metabolites is still challenging.
This dissertation investigates the use of Gaussian process regression for probabilistic correction
of MS signal intensities based on physico-chemical properties and molecule structure of the studied
metabolites.
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Chapter 1

Introduction

This chapter outlines the structure of this dissertation and provides background information on the
research problem.

1.1 Outline

In this chapter mass spectrometry and different machine learning techniques are discussed to give
background information on the research problem. Additionally, a short review of the existing re-
search in the area is presented since it is used as ground truth on which this dissertation builds
upon. In chapter 2 a detailed explanation of the problem is given. The evaluation datasets, software
and the performed experiments are presented in chapter 3. Chapter 4 summarizes the results and
discusses future improvements.

1.2 Background

1.2.1 Mass Spectrometry

Mass spectrometry (MS) is the most popular platform for metabolomic studies. There are different
type of MS platforms such as Liquid chromatography mass spectrometry (LC-MS), Gas chromatog-
raphy mass spectrometry (GC-MS) and Capillary electrophoresis mass spectrometry (CE-MS).
These platforms differ by the specific way the analytes are separated but share common analyti-
cal phases - stationary phase when the separation happens and mobile phase when the analyte is
carried through the mass spectrometer [Smith et al., 2014].

During the mobile phase analytes need to be ionized in order to be detected by the mass spectrome-
ter. The most popular way of ionization for LC-MS is Electro-spray ionization (ESI) because of its
“soft ionization” that does not break the chemical bonds of unstable molecules [Zhou et al., 2012].
This phase is critical for the identification and quantification of the metabolites.
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1.2.2 Linear Regression

Supervised machine learning focuses on learning relationship between inputs (independent vari-
ables) and targets (outputs - dependent variables). In general, there are two classes of supervised
machine learning problems - classification and regression. In classification problems the targets are
discrete values, in regression problems the targets are continuous variables.

The ordinary least squares regression is a simple, yet very effective, regression model. In its sim-
plest definition linear regression takes the form:

yi = w0 + w1xi1 + ...+ wnxin

or in vector form, where w = [w0, w1...wn] are the model parameters and xi = [1, x1...xn] are the
input variables of the i-th data point:

yi = wTxi

The optimal parameters ŵ can be learnt by minimizing the loss function:

ŵ = arg min
w

L = arg min
w

1

N

N∑
i=1

(yi −wTxi)
2

ŵ = (XTX)−1XTy

where X consists of all vectors x and the vector y of all learning targets.

New values are then computed by

ynew = wTxnew

1.2.3 Gaussian Process Regression

According to the definition of Rasmussen and Williams in Gaussian Processes for Machine Learn-
ing – “A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution” [Rasmussen and Williams, 2005].

A Gaussian process f is completely specified by its mean (m) and covariance function (k):

f(x) ∼ GP(m(x), k(x,x′))

To make predictions for new input X∗ we define the joint distribution of the observed target values
y and the function values at the test locations f∗ (assuming zero mean):[

y
f∗

]
= N

(
0,

[
K(X,X) + σ2nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

where X is the input matrix and K denotes a matrix of covariances evaluated for all pairs of the
input vectors. The noise in the observations is model by a Gaussian with variance σ2n.
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The predictive equation for the Gaussian process regression is:

f∗|X,y, X∗ ∼ N (f̄∗, cov(f∗)), where

f̄∗ = K(X∗, X)[K(X,X) + σ2nI]−1y, and

cov(f∗) = K(X∗, X∗)[K(X,X) + σ2nI]−1K(X,X∗)

where f̄∗ denotes the mean and cov(f∗) is the uncertainty of the test predictions.

The choice of the kernel function for the Gaussian process regression is important as it models the
similarity between observations and directly affects the accuracy. A popular choice is the squared
exponential kernel (a.k.a Radial Basis Function kernel or Gaussian kernel):

kSE(x, x′) = σ2f exp

(
−(x− x′)2

2`2

)
+ σ2nδx,x′

where length scale ` and the signal variance σf are adjustable parameters of the kernel. The σ2n
is the noise variance added to diagonal of the covariance matrix using Kronecker delta δp,q (1 iff
p = q and 0 otherwise).

An interesting property of the kernel functions is that they can be multiplied or added together,
which makes Gaussian process regression very flexible by allowing different sources of information
to be combined.

