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Abstract 
 
In the field of Metabolomics, biological samples are routinely analysed using 
Mass Spectroscopy (MS) techniques with the aim of quantifying and identifying 
the constituent metabolites. The University of Glasgow Metabolomics Facility 
has developed a proprietary web-based application (PiMP) for the analysis of 
mass spectral data generated by the research staff using this technique. 
However, PiMP does not support the extraction and storage of fragmentation 
patterns, which are analogous to a structural fingerprint, thereby limiting the 
veracity of metabolite identification.  
 
To provide supporting evidence for putative metabolite identifications, a web-
based application to maintain the lineage of MS peaks and utilise their 
fragmentation spectra in the retrieval of candidate annotations was developed. 
The Fragment Annotation Kit (FrAnK) is a Django-based application which 
implements Celery to facilitate the asynchronous processing of MS data sets. 
Interfacing with R, peak data is derived and stored from mzXML source files 
using scripts tailored to the experimental protocol. The hierarchical 
fragmentation spectra are utilized in the retrieval of candidate annotations via 
spectral reference libraries. In the form of a SOAP request, fragmentation 
spectra may be submitted for analysis using the MassBank Web API. 
Alternatively, the libraries of NIST14 are queried via the Windows-based MS 
PepSearch software, supported within a Linux-like environment through Wine. 
As each spectral reference library may generate numerous candidate annotations 
for a given peak, the user may select a preferred candidate annotation, proposing 
putative metabolite identification, from those annotations retrieved. 
 
While limitations have been identified in the FrAnK application, the 
development provides a framework to support the integration of novel software 
and algorithms for the identification of metabolites. 
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Chapter 1 Introduction 

Historically, life sciences research has been predicated upon highly targeted 
experimental approaches to investigate specific molecules of interest within 
biological systems. Just as the three blind men were unable to reach a consensus 
upon the shape of the elephant, life scientists have acknowledged that 
investigating the complexities of biological systems in isolation is ineffectual and 
the adoption of more holistic, untargeted approaches are essential. Potential 
biomarkers of pathological states, novel therapeutic-targets and diagnostic 
biomarkers may go unidentified (Courant et al., 2014). Since the inception of 
genomics and transcriptomics in the 1980s, there has been increasing 
collaboration between life-sciences researchers and computing scientists to meet 
the challenges of new, holistic approaches within the biological “omics” fields.   

In contrast to related –omics fields such as genomics, transcriptomics and 
proteomics, to date the emerging field of metabolomics has received relatively 
limited attention from computing scientists. In part, this has been due to the 
relative infancy of the field and the challenge of bridging the gap between life 
sciences domain knowledge and technical proficiency (Smith et al., 2014). As 
such, attempts to develop software to identify small molecular metabolites have 
been met with limited success to date. However, there is a concerted effort within 
the field to improve the computational framework supporting this burgeoning 
scientific discipline. In collaboration with the Metabolomics Facility at Glasgow 
Polyomics, the project aims to develop a web application to aid researchers in the 
identification of small biological metabolites using fragmentation patterns 
generated using mass spectrometry. However, the field of metabolomics, 
including the fundamentals of mass spectrometry, will initially be reviewed to 
familiarise the reader with an overview of the necessary domain knowledge.   

1.1 Background 

1.1.1 Metabolomics 

Since its introduction approximately 15 years ago, Metabolomics has been an 
emerging discipline focused upon the high-throughput quantification and 
identification of small molecular metabolites (typically 50-1500 Da) which are 
synthesized by the metabolic pathways of biological systems (Courant et al., 
2014; Smith et al., 2014). Cellular physiology can be considered from three 
distinct levels – gene expression and transcription (genomics and 
transcriptomics; the blueprint of cellular processes), protein expression and state 
(proteomics; the machinery which drives cellular processes) and the small 
molecules which serve as either substrates or products of cellular pathways (the 
net effect of cellular processes). The latter of which is the concern of the field of 
Metabolomics, which reflects the phenotype or state of the metabolic processes of 
a biological system.  

In targeted metabolomics investigations, a selective subset of chemically-related 
metabolites belonging to a specific cellular pathway of interest will be 
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investigated (Courant et al., 2014). The advantage of such targeted approaches is 
they are hypothesis-driven and, as such, the cellular pathway or metabolites of 
interest are typically defined in advance. This allows for relatively simple 
quantification and identification, however, the interpretation of such data is 
limited in scope due to the selectivity of the experimental design. An alternative 
is to adopt a ‘metabolic fingerprinting’ approach, allowing for the statistical 
analysis of the wider metabolome across experimental factors (Courant et al., 
2014). This experimental approach is untargeted, and as such is open to new 
findings. However, due to the lack of selectivity for a specific cellular pathway or 
metabolite, the challenge remains to identify the metabolites of interest. 

Defined as “all the metabolites within an organism”, the metabolome 
encompasses both endogenous (such as amino acids, lipids, organic acids and 
bases) and exogenous (such as xenobiotics) metabolites (Courant et al., 2014; 
Glish and Vachet, 2003). Furthermore, the metabolites which comprise the 
metabolome of a biological system may vary in their chemical and physical 
properties, concentration and distribution within an organism. Despite the 
associated challenges, improving the veracity of metabolite identification will not 
only further academic knowledge of physiological processes but is likely to 
identify novel therapeutic targets and biomarkers for patient diagnosis, drug 
safety and efficacy.  

1.1.2 Mass Spectrometry 

Mass spectrometry (MS) is powerful analytical technique, used to determine the 
molecular mass of the chemical constituents of a sample. MS is routinely used in 
a variety of life sciences disciplines to quantify and identify physiologically 
relevant compounds due to the sensitivity with which the “mass” of a molecule 
can be measured (Mann et al., 2001). By virtue of the speed of sample analysis, 
ease of automation and high sensitivity, MS is ideally suited to the high-
throughput analysis of complex, chemically-rich biological samples (Glish and 
Vachet, 2003; Courant et al., 2014). 

The mass spectrometer is comprised of three main components – an ionization 
source, a mass analyser and a detector (figure 1; Glish and Vachet, 2003). In 
order to “detect” the constituents of a sample, a mass spectrometer initially 
ionizes the constituents, generating charged ions, in the Ionisation Source. The 
mass analyser separates the gas-phase ions, while the detector is used to 
measure the mass-to-charge ratio (m/z) and the abundance of the ions formed. In 
order to prevent the collision of the ions with environmental gaseous molecules, 
the mass analyser, detector and ion source typically operate under high-vacuum 
conditions. 

 

 

 

Figure 1: Overview of Mass Spectrometer Components (Adapted from 
Berdie Rabanaque et al., 2012) 
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The mass of a molecule is defined by its molar mass, therefore, the term “mass 
spectrometry” is, in part,  a misnomer as the instrument itself measures the 
mass-to-charge ratio (m/z) of gas-phase ions as opposed to a molar mass (Glish 
and Vachet, 2003). However, it should be noted that the term “mass” is 
commonly used to refer to the m/z ratio of an ion when referring to MS data. As 
the instrument measures the m/z ratio of gas-phase ions the effects of isotopes 
must also be considered during the analysis. This distinction is highlighted by 
Glish and Vachet (2003), who describe the example of chlorobenzene (molecular 
weight 112.56) which may be measured as two distinct ions (m/z 112.01 and 
114.01 respectively) with intensities commensurate to the relative abundance of 
two chlorine isotopes (35Cl and 37Cl).  

The ions detected by the instrument’s detector during a single scan are typically 
displayed as a mass spectrum (figure 2a). A mass spectrum is a two-dimensional 
plot of the abundance of an ion (referred to as “intensity”) versus its m/z (Glish 
and Vachet, 2003; Berdie Rabanaque et al., 2012). Due to their rich chemical 
composition, the constituent molecules of biological samples are typically 
separated using chromatographic methods prior to MS analysis (see section 
1.1.3). Therefore, several MS scans may be performed consecutively as the 
sample elutes. The total ion current (TIC) chromatogram is a plot of the retention 
time and the summed intensity of the ions, regardless of their m/z ratio, detected 
at each time point (figure 2b). 

 

Figure 2: Comparison between mass spectrum (A) and total ion current 
chromatogram (B). 

1.1.3 Chromatographic Methods 

As the size of the metabolome is unknown, there may be tens or hundreds of 
metabolites within a given biological sample with the identical molecular mass. 
Therefore the ability of the MS instrument to resolve individual metabolites with 
near identical m/z ratios becomes compromised. The constituents of a biological 
sample can be separated based upon their chemical or physical properties. By 
distributing the chemical constituents of the sample between a stationary and 
mobile phase, the constituents can be separated based upon their chemical or 
physical properties. The mobile phase, typically a gas or liquid, flows around the 
stationary phase, either a liquid or solid, and the compounds are separated based 
upon their relative affinities for the stationary phase.  The retention time is a 
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measure of the time taken for an analyte to elute from a chromatographic 
column. While the inclusion of chromatographic methods improves the resolution 
of instrumentation measurements of ion m/z, one limitation is that the retention 
time may vary between experimental replicates. Gas chromatography-MS 
(GCMS), referring to a gas mobile phase, is more suitable for small, nonpolar and 
volatile compounds. Conversely, analysis of polar or ionic metabolites may be 
achieved with Liquid Chromatography–MS (LCMS; Courant et al., 2014). If a gas 
chromatographic separation method is used for analysis, the addition of a 
derivatization reaction step prior to sample injection may be considered in order 
to reduce polarity and increase volatility (Courant et al., 2014). The most 
common derivatization procedures are alkylation, acylation, or silyation, the 
active hydrogen in functional groups (-COOH, -OH, -NH, and –SH) are replaced 
by acyl-, or silyl-groups to form esters or ethers (Courant et al., 2014). 

1.1.4 Ionization 

As previously stated, in order for the analytes of interest to be measured by the 
mass spectrometer they must first be converted to gas-phase ions during at the 
Ionisation Source. Ionisation can be achieved using various techniques; however, 
Electrospray Ionisation (ESI) and Electron Impact Ionisation (EII) will be 
highlighted due to their relevance to the current project. 

ESI is regarded as a very ‘soft’ ionization technique, referring to the limited 
fragmentation of the sample analytes which occurs using this method, commonly 
used in conjuncture with liquid chromatography. As such, ESI which allowing 
non-covalent complexes (such as interacting proteins) to be ionized intact thereby 
vastly expanding the number of biological applications. One limitation of ESI is 
the propensity for ion suppression, which can occur in samples with high salt 
concentrations (>1 mM) or due to the presence of analytes with a high 
concentration. Ion suppression refers to a diminished ionization efficiency, which 
reduces the number of ions formed during ionization and subsequently 
confounding detection. 