1.2.4 Tanimoto and MinMax Tanimoto

Tanimoto and MinMax Tanimoto are graph kernels first introduced in [Ralaivola et al., 2005]. They
were specifically developed for problems in chemical informatics such as classifying compounds
based on physical, chemical, or biological properties. These kernels use the structure of the molecules
in form of a labelled undirected graph of chemical bonds and do calculations based on molecular
fragments (walks in a graph - sequence of atoms and their bonds). [Klambauer et al., 2015]

Tanimoto kernel The kernel is defined as follows:

k(x, x′) =
∑
p∈P

N(p, x) ·N(p, x′)

where x and x′ are molecular graphs, P contains all walks p up to a predefined length d and the
function N(p, x) indicates whether a fragment exists in x:

N(p, x) = 1 {p ∈ x}
N(p, x) = 0 {p /∈ x}
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MinMax Tanimoto kernel This kernel is variation of the Tanimoto kernel. The difference is that
the function N(p, x) counts the number of of occurrences of the fragment p:

kmin(x, x′) =
∑
p∈P

min(N(p, x), N(p, x′))

kmax(x, x′) =
∑
p∈P

max(N(p, x), N(p, x′))

kminmax(x, x′) =
kmin(x, x′)

kmax(x, x′)

N(p, x) = #{p ∈ x}

1.3 Background Survey and Related work

1.3.1 Predicting Ionization Efficiency

Prediction of ionization efficiency of metabolites is subject that does not have extensive cover-
age in the literature. The work of Chalcraft et al. is considered the first that demonstrate virtual
quantification of metabolites. In their paper “Virtual Quantification of Metabolites by Capillary
Electrophoresis-Electrospray Ionization-Mass Spectrometry: Predicting Ionization Efficiency With-
out Chemical Standards”[Chalcraft et al., 2009] the authors present a multivariate linear regression
model using three physico-chemical properties of low-abundance metabolites. The model is devel-
oped using dataset of 58 chemical standards divided in training set of 47, test set of 10 and one
metabolite used as internal standard. The initial model uses four properties – molecular volume
(MV), octanol-water distribution coefficient (logD), absolute mobility (µo), and effective-charge
(zeff ). However, the last property is excluded from the final model because of its low contribution.

1.3.2 Graph Kernels for Chemical Informatics

In order to make predictions based on structured data in Gaussian process regression a special kernel
has to be used. In “Graph Kernels for Chemical Informatics”[Ralaivola et al., 2005] three graph
kernels for chemical compounds are introduced - Tanimoto, MinMax and Hybrid (a.k.a MinMax
Tanimoto). These kernel functions are based on the idea of molecular fingerprints and counting
of labelled paths in graphs. The research demonstrates that the performance of the new kernels
is superior or at least comparable to the state-of-the-art based on three different datasets - Mutag
dataset, National Cancer Institute dataset and Predictive Toxicology Challenge dataset.

Additionally, Tanimoto and MinMax Tanimoto are used in “Graph methods for predicting the func-
tion of chemical compounds”[Zhu and Yan, 2014] in which the authors report that the MinMax
Tanimoto kernel outperform any other graph kernel in classification experiments over five different
datasets with over 3500 compounds each.
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1.3.3 Learning on Mass Spectra

A novel approach for metabolite identification is proposed in “Metabolite identification and molec-
ular fingerprint prediction through machine learning” [Heinonen et al., 2012]. Mass spectra are
low level output of the mass spectrometer. In this work mass spectra are used in predictions of
molecular fingerprints that encode various characteristics of the compounds. New kernel functions
that work on mass spectra are introduced and used in classification task using Support Vector Ma-
chines (SVM). This research demonstrate that the relationship between mass spectral signal and
molecular properties can be learnt with high accuracy.
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Chapter 2

Statement of the problem

This chapter presents the research problem discussed in this dissertation.

2.1 Research Problem

Absolute quantitation of MS signal intensity is considered as one of the major problems of interest
in the field of proteomics, lipidomics and metabolomics [Bantscheff et al., 2007, Smith et al., 2014].
The task of correcting the signal intensity is very challenging because of the multiple factors that
can affect the final result. During the mobile phase different molecules can be ionized differently.
Even more, it is possible the ionization of a compound to be suppressed or enhanced by the pres-
ence of another compound - described as matrix effects in [Mei et al., 2003]. However over the
past decade protocols have been developed that ensure these phenomena can be avoided or at least
minimized [Jessome and Volmer, 2006].

Improvements in the estimation of signal intensity will allow us to compare multiple metabolites
with each other in single experiment or across experiments. Currently, we can only compare the
intensities of single metaboloite with itself in different experiments. Additionally, better estimation
can be beneficial for the subsequent steps in the MS/metabolomics pipeline and further improve
in silico simulations [Smith et al., 2014]. In [Chalcraft et al., 2009] the authors demonstrate a lin-
ear regression model that is able to predict ionization efficiency on a selected set of metabolomic
standards. Although, linear regression is a simple and effective model, the latest advancements in
the field of machine learning provide us with tools that might be able to better model the complex
nature of the MS metabolomics analysis.

Unlike linear regression where we have point predictions, Gaussian process (GP) regression outputs
a full predictive distribution which models the uncertainty and fits better into an analytical pipeline.
Linear regression models are simple and scalable, but do not perform well with high-dimensional
input. On the other hand, GPs do not scale well because of theO(n3) time complexity on the num-
ber of data points. However, in metabolomics analysis, because of the cost of the experiments, we
usually work on small datasets with multiple features. For this reason, one of the main advantages
of GPs is the high flexibility with multi-dimensional data because of the use of kernel (covariance)
functions. While the standard linear regression model works only on numerical data, though dif-
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ferent kernel functions GPs can be applied not only on numerical data, but also on structured data
such as strings, trees or graphs.