EII (also referred to as “electron ionization”), is used alongside gas 
chromatography to ionize and fragment metabolites prior to MS analysis. A 
typical ionization source exposes the analyte to a stream of thermionic electrons 
produced from a heated element. Close passage of highly energetic electrons to 
the neutral analyte induces ionization. These cations (positively charged ions) 
formed within the ionization source can then be expelled from the ionization 
source using a repelling voltage. As such, the ions generated from the MS 
analysis of GCMS EII are exclusively positive in polarity. In contrast to ESI, EII 
is known as a “harsh” technique because of the degree of fragmentation induced. 
While the energy of the ionizing electrons can be reduced to diminish the degree 
of ionization and fragmentation, the sensitivity of the MS instrument to detect 
the analytes will be negatively influenced. 

1.1.5 Mass Analysers and Detectors 

Principally, there are five main types of mass analyser in circulation which can 
be broadly considered in two categories, beam analysers and trapping analysers 
(Glish and Vachet, 2003). The role of the mass analyser is to separate ions by 
m/z ratio prior to detection. In the former, the ions from the ion source pass 
through the analysing field, which serves to separate ions, to the detector in a 
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beam. Conversely, trapping analysers trap the ions in the analysing field, and 
are subsequently passed to the detector. 

There are three distinct beam analysers. The time-of-flight (TOF) analyser is the 
simplest, separating ions based on their velocity. Using a fixed potential between 
the ion source and detector, ions with a lower m/z achieve a greater velocity than 
those of greater m/z. As ions with the same charge obtain the same kinetic 
energy, the duration of time taken to travel from the ion source to the detector is 
used to determine ion mass (Glish and Vachet, 2003). The sector analysers rely 
upon a similar principle. Analysis of m/z is achieved as ions with the same 
kinetic energy-to-charge ratio follow an identical path through a magnetic field 
and are then separated according to their momentum-to-charge ratio in a 
magnetic sector (Glish and Vachet, 2003). Finally, the quadrupole analysers use 
radio frequency and direct current voltages applied to four rods (Glish and 
Vachet, 2003). As ions from the source pass through the mass analyser, those 
with the same m/z follow a distinct, stable trajectory to the detector from those 
with a different m/z ratio. Ions of distinct m/z can be sequentially directed to the 
detector by varying the magnitude of the radio frequency voltages and direct 
current voltages applied to the four rods (Glish and Vachet, 2003). 

While the quadrupole mass analysers maintain electric fields in two dimensions, 
the quadrupole ion trap (a trapping analyser) maintains electric fields in three 
(Glish and Vachet, 2003). This quadrupole ion trap analyser therefore can 
maintain ions within a stable trajectory within the instrument. In contrast to the 
quadrupole mass analysers, the ions within the quadrupole ion trap do not 
simply pass through the mass analyser in a mass-selective trajectory. 
Measurement of the m/z is achieved by making the ion trajectories unstable in a 
mass-selective manner, which allows for progress to the detector (Glish and 
Vachet, 2003). In the Fourier-transform ion-cyclotron resonance (FT-ICR) 
analyser, ions oscillate in a magnetic field at frequencies related to their m/z 
ratio. As the ions oscillate in close proximity to two metal plates, an alternating 
current is induced which can be used to derive the m/z ratio (Glish and Vachet, 
2003).  

1.1.6 Fragmentation 

Fragmentation refers to the process in which a parent ion is dissociated, or 
cleaved, generating product ions which correspond to sub-structures of the 
parent ion. While fragmentation of ions occurs during the initial ionization of the 
sample’s constituents within the Ionisation Source, this is typically an 
undesirable consequence of the process necessary to generate measurable ions. 
Nevertheless as the identity of the compound corresponding to a distinct peak is 
typically unknown in metabolomic profiling studies, fragmentation of precursor 
ions can be used to provide valuable structural information which aids in the 
identification of the compound which formed the parent ion.  

The fragmentation spectra of a parent ion can be considered analogous to a 
chemical fingerprint, or mapping of its chemical structure. As the product ions 
originate from the dissociation of the parent ion, each product ion corresponds to 
a sub-structure of the parent ion. However, it should be noted that not all of the 
parent ion’s chemical structure is represented in the fragmentation spectra as 
the product ions correspond to only those fragments which have maintained a 
charged state following dissociation. This residual loss of mass is referred to as 
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the neutral loss. Within the structure of a chemical compound, distinct 
substructures may have a greater propensity for cleavage than others. 
Compounds are often classified based on homologous core structures that often 
will either form a specific product ion or will be lost as a neutral fragment in the 
MS/MS experiment. As such, under identical dissociation conditions, the pattern 
of fragmentation of a parent ion is reproducible and can be used to identify 
functional groups or the compound itself.  

In order to garner this valuable resource of structural data, MS can be performed 
using a technique referred to as Tandem MS (MS/MS). MS/MS may be conducted 
within either a single instrument (referred to as tandem-in-time) or within 
interconnected MS instruments (referred to as tandem-in-space). Whether 
tandem-in-time or tandem-in-space MS is performed is dependent on the 
capabilities of the instrumentation used in the investigation. Regardless, the 
principles are the same in each approach. 

During an initial full-scan MS stage, selected ions of a specified m/z are isolated 
from the residual ions originating from the ion source. These isolated ions (the 
parent ions) are induced to undergo a chemical reaction which induces their 
cleavage, generating the fragments. The resulting ions from the reaction, termed 
product ions, are analysed in a subsequent MS stage. Typically, MS/MS simply 
corresponds to two stages of MS analysis, the full-scan of the sample ions and the 
analysis of the fragmentation product ions. However, in tandem-in-time MS/MS 
instrumentation it is possible to repeat the fragmentation process n times. As 
such, the product ions of a precursor ion could themselves be fragmented, 
generating a further generation of product ions for analysis. 

1.1.7 Dissociation Methods 

A crucial aspect of fragmentation experiments is the reaction that occurs to 
induce dissociation of the parent ion. The most frequently used reaction is 
unimolecular dissociation, which is generally enhanced by some form of ion 
activation. Ion activation is necessary to increase the internal energy of the 
parent ion so it will dissociate prior to analysis by MS2. In practice, activation 
and dissociation cannot be separated, so the ion activation methods are simply 
referred to as dissociation methods. The method almost universally used is 
collision-induced dissociation (CID), which occurs within a distinct collision zone 
of the MS instrument. In CID, the parent ion collides with a neutral target 
(collision) gas and some of the kinetic energy of the parent ion can be converted 
to internal energy. 

1.1.8 Data Dependent Acquisition (LCMS) 

Liquid chromatography MS/MS can be performed under information or data-
dependent acquisition conditions. This type of acquisition is termed “auto-
adaptive MS/MS product-ion scan mode”, in which parent ion selection during 
the full-scan mode (termed the “survey scan”) is dependent upon predetermined 
criteria (Marquet et al., 2003). Selection of the parent ions for dissociation is 
typically dependent on the intensity of the ions in the survey scan. The most 
intense ions are transmitted to the collision cell, where fragmentation occurs. 
The resulting product ions are then analysed by a second MS phase (Marquet et 
al., 2003; figure 3).  
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Figure 3: Data-dependent acquisition. 

 

1.1.9 Data Independent Acquisition (LCMS) 

Whilst highly-powerful, one limitation of the data-dependent acquisition 
technique is that selection of parent ions during the initial survey scan favours 
metabolites with higher ionization efficiencies (Chapman et al., 2014). In order to 
circumvent this bias and increase the detectable dynamic range, the concept of 
data-independent acquisition was proposed (Chapman et al., 2014). In data-
independent acquisition, there are no intensity-based criteria for ion selection 
based on prior scans. Instead, a predefined m/z range is investigated by 
fragmenting all ions entering the mass spectrometer at a given retention time 
(termed “broadband DIA”; Chapman et al., 2014). Alternatively, the m/z range 
can be divided into smaller, discreet m/z ranges for isolation and subsequent 
fragmentation. Therefore, the fragmentation of precursor ions is independent of 
any prior data generated from the sample. Due to the fragmentation of all ions 
entering the mass spectrometer, precursor-product ion lineage is lost in DIA. 
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However, distinct experimental approaches can be implemented to circumvent 
this apparent limitation. In the MSE technique, scans using a Q-TOF instrument 
can cycle between ‘high-energy’ and ‘low-energy’ scans. While the ‘high-energy’ 
scan generates the fragmentation data, the ‘low-energy’ scan can be considered 
analogous to the ‘survey scan’ of data-dependent acquisition (Egertson et al., 
2015; figure 4). Therefore, the lineage of parent and product ions can be resolved.  

 

Figure 4: Data-independent acquisition. 

 

1.1.10 Gas Chromatography-MS Electron Ionisation 

As described in section 1.1.4, EII is a ‘harsh’ ionisation technique typically used 
prior to the GCMS analysis of samples. Contrasting the use of ESI in LCMS 
experiments, analytes exposed to EII typically fragment prior to MS analysis and 
therefore fragmentation does not occur in the collision zone of the MS instrument 
as it does for both the data-dependent and data-independent acquisition methods 
detailed previously. As such, the full-scan of a GCMS analysis consists of product 
ions generated from the analyte (the parent molecule). In short, the MS 
instrument does not “detect” a parent ion for the fragmentation spectra 
generated using GCMS. Nevertheless, the product ions detected by the 
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instrument originate from an ‘anonymous’ product analyte during the 
fragmentation of the sample. The fragments themselves may still be grouped, 
which in turn allows for identification of the parent analyte (figure 5). 

 

Figure 5: Gas-Chromatography Electron Impact Ionisation 

 

1.1.11 Data Analysis 

Typically, an MS-metabolomics experiment generates vast quantities of data. 
The processing of such datasets manually would be incredibly time-consuming 
and error-prone. Therefore, specific software tools and algorithms are essential to 
the fulfilling the aims of metabolomics – quantification and identification. 
Initially, the raw data, output by the MS instrumentation must be converted 
from the instrumentation providers proprietary file format into a format suitable 
for either statistical analysis or compound identification. 

The ProteoWizard Library (http://proteowizard.sourceforge.net/) is an open-
source collection of software tools, initiated in 2007, to allow for easy conversion 
of vendor-specific MS file formats to open-source MS-specific XML formats. The 
aim of the project was to ensure that researchers focus upon the development of 
novel analytical approaches as opposed to developing file conversion software. 
While several open-source file formats are available (such as mzData, JCAMP-
DX and ANDI-MS), one commonly adopted format is the mzXML which is 
beginning to be superseded by the mzML format. Nevertheless the mzXML 
format, an XML based format, has maintained popularity in both proteomics and 
metabolomics MS studies. As two formats (mzXML and mzData) were 
undesirable, attempts have been made to generate a unified format, referred to 
as “mzML”, which aimed to incorporate the most desirable features of both 
formats.  