2.2 Research Statement

The aim of this project is to research possible ways to correct MS signal intensity of metabolites
using intrinsic chemical properties and/or molecule structure. Existing research in virtual quan-
tification and prediction of ionization efficiency [Chalcraft et al., 2009] shows promising results.
However, further research of the application of different machine learning techniques have the po-
tential of improving the existing work. One of the main goals of this research is to test the feasibility
of Gaussian process regression using different kernel functions and various information about the
tested analytes. Different datasets will be used to benchmark the new models and investigate the
performance of the selected kernels and features.

2.3 Hypotheses

1. Non-linear regression model, such as Gaussian process regression, can lead to better predic-
tions compared to a linear regression.

2. Other physico-chemical features exists that have similar or better descriptive power compared
to the features used in [Chalcraft et al., 2009].

3. Combining structural information about the molecules with physico-chemical properties can
lead to better predictions.
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Chapter 3

Evaluation

This chapter presents the data used in this study and evaluation of the performed experiments.

3.1 Evaluation Data

In order to explore the effects of different compound features two different datasets were used. The
data had to be pre-processed and new features had to be extracted. This section describes the data
used in the research, the process of getting new features and the prediction targets.

3.1.1 Matabolomic datasets

Existing research

Datasets provided in the supporting materials of [Chalcraft et al., 2009] were manually extracted
and used as ground truth. These datasets have three intrinsic physico-chemical properties - molec-
ular volume (MV), octanol-water distribution coefficient (logD), absolute mobility (µo) and mea-
sured and predicted Relative Response Factor (RRF). These data was initially used to verify the
feasibility of the described linear regression model and as a benchmark for the use of Gaussian pro-
cess regression. Later, other physico-chemical properties for the given compounds were extracted
from external public databases and used in combination with Gaussian process model.

Glasgow Polyomics Data

Two datasets, referred to as Standards 1 (Std 1) and Standards 2 (Std 2), provided by Glasgow
Polyomics containing data for 104 and 96 metabolites respectively. Combined the two datasets had
4400 data points with information about different ion adducts and signal intensities for six solute
dilutions. Unlike the datasets in the existing research, these datasets contain various metabolites
that were not pre-selected based on chemical behaviour apart from being chemical standards. For
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the purposes of the experiments carried out in this project only metabolites from one of the dilutions
were used - 73 from Std 1 and 52 from Std 2.

The two datasets had the following information:

• Name - Common name of the molecule

• Formula - Chemical formula of the molecule

• Signal intensity - MS Signal intensity

3.1.2 Features

The features used in the existing research were difficult to obtain because they were measured using
laboratory experiments and commercial software. For this reason different public databases were
evaluated based on the provided physico-chemical properties, API and ease of access.

Public databases

PubChem [Bolton et al., 2008] is a database containing information for more than 60 million
chemical compounds. It is maintained by the National Center for Biotechnology Information
(NCBI) and is publicly available. It provides web interface and REST API. Each compound has the
following properties - MolecularWeight, XLogP, ExactMass, TPSA, Complexity, Charge, HBond-
DonorCount, HBondAcceptorCount, RotatableBondCount.

HMDB [Wishart et al., 2013] The Human Metabolome Database is freely available database con-
taining data for 41,993 metabolites. It integrates chemical data from multiple databases and can be
downloaded as single SDF file. Each compound has the following properties - Water Solubility,
logP, logS, pKa (Strongest Acidic), pKa (Strongest Basic), Physiological Charge, Hydrogen Ac-
ceptor Count, Hydrogen Donor Count, Polar Surface Area, Rotatable Bond Count, Refractivity,
Polarizability, Number of Rings.

MassBank [Horai et al., 2010] is a database containing more than 40000 mass spectra shared by
multiple research groups. The data is following a structured format (MassBank Record Format)
[MassBank Project, 2013] and each experiment is stored in separate plain text file. Some of the
mandatory fields include - Chemical name, Chemical formula, Type of instrument, MS Type, Ion
mode, Number of peaks, Peak (m/z, intensity).

Matching compounds and storing structure information - evaluation of SMILES and InChI

The simplified molecular-input line-entry system (SMILES) is popular format for encoding of
molecular structure using ASCII characters. It is widely supported and most public chemistry
databases can be queried using SMILES. However, there are multiple ways to encode a molecule as
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SMILES string which makes matching of molecules difficult. Although, there are algorithms that
can create “canonical” SMILES strings, the uniqueness is not guaranteed across different products
and databases.