At present, many proteomics and metabolomics spectral reference libraries are 
accessible via a web client and remain the primary source used in compound 
identification from fragmentation spectra (Go, 2010). Theoretical hits, or 
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candidate annotations, are returned to the user in a tabular fashion upon the 
submission of fragmentation spectra in an appropriate format. The 
fragmentation spectra generated from an experiment are compared to those 
stored in the library of reference compounds and are returned with a measure of 
confidence. The unknown metabolite is typically identified by the experimenter 
from candidate reference spectra which best match that of the unknown 
metabolite. Representative spectral libraries commonly used in metabolomics 
include the resource library from the US National Institute of Science and 
Technology (NIST), the Golm Metabolite Database (GMD), MassBank, METLIN 
and the Madison Metabolomics Consortium Database (MMCD; Go, 2010).  

Despite their widespread use in the field of metabolomics, many spectral 
reference libraries lack suitable documentation, tutorials or help pages for users 
(Go, 2010). In addition, the reference compounds contained in each spectral 
reference library vary, and therefore the querying of numerous resources may be 
required to identify appropriate candidate annotations for a given peak. 
However, both the compound name and formula are unreliable for the purposes 
of comparing hits between libraries.  As such, attempts to standardize compound 
identification has led to an abundance of distinct codes, such as the IUPAC 
International Chemical Identifier (InChi) and the Chemical Abstracts Service 
(CAS) Registry Number, which may serve as unique compound identifiers and 
allow for comparison between reference libraries. 
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Chapter 2 Requirements 

2.1 Problem Definition and Scope 

Metabolomics aims to quantify and identify metabolites of physiological 
significance within biological systems. At present, the latter poses significant 
challenges to researchers within the field, due to a lack of suitable software tools, 
algorithms and the volume of data generated. The aim of the project was to 
develop a web-based application capable of generating candidate annotations 
using fragmentation spectra derived via distinct experimental protocols in order 
to aid researchers in metabolite identification. As such, the application must 
maintain the lineage of parent and product peaks, in order to perform queries of 
spectral reference libraries. While the application should standalone, it is 
intended to be deployed within an existing proprietary pipeline in order to 
provide supporting evidence for future scientific communications and improve 
the efficiency of existing services. 

2.2 Client and Users 

2.2.1 The Client 

The application is to be developed for the Metabolomics Facility of Glasgow 
Polyomics. Glasgow Polyomics is a research centre within the College of Medical, 
Veterinary and Life Sciences of the University of Glasgow situated within the 
Wolfson Wohl Cancer Research Centre at the Garscube Campus. The 
Metabolomics Facility provides services including the untargeted analysis of 
polar metabolites and verification of compound identities using reference 
standards. In addition, the facility supports academic research staff with broad 
research interests within the field of metabolomics. The primary point of contact 
was Dr Karl Burgess, the Head of Metabolomics (hereafter referred to as the 
client).  

2.2.2 The Users 

In addition to the primary point of contact, several members of staff were 
available during requirements gathering and for the evaluation of prototypes. As 
such, they imparted invaluable knowledge of both the domain and the needs of 
the users. Of note were Yoann Gloaguen (Deputy Metabolomics Laboratory 
Manager and primary developer of the existing pipeline), Dr Ronan Daly (Data 
Analyst Manager), Dr Stefan Weidt (Mass Spectrometry Technologist) and Dr 
Justin Van Der Hooft (Mass Spectrometry Technologist).  

The intended users of the application are the research staff within the 
Metabolomics Facility. The users will have an advanced and detailed knowledge 
of the scientific domain and familiarity with domain terminology. However, 
technical proficiency is likely to vary. Some members of the research staff having 
a strong computational background within the field of Bioinformatics, whilst 
those from a bench-top research background may have less familiarity. 
Nevertheless, all users will be familiar with use in web applications due to 
familiarity with the existing pipeline. 
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2.3 Requirements Gathering 

An overview of the problem domain and an introduction to the relevant 
technologies were provided in a series of meetings with both Dr Simon Rogers 
and Joe Wandy at the onset of the project. This provided the impetus for the 
initial research to garner sufficient knowledge of the necessary terminology prior 
to the client brief.  

The system requirements were elaborated upon in significant detail during an 
initial meeting with both the client and the primary developer of the existing 
pipeline, Dr Karl Burgess and Yoann Gloaguen, respectively. Based upon the 
client brief, the functional and non-functional requirements of the proposed 
system were documented (Appendix B). In turn, the primary user (a Scientific 
Researcher) was identified and a set of use cases were defined and prioritised 
using the MoSCoW methodology to refine the scope of the project. However, the 
priority and content of the use cases were reviewed incrementally following the 
demonstration of prototypes to the client and in agreement with the project 
supervisor. 