In 2005 the International Union of Pure and Applied Chemistry (IUPAC) published a new way for
encoding chemical structures called InChI - IUPAC International Chemical Identifier [IUPAC, 2005].
The Standard InChI is considered as stable identifier for the purposes of interoperability between
chemical databases, web searching and information exchange [IUPAC, 2009]. The standard also
has a definition of InChIKey, which is a hash of the InChI identifier. Most public databases support
querying by InChIKey. In this project InChI and InChIKeys are used for matching of molecules
and reading the chemical structure of the analytes for use in the graph algorithms.

Data preprocessing

The data from both the existing research and Glasgow Polyomics did not have any identifiers beside
the common name of the chemical compound. Figure 3.1 shows the steps performed to acquire the
necessary data.

Identification of chemical compounds based on name is not an easy task. Most compounds have
multiple synonyms, for example Vitamin C has 140 synonyms listed in HMDB. In the first step of
the preprocessing work-flow PubChem was used because of its capability to identify compounds
using common name. Once identified, all properties of the compound and the InChI were merged to
the existing datasets. After that, the InChIKeys of the compounds were matched to HMDB entries
and additional properties were merged.

Figure 3.1: Data preprocessing work-flow.

Additionally, a custom parser was developed in order to extract data from MassBank’s plain text
files. The data was stored in MongoDB database and indexed by InChIKey for fast querying and
matching of compounds.
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3.1.3 Targets

The target (dependent variable) in the evaluated regression models is the Relative Response Factor
(RRF) – a descriptor of the ionization efficiency of the metabolite. The RRF is calculated by
dividing the signal intensity of a given compound by the signal intensity of another predefined
compound (internal standard).

In the dataset from the existing research the measured RRF is given. For the Glasgow Polyomics
dataset we know that all compounds have the same concentration (intensity). However, we do not
know the exact value. It is assumed that the compound with the highest measured intensity is most
efficient, i.e. all molecules are ionized, and all other compounds are normalized relative to this
compound.

3.2 Evaluation software

This section summarizes the software products used in the research process.

IPython [Pérez and Granger, 2007] is a popular interactive environment for easy editing, exe-
cution and evaluation of python code. Additionally, IPython notebooks support interactive data
visualisation using libraries such as matplotlib [Hunter, 2007] and seaborn [Waskom et al., 2015]
and allow the execution output to be recorded and easily reviewed without re-executing the script.
All experiments in this research project were performed in IPython.

scikit-learn [Pedregosa et al., 2011] is the de facto standard library for machine learning using
Python. It is an actively developed open-source project supported by a big community of scientists
and machine learning enthusiasts. The library contains various tools for classification, regression,
clustering, model selection, dimensionality reduction and preprocessing.

GPy [The GPy authors, 2014] is a specialized Python library for Gaussian Processes developed
by the machine learning group based at the Sheffield Institute for Translational Neuroscience. It’s
fast implementation of Gaussian Process Regression is used in multiple experiments throughout
this project.

pandas [McKinney, 2011] is a high-performance library for data preparation and manipulation.
It greatly simplifies the data processing of external data sources such as comma-separated values
(CSV) files, as well as the “cleaning” and conversion of data before using it in machine-learning
algorithms.

NumPy & SciPy [Walt et al., 2011, Jones et al., 2001] are libraries for efficient numerical com-
putation and array/matrix representation. These libraries are common dependencies for most ma-
chine learning and data manipulation packages implemented in Python.
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RDKit [Landrum, 2014] is open-source cheminformatics toolkit implemented in C++ and Python.
In this projects it is used for its ability to load molecule structures from SMILES and InChI repre-
sentation, and save structured-data files (SDF) for further processing.

Rchemcpp [Klambauer et al., 2015] is package for R [R Development Core Team, 2008] that im-
plements various cheminformatics algorithms. In this projects it is used for computation of Tani-
moto and MinMax Tanimoto kernels which use the molecular structure of the tested metabolomes.
The R functions were accessed from Python using the rpy2 library [Gautier, 2014].

Other Custom Gaussian process regression based on Gaussian Processes for Machine Learning
[Rasmussen and Williams, 2005] and GPy [The GPy authors, 2014] was implemented in order to
support kernels based on molecular structure and combinations of kernels.

3.3 Experiments

In machine learning and statistical analysis, regression models aim to estimate relationship between
features (independent variables) and targets (dependent variables). The following section presents
the use of different regression techniques and features for prediction of the ionization efficiency of
metabolites.

3.3.1 Reproducing the existing research

The first step of the research was to test the feasibility of the existing work in order to use it as
ground truth in further experiments. The model reported in [Chalcraft et al., 2009] is

y = [4.4× 10−4](MV ) + [2.7× 10−3](logD) + 14µo − 4.14× 10−2 (3.1)

Using scikit-learn’s ordinary least squares linear regression, a model was fit on the training data
(See 3.1.1) from the supporting materials, resulting in a model

y = [4.4× 10−4](MV ) + [2.72× 10−3](logD) + 14.1408µo − 4.132× 10−2 (3.2)

Figure 3.2 shows the absolute difference between the RRF reported in [Chalcraft et al., 2009] and
the predictions made by our model.

Performance metrics were also used in order to compare the two models. R2 (coefficient of determi-
nation) and Mean Squared Error (MSE) were calculated – the reported measured and the predicted
RRF were used for the model from the paper and measured RRF and newly predicted RRF for our
model. Table 3.1 presents the results.

Additionally, the predictions of the two models (3.1 and 3.2) were compared – Figure 3.3 presents
the absolute difference of the model predictions and the reported RRF predictions. This shows that
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Figure 3.2: Prediction deviation from reported predictions – Training dataset
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New Model

Metric Score
R2 0.8283
MSE 4.8118× 10−5

Metric Score
R2 0.8278
MSE 4.8249× 10−5

Table 3.1: Comparison of model metrics. Based on predictions reported in the paper (left) and
predictions from our model (right)

even the reported model does not output exactly the same predictions. The difference might be
contributed to number rounding in the reported data. Given the small magnitude of the errors, this
initial experiment proved that the data and existing research can be used as ground truth for further
experiments.

Figure 3.3: Prediction deviation from reported predictions – Test dataset
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3.3.2 Gaussian process regression with RBF kernel

Fitting GP on the ground truth dataset

The next step of the research was to evaluate a non-linear regression model and compare it to
the linear model reported in [Chalcraft et al., 2009]. The data from the same training and testing
dataset was centred to zero mean. After that a Gaussian process regression model was trained
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and optimized (based on marginal likelihood) with GPy [The GPy authors, 2014], resulting in the
following model:

` = 56.926 σ2 = 1.938× 10−3 σ2n = 4.316× 10−5 (3.3)

where ` (length-scale) and σ2 (variance) are hyper-parameters of the RBF kernel and σ2n is the
noise variance.

Figure 3.4 shows a comparison of the predictions reported in the existing research and the predic-
tions made by the GP model (3.3). The error bars in the rightmost figure represent one standard
deviation of uncertainty in the GP predictions.

Figure 3.4: Reported Linear (left), New Linear (middle) and Gaussian Process Regression (right)
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GPR Model R2 =0.9397

Metric Score
R2 0.8933
MSE 6.947× 10−5

Metric Score
R2 0.8542
MSE 9.488× 10−5

Metric Score
R2 0.9397
MSE 3.926× 10−5

Table 3.2: Comparison of model metrics. Based on predictions reported in the paper (left), predic-
tions from new linear model (middle) and predictions from the GP regression (right)

Table 3.2 compares the metrics of the models on the test dataset. The GP regression has a better
R2 score of 0.9397 compared to the reported linear model with 0.8933, mainly because of better
predictions of the RRF of C4 and C8. However, the major benefit of the GP is the modelling of the
uncertainty of the predictions. This can be seen on the predictions for C8, which is the compound
that deviates the most from the “ideal” line in the linear model.

As described in 3.1.1 the new linear model fit does not produce the exact same results as reported in
[Chalcraft et al., 2009]. Comparing the linear and GP regression in equal conditions, on the same
training and test data, show bigger difference in the score metrics.

All these results come to show that Gaussian process regression model outperforms the ordinary
least squares linear model using the same features and training/test split.
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Selecting HMDB physico-chemical properties

Having features that can be easily extracted from public database will improve the analytical pipelines
and reduce time and cost by removing the need of expensive commercial chemical databases and
software. One of the major goals of this research was to find other physico-chemical properties that
can be used in combination with the Gaussian process regression. After the preprocessing step (See
3.1.2) all 14 properties extracted from HMDB were integrated into the datasets. Principal compo-
nent analysis (PCA) was performed on the ground truth dataset in order to find the features with
best descriptive power that could potentially be used for modelling of the ionization efficiency.

PCA is statistical technique that allows high-dimensional data to be reduced to lower-dimensional
representation that keeps only the most significant information. It is commonly used for visualiza-
tion, data exploration and for finding patters in data.

Figure 3.5 shows a PCA loading plot, describing the correlations between the properties – properties
that appear closer together are more highly correlated. For the initial analysis the following prop-
erties were selected based on the PCA and their chemical significance in relation to the ionization
efficiency [Oss et al., 2010]:

• Acidic pKa (CHEM ACIDIC PKA)

• logP (JCHEM LOGP)

• Polarizability (JCHEM POLARIZABILITY)

• Polar Surface Area (JCHEM POLAR SURFACE AREA)

ALOGPS LOGP
ALOGPS LOGS
JCHEM ACCEPTOR COUNT
JCHEM BASIC PKA
JCHEM ACIDIC PKA
JCHEM DONOR COUNT
JCHEM LOGP
JCHEM PHYSIOLOGICAL CHARGE
JCHEM POLARIZABILITY
JCHEM ROTATABLE BOND COUNT
JCHEM POLAR SURFACE AREA
EXACT MASS
MOLECULAR WEIGHT
JCHEM REFRACTIVITY

(a) Feature correlations
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Figure 3.5: PCA
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Fitting GP using different features on the ground truth dataset

To test whether the selected features can be used for predictions of the ionization efficiency a GP
model was fit on the ground truth dataset and the results were compared to the predictions of the
linear model.