2.4 Environment 

2.4.1 Summary of PiMP Functionality 

The existing analytical pipeline consists of a Django-based web application 
named PiMP, which allows users to create, modify and share MS projects from 
their web browser. In addition to sample files, the user can upload calibration 
files such as blanks, quality control (QC) and standard files in either the .mzXML 
or .csv file formats. Upon completion of the file upload, the user may specify 
pairwise comparisons between experimental conditions for an analysis. Using R, 
the pipeline calls scripts to extract peak data from the source files which are 
displayed to the user in the form of an interactive TIC chromatogram. From 
which, the user can view the mass spectrum at a given retention time by clicking 
on the corresponding data point in the TIC chromatogram. Candidate 
annotations are derived for the peaks identified in the mass spectrum. However, 
the veracity of candidate annotations in the existing pipeline is limited. Peak 
data cannot be stored in a hierarchical manner within the existing database 
schema, thereby preventing the utilization of fragmentation data. Therefore, 
PiMP supports the analysis of peak data obtained from the ‘full-scan’ of the 
initial MS phase, but not MS/MS. As such, the inability of the application to 
maintain the lineage of the parent and precursor peaks has limited its 
extensibility to incorporate data generated by additional experimental protocols. 

2.4.2 Hardware and Software Requirements of PiMP 

The existing application, based in Django 1.7, runs on a standard (non-
specialized) server which runs a Linux-based operating system. The data for the 
application is stored in a concurrency-supporting MySQL database. Within the 
application, concurrency within the application is supported through the use of 
django-celery (Celery Project, 2015), which performs the computationally 
intensive tasks added to a queue via a RabbitMQ message broker (Pivotal, 2015). 



 13

The extracting of peak data from the source files is performed, using R scripts, as 
a background process to maintain the responsiveness of the web server. The R 
scripts are dependent upon the following standard R packages: ‘RUnit’, ‘DBI’, 
‘RCurl’, ‘RJSONIO’, ‘XLConnect’, ‘outliers’, ‘gptk’ and ‘doParallel’. In addition, 
the R scripts require the biocLite R packages ‘impute’ and ‘limma’ and the 
installation of the ‘mzmatch.R’ package. The ‘mzmatch.R’ package integrates 
both mzMatch and XCMS, which are open-source software packages for the 
analysis of metabolomics data sets. Instructions for the installation of 
‘mzmatch.R’ and its dependencies can be found online (mzMatch, 2015). 

The research staff have access to desktop computers, which predominantly run 
on Windows operating systems and have access to an array of internet browsers 
including Firefox, Google Chrome and Internet Explorer. However, the existing 
PiMP application has been optimized for Internet Explorer and therefore its use 
by the staff has been encouraged by the current developers. 

2.5 Competing Systems 

Existing software applications currently available for the analysis of MS datasets 
include both proprietary and open-source systems. These have been developed by 
commercial enterprises or academic institutions and are typically available as 
either GUI-based desktop clients or web services. To allow for comparison with 
the proposed application, examples of web-based systems for the generation of 
candidate annotations will be discussed to emphasise their limitations and the 
requirement for development of proposed application.  

ALLocator is a freely-available web application for the quantification and 
identification of metabolites (Kessler et al., 2014). The ALLocator web platform 
supports the upload of MS raw data in the .mzXML, .mzML, and .CDF formats 
(Kessler et al., 2014). Using the centWave LC-MS feature detection method of the 
XCMS R package, a peak list is derived (Kessler et al., 2014). The application 
provides two distinct tools for spectra deconvolution. Spectra deconvolution refers 
to a process which aims to improve the resolution of the measured peaks, 
through the removal of artifacts introduced by the instrumentation (Marchetti 
and Mignerey, 1993). Using the fragmentation spectra, the application returns 
candidate annotations from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) repository. The application has been developed specifically to support 
the analysis of LCMS-ESI datasets, and therefore does not support the additional 
methodologies requested by the client. Furthermore, spectral queries are limited 
to a single repository, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
reference library, thereby diminishing the total number of available reference 
spectra.  

A similar limitation has been identified for the Competitive Fragmentation 
Modeling for Metabolite Identification (CFM-ID) web server (Allen et al., 2014). 
Services include the annotation of peaks for a known chemical structure and the 
ranking of candidate structures for a spectrum (Allen et al., 2014). For the 
identification of the compounds, the server allows for the querying against 
uploaded user-specified structures (up to a maximum of 100), the Human 
Metabolome Database (HMD) and the KEGG libraries (Allen et al., 2014). While 
more comprehensive coverage of potential metabolites is achieved by the 



 14

inclusion of HMD, the volume of reference spectra may still be insufficient to 
fulfill the needs of the client.  

In contrast to CFM-ID and ALLocator, the MetaboAnalyst web-service provides 
support for both GC and LC-MS datasets (Xia and Wishart, 2011). A unique 
feature is the inclusion of multivariate statistical analysis, which is desirable but 
is not, as yet, available within PiMP (Xia and Wishart, 2011). In addition, the 
service provides extensive tutorials to guide inexperienced users through the 
pipeline. Although peak annotation and putative pathway identification are 
provided, the predominant aim of the service is to support quantification. As such 
the developers of MetaboAnalyst acknowledge the service has limited annotation 
functionality, due to an inability to process raw spectral MS data files (Xia and 
Wishart, 2011). Furthermore, the service requires partially analysed MS data as 
input, such as a peak lists, therefore inexperienced users are required to perform 
processing of the data in advance. 