Similar to the approach used in the previous GP experiment, the new physico-chemical properties
were standardized to zero mean. The resulting model had the following hyper-parameters:

` = 29.580 σ2 = 2.442× 10−3 σ2n = 4.458× 10−5 (3.4)
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(a) Linear regression on the original features (left) and Gaussian Process
Regression (right) using HMDB features

Metric Score
R2 0.8864
MSE 7.392× 10−5

Log-likelihood 34.89

(b) GP regression model metrics

Figure 3.6a shows the predictions of the linear model reported in [Chalcraft et al., 2009] using the
original features and the predictions from the new model using the new features. The performance
of the two models is very close, with R2 of 0.8933 for the linear model compared to 0.8864 for the
GP model.

These results show the feasibility of selected physico-chemical properties for ionization efficiency
predictions on the ground truth dataset.

Fitting GP on the Glasgow Polyomics dataset using HMDB properties

In order to check whether the selected physico-chemical can be used for ionization efficiency pre-
dictions on other metabolites, the approach had to be tested on other data.

A new model was fit on the Glasgow Polyomics dataset. The two datasets Std 1 and Std 2 (See
3.1.1) were combined, shuffled and split into training and test sets in 3:1 ratio. After the initial
tests, molecules with mass above 280 were excluded because they were under-represented in the
dataset and were affecting the performance. Additionally, logarithmic scale was used for the target
RRF values.

5-Fold Cross Validation (CV) was performed on the training set in order to find the best hyper-
parameters that maximize the predictive likelihood, resulting in the following model:
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` = 179.59 σ2 = 463.265× 105 σ2n = 4.333 (3.5)

Figure 3.7: Plot of test set (left) and training set (right)

11 10 9 8 7 6 5 4 3 2 1 0
Measured (log)

11

10

9

8

7

6

5

4

3

2

1

0

P
re

di
ct

ed
 (l

og
) L-Proline

L-Threonine

L-Methionine

Thymidine
L-Arginine

Ala-Gly

Dopamine

Imidazole-4-acetate

Pyridoxine

Hypoxanthine

methylglyoxal

L-Alanine

6-Methylaminopurine

L-isoleucine

4-Coumarate
Methylmalonate

L-Serine

Betaine

Serotonin

1-Aminocyclopropane-1-carboxylateL-Lysine

Test R2 =0.282

10 9 8 7 6 5 4 3 2 1 0
Measured (log)

10

9

8

7

6

5

4

3

2

1

0

P
re

di
ct

ed
 (l

og
)

Training R2 =0.625

Predictions made on the test set using the new model (3.5) are shown on Figure 3.7. Although the
R2 metrics on this dataset are not as high as on the ground truth, most of the predictions are close
to the “ideal” line or the error bars cross it. There are few noticeable outliers, namely Betaine,
Serotonin, Dopamine and methyglyoxal. However, methyglyoxal and Betaine are predicted to have
high uncertainty. The overall Log-likelihood score on the test set is -52.96.

Figure 3.8: Corrected relative signal intensities using GP with RBF kernel
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Having the predictions of the RRF allows us to make corrections of the measured signal intensity
(3.6).

RRFcorrected =
RRFmeasured

RRFpredicted
(3.6)

Because the model predictions are in natural log space, 1000 samples were taken from the predictive
distribution and converted to linear space by calculating the exponential.

Figure 3.8 show box-plot of the corrected samples - the red line is the median, the box extends from
the lower to the upper quartile and the whiskers show the range of the samples. The round blue
markers are the measured Relative Response Factors (RRF). Out of the 21 test metabolites, 17 were
corrected towards the true intensity (See 3.1.3) and 4 were incorrectly adjusted.

The results above demonstrate that the selected physico-chemical properties can be successfully
used to make ionization efficiency predictions and RRF corrections.

3.3.3 Gaussian process regression using molecular structure

Another major goal of this project was to investigate whether information about the molecular
structure of the matabolomes can be used for predictions of the ionization efficiency. Two differ-
ent kernels were tested based on their good performance in other studies [Zhu and Yan, 2014] -
Tanimoto and MinMax Tanimoto.

Fitting GP on the ground truth dataset

For this experiment a custom implementation of Gaussian process regression was developed in
order to work with the Tanimoto and MinMax Tanimoto kernel. The molecular structures of the
training and test compounds was loaded from the InChI using RDKit and saved to SDF files. These
files were used to compute the kernels using Rchemcpp.

Table 3.3: Tanimoto and MinMax Tanimoto kernel performance on the ground truth test dataset

R2 Log-Likelihood
Tanimoto 0.714 -1.7
MinMax Tanimoto 0.898 33.34

Table 3.3 shows the scores achieved by using the two kernels on the ground truth test dataset. Both
kernels do not have any hyper-parameters, and were optimized for maximal log-likelihood only on
the noise variance σ2n. The value of σ2n = 10−5 was picked for the MinMax Tanimoto model and
σ2n = 0.8 × 10−5 for the Tanimoto model after 5-Fold CV. Additionally, the kernels were scaled
down (multiplied by a constant αs = 10−5) to adjust the high values of the covariance matrices.

Figure 3.9 shows plots of the test set and the training set. The R2 score on the test set is 0.898
– similar to the score of the linear model reported in [Chalcraft et al., 2009] and the experiment
in 3.3.2. However, the R2 metric on the training dataset is 0.996 which shows that the model is
over-fitting on the training.
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Figure 3.9: GP with MinMax Tanimoto kernel on the ground truth dataset
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The over-fitting can be explained by the way these graph kernels work and the fact that metabolomes
are very small molecules, hence the graphs structures are small and a lot of the paths might be
similar.

Fitting GP on the Glasgow Polyomics dataset

The same approach was used on the Glasgow Polyomics dataset. After cross-validation σ2n = 2.77
and αs = 0.11 were picked for the MinMax Tanimoto model and σ2n = 1.88 and αs = 1 for the
Tanimoto model.

Table 3.4: Tanimoto and MinMax Tanimoto kernel performance on the Glasgow Polyomics test
dataset

R2 Log-Likelihood
Tanimoto 0.085 -55.69
MinMax Tanimoto 0.257 -51.70

The model using MinMax Tanimoto kernel achieved better log-likelihood during the CV and better
results on the test set. Similar to the previous GP experiment on the Glasgow Polyomics dataset, the
R2 score was not as high as in the ground truth experiments. However, the Log-likelihood score on
the test dataset is slightly higher – -51.70, compared to -52.96 in the previous experiment. However,
as it can be seen from Figure 3.10 most of the predictions have the same level of uncertainty.

Overall, most of the correction of this model were good. Figure 3.11 shows that 14 of the corrections
shift the RRF towards the true intensity and 7 are incorrect.
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Figure 3.10: GP with MinMax Tanimoto kernel on the Glasgow Polyomics dataset
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Figure 3.11: Corrected relative signal intensities using GP with MinMax Tanimoto kernel
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3.3.4 Gaussian process regression with combined kernels

The last step of the research was to evaluate whether combination of physico-chemical properties
and structural information about the molecules can improve the predictions. One of the advantages
of Gaussian processes is the possibility to combine kernel functions. As long as a suitable kernel
function exists, different types of information (numerical, string, trees, graphs and etc.) about the
data points can be combined together to produce the covariance matrix.

In the experiments below, kernel functions were combined using the following configuration:

knew(x, x′) = αk × ka(x, x′) + (1− αk)× kb(x, x′) (3.7)
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Parameter αk was introduced to control the weight of each kernel.

Fitting GP with combined kernels on the ground truth dataset

In this experiment the RBF kernel and MinMax Tanimoto kernel were combined. The hyper-
parameters learnt in the previous experiments were used. 5-Fold CV was used to find the best
value for αk that maximizes the Log-likelihood:

` = 29.580 σ2 = 2.442× 10−3 σ2n = 4.458× 10−5 αs = 10−5 αk = 0.192
(3.8)

Figure 3.12 shows a curve of the Log-likelihood for different αk values during the CV. The value
αk = 0.192 means that the ka kernel (RBF) has almost 20% contribution to the final covariance
matrix and the rest is from the MinMax Tanimoto kernel.

Figure 3.12: CV Log-likelihood for αk values on ground truth dataset
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Figure 3.13 shows plot of the test and the training set using the new model with combined kernel.
TheR2 score on the test dataset is 0.9128, higher than any of the scores in the previous experiments.
However, the Log-likelihood (32.53) is slightly lower compared to the models using RBF (34.89)
or MinMax Tanimoto (33.34).

Overall, we can see that using combination of physico-chemical properties information and knowl-
edge about the structure of the molecules can improve the accuracy of the ionization efficiency
predictions.
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Figure 3.13: Predictions of combined kernels on the ground truth dataset
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Fitting GP with combined kernels on the Glasgow Polyomics dataset

To further test the feasibility of kernel combinations the approach from the experiment above was
applied on the Glasgow Polyomics dataset. Similarly, the the hyper-parameters from the experiment
in 3.3.2 were used for the RBF kernel and new αs = 0.8 was picked for the MinMax Tanimoto
kernel. The best value for αk was discovered using 5-Fold CV:

` = 179.59 σ2 = 463.265× 105 σ2n = 4.333 αs = 0.8 αk = 0.93 (3.9)

For this model the contribution of the MinMax Tanimoto kernel is higher that the RBF kernel.
Figure 3.14 shows the Log-likelihood on the validation dataset using different αk values.