2.6 Existing Procedures 

At present, the retrieval of candidate annotations is dependent upon the 
experimental protocol. For LCMS, PiMP can be used to retrieve candidate 
annotations based on the “full scan” data of MS1 alone. However, it is the 
veracity of annotations retrieved by PiMP the client aims to improve with the 
utilization of fragmentation spectra. Alternatively, experimenters may format 
the fragmentation spectra of an analysis appropriately, and directly query an 
online or locally installed spectral reference library. However, this process is 
labor intensive, error-prone and requires knowledge of the user interface of each 
distinct library to be queried which may be problematic for inexperienced 
members of staff.   

2.7 Summary of Functional Requirements 

The application must allow authorized users, to define a fragmentation 
experiment and experimental samples. In turn, the application must allow for 
user to upload MS data files to an experimental sample. The experimental 
samples should be grouped by the application within distinct experimental 
conditions defined by the user. From the uploaded sample files, the application 
must allow the user to extract peak data (including the m/z, retention time and 
intensity), which must be stored in the database in a hierarchical manner. The 
application must display fragmentation spectra to the user in a graphical format. 
The application must allow authorized users to retrieve or generate candidate 
annotations for the peaks extracted from the source file. The application must 
store the candidate annotations, data for the corresponding chemical compounds 
and a measure of ‘hit’ confidence. Furthermore, analysis performed in the PiMP 
application must generate, retrieve and display candidate annotations from the 
application for those fragmentation data files uploaded to the PiMP application. 

2.8 Summary of Non-Functional Requirements 

The application must be developed using the Django framework (version 1.7) and 
be compatible with the existing server and database management system 
(MySQL) implemented by the client. The application must support the mzXML 
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file format, but could also support the mzML file format anticipating future 
needs. Due to the aspirations of the client to develop the application further, the 
application must be capable of future enhancement. As a Greenfield project, 
prototypes of the application should be demonstrated to the client at regular 
intervals. The application is to be delivered to the client via a local Git repository, 
no later than the 07/08/2015. 

2.9 Use Case Summary 

During the requirements gathering process, a single user was identified. A 
scientific researcher will have extensive domain knowledge. The following use 
cases were attributed to the scientific researcher whose motivation is to identify 
the metabolites detected within an MS analysis of a biological sample. For 
additional detail, descriptions of the ‘key’ use cases are provided in Appendix B. 

A Scientific Researcher MUST have the ability to… 

 Create and modify a fragmentation experiment 
 Create and modify the experimental samples within an experiment 
 Upload MS data files to an experimental sample 
 Derive peak data from uploaded sample files 
 Generate or retrieve candidate annotations for MS peaks 
 View fragmentation spectra 
 Generate fragmentation spectra from data files uploaded to the PiMP 

application. 
 Generate and view candidate annotations for peaks derived from data 

files uploaded to the PiMP application. 

A Scientific Researcher SHOULD have the ability to… 

 Group experimental samples by experimental conditions. 
 Specify a preferred candidate annotation for a peak. 
 Share a fragmentation experiment with other authenticated users. 

A Scientific Researcher COULD have the ability to… 

 View the chemical structure of the compound associated with a candidate 
annotation. 

 Visually compare the measured fragmentation spectra, with that stored in 
a spectral reference library. 

 Consolidate peak data derived from several experimental replicate data 
files. 

 Extract and consolidate peak data from distinct MS1 and MS/MS data 
files. 

 Specify a method for the extraction of peak data from source files. 

A Scientific Researcher WOULD have the ability to… 

 Export peak data and candidate annotations. 
  



 16

Chapter 3 Design 

3.1 Design Approach 

Upon completion of the requirements gathering and documentation phase of the 
project, an evaluation of risks and uncertainties was performed to identify 
potential pitfalls (section 3.2). Throughout the design process, the Fragment 
Annotation Kit (FrAnK) application was designed based upon the identified use 
cases (section 2.9). However, the iterative approach adopted during development 
necessitated the evolution of designs in response to feedback garnered by the 
demonstration of prototypes to both the client and users. To ensure integration 
with PiMP and compatibility with the existing infrastructure, the N-tier 
architecture of the current pipeline was maintained and therefore was not re-
evaluated.  

The design process initiated with the creation of an entity-relationship diagram 
(section 3.3). The aim was to model the data to be stored and provide a 
foundation for the creation of an initial database schema. In addition, this 
provided clarity which helped overcome an initial lack of domain knowledge at 
the onset of the project. Using the entity-relationship diagram as a guide, an 
initial database schema, detailing the format of the requisite fields, was 
generated (section 3.4). The design phase then transitioned to focus upon the site- 
and URL-mapping, detailing the user navigation through the application (section 
3.5). From which, wireframes were designed to consider how the information 
stored could be presented to the user in a clear and logical manner (section 3.6).  

3.2 Risks and Uncertainties 

Upon a review of the PiMP application, it was identified that numerous distinct 
technologies had been implemented within the existing pipeline which I, as the 
developer, had little to no familiarity with. While I had modest experience using 
the Django framework, I was unfamiliar with Celery and the programming 
language R. Furthermore, the integration of these technologies posed a 
significant risk to the development of FrAnK. In addition, the querying of the 
spectral reference libraries represented a risk due to the variety of the 
technologies (varying in both the format and data content of both inputs and 
outputs) implemented for batch processing of fragmentation spectra and the 
clarity of the associated documentation.  

The project also presented a significant requirements risk, due to a lack of 
advanced domain knowledge. However, the use of use case and entity-
relationship modelling, study of relevant literature, demonstration of prototypes 
and regular communication with the client, users and project supervisor were 
used to diminish the impact of this risk upon development. 