Figure 3.14: CV Log-likelihood for αk values on Glasgow Polyomics dataset
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Figure 3.15 shows the results of the new model on the test and the training set. Like in the previous
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experiment, the R2 score is higher than any of the scores achieved on the same dataset and the
Log-likelihood (-53.54) is lower compared to RBF (-52.96) and MinMax Tanimoto (-51.70).

Figure 3.15: Predictions from combined kernels on the Glasgow Polyomics dataset

12 10 8 6 4 2 0 2
Measured (log)

14

12

10

8

6

4

2

0

2

4

P
re

di
ct

ed
 (l

og
)

L-Proline

L-Threonine

L-Methionine

Thymidine

L-Arginine

Ala-Gly

Dopamine

Imidazole-4-acetatePyridoxine
Hypoxanthine

methylglyoxal

L-Alanine

6-Methylaminopurine

L-isoleucine

4-CoumarateMethylmalonate
L-Serine

Betaine

Serotonin

1-Aminocyclopropane-1-carboxylate
L-Lysine

Test R2 =0.357

12 10 8 6 4 2 0 2
Measured (log)

14

12

10

8

6

4

2

0

2

4

P
re

di
ct

ed
 (l

og
)

Training R2 =0.800

The results from the two experiments above show that combination of physico-chemical properties
and structural information about the molecules can lead to better predictions. It is worth mentioning
that in these experiments the hyper-parameters for the RBF kernel were fixed based on the results
from the previous experiments because of the costly cross-validation of αk – further cross-search
of the parameter space of the combined kernels might lead to a better model.
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Chapter 4

Conclusion

This chapter concludes the dissertation by discussing the outcomes of the evaluation, highlights
some of the achievements, and potential future work that could lead to improvements.

4.1 Conclusion

In this dissertation we have looked at different features that can be used to predict the ionization
efficiency of metabolites in mass spectrometry. The conducted experiments managed to prove all
hypotheses defined in this project and to demonstrate improved predictions.

The existing research was evaluated for feasibility and new machine learning techniques and molec-
ular features were tested. First, Gaussian process (GP) regression was applied on the ground truth
dataset using the features from the existing research – demonstrating improved accuracy and hav-
ing the additional benefit of modelling the uncertainty of the predictions. Second, new physico-
chemical features were extracted from publicly available databases. Four features were selected
and it was shown that GP regression with these features has similar performance to the linear model
existing research. Additionally, these features were tested on a dataset from Glasgow Polyomics
and it was shown that the ionization efficiency predictions can be successfully used for corrections
of MS signal intensity. Finally, GP regression model using kernel combining information about the
molecular structure and physico-chemical properties was developed and demonstrated improved
accuracy on both datasets.

There are few important outcomes from the evaluation:

• Gaussian process regression with RBF kernel can produce more accurate ionization efficiency
predictions compared to the ordinary least squares linear regression.

• Other easily accessible physico-chemical features can be used for ionization efficiency pre-
dictions without the need of commercial databases and software.

• Combination of molecular structure information and physico-chemical properties using Min-
Max Tanimoto kernel and RBF kernel can produce better prediction accuracy than models
using each of the kernels alone.
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4.2 Future Work

Given the complexity of the task to predict the ionization efficiency of chemical compounds and
the time constrains of this project (less than 3 months) only few of the most important experiments
were conducted. The list below outline directions for improvements and future work:

Additional features and model selection Although the features selected in 3.3.2 performed well
on the two dataset, there are additional features that can be extracted from PubChem. For ex-
ample, molecular volume (MV) is considered as good descriptor in [Chalcraft et al., 2009] and
[Oss et al., 2010] – estimated MV value is available through the PubChem REST API. Additionally,
in order to select physico-chemical characteristics of the compounds that maximize the accuracy
of the GP regression, extensive model selection can be performed by testing all combinations of
features or just a reduced set selected with the help of domain experts.

Full cross-search of parameter space for combined kernels In 3.3.4 RBF and MinMax Tani-
moto kernels were used with the best hyper-parameter values discovered in previous experiments
and only the αk parameters was used in the cross-validation. Although full cross-search of the pa-
rameter space for the combined kernels will be computationally expensive, it might produce better
model with higher accuracy.

Mass spectra Although data from MassBank was parsed and extracted, only a small number of
compounds in the ground truth dataset had matching compounds in MassBank. Because of the lack
of data, experiments using mass spectra were not performed.

It would be interesting to see whether GP regression on mass spectra using the kernels proposed in
[Heinonen et al., 2012] can be applied for ionization efficiency predictions and MS signal intensity
corrections.

Different adduct levels In the experiments on the Glasgow Polyomics dataset only data from the
M+H adduct and solute dilution 1:1 was used. Combining information from the different adducts
might improve predictions by giving additional insight of the ionization behaviour of the com-
pounds.
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