3.3 Entity-Relationship Modelling 

To gain familiarity with the domain and provide clarity to the design of the 
database schema, an entity-relationship diagram for FrAnK was prepared (figure 
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6). A review of the PiMP database schema provided a starting point and was 
invaluable in the identification of entities and their relationships. In addition, 
the process of review provided insight into the analytical processes of the existing 
pipeline, its limitations and points of potential integration for FrAnK.  

 

Figure 6: Condensed Entity-Relationship Model 

The researcher performs experiments which consist of the comparison between 
experimental conditions, which in turn may be comprised of several biological 
samples. The analysis of a biological sample using MS may generate numerous 
data files, depending upon the experimental protocol adopted. Each data file 
contains numerous peaks measured by the MS instrumentation. The 
experimenter performs an analysis of the experiment using an ‘annotation tool’, 
which generates candidate annotations for each peak, by querying of the 
fragmentation spectra in a spectral reference library. Each candidate annotation, 
labels each peak with a putative chemical compound identification. A chemical 
compound may originate from one or many distinct spectral reference libraries. 
Finally, each experiment in FrAnK may be associated with an experiment in 



 18

PiMP. This would allow for integration between both the PiMP and FrAnK 
applications. 

While the entity-relationship diagram provided the foundation for an initial 
database schema (Appendix C), several limitations were identified which were 
addressed during the development process. 

3.4 Database Design 

As alluded to in the previous section, the mapping of the entity-relationship 
model to a database schema (Appendix C) unveiled several initial assumptions 
which would otherwise diminish extensibility. 

While an experiment is generated by a single researcher, an experiment may be 
of interest to several of the research staff. As such, an experiment may have 
collaborators who wish to perform administrative tasks on the experiment (such 
as upload additional data files or include additional experimental conditions) or 
perform additional analysis of the fragmentation spectra. Therefore, a many-to-
many relationship was added to the experiment table to facilitate the addition of 
collaborators to an experiment in subsequent iterations of FrAnK (figure 7). 

The entity-relationship model identified that peak data is derived from the MS 
data files. While this is indeed the case, the entity-relationship model failed to 
reflect that there is not a single, but numerous distinct methods for the 
extraction of peak data from a source file. This may be due to the varying pick-
picking criteria, filtering or the use of distinct software packages to derive the 
peak data. As such, the content of the peak data generated from the same source 
files may vary depending upon the algorithm implemented. To resolve this issue, 
the database design introduced the concept of a ‘Fragmentation Set’, which can 
be considered as the grouping of the peaks extracted from the source files of a 
single experiment (figure 7). This added greater extensibility to the application, 
as a single source of MS data may generate numerous distinct fragmentation sets 
for analysis.  

An additional modification was the inclusion of an ‘Annotation Query’, which is 
analogous to the ‘Annotation Tool’ identified in the entity-relationship model. 
The ‘Annotation Query’ is a user-generated request for the annotation of the 
peaks contained within a single ‘Fragmentation Set’ (figure 7). As such, a query 
is now associated with a single ‘Fragmentation Set’ as opposed to the 
‘Experiment’ itself (figure 7). An ‘Annotation Query’ generates candidate 
annotations through the use of an ‘Annotation Tool’ (formerly referred to as the 
“Spectral Reference Library” in the original model), passing parameters specific 
to the query. The inclusion of a many-to-many table (‘Annotation Query 
Hierarchy’) will allow for the development of annotation tools which take the 
candidate annotations retrieved from one or many parent ‘Annotation Query’ 
instances to derive new candidate annotations, thereby sub-querying an existing 
‘Annotation Query’ (figure 7). When the entity-relationship model was initially 
conceived, it was not considered that such ‘Annotation Tools’ would be developed. 
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Figure 7: FrAnK Database Schema 

This oversite necessitated the renaming of the ‘Spectral Reference Library’ of 
entity-relationship model to the generic ‘Annotation Tool’ (figure 7). An 
‘Annotation Tool’ is considered as any software, algorithm or web service which 
may be queried for the retrieval or generation of novel candidate annotations. 
Previously, it was assumed that the source of novel candidate annotations in the 
FrAnK application would exclusively be through the querying of fragmentation 
spectra to a spectral reference library. However, this unnecessarily constrains 
the application, and limits the development of novel approaches to metabolite 
identification. While the querying of spectral reference libraries is appropriate to 
all experimental protocols, future ‘Annotation Tools’ may be developed for a 
specific MS methodology.  

In order to facilitate the limiting of an ‘Annotation Tool’ to a selective MS 
methodology, an ‘Experimental Protocol’ table was introduced into the database 
with a many-to-many relationship to the ‘Annotation Tool’ table (the ‘Annotation 
Tool Protocol’; figure 7). As such, the experimental protocols and the tools 
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appropriate to the methodology could be designated in a population script for the 
application. 

Finally, the entity-relationship model failed to acknowledge the selection of a 
preferred candidate annotation for a given peak by an authorized user. As such, 
the Peak table was modified to include a foreign key reference to a single 
candidate annotation (figure 7). In addition, the user, the justification and time 
for the selection of the annotation would be stored. During development, it was 
considered that the inclusion of these additional fields may form a transitive 
dependency within the database schema. Alternative approaches were 
considered, such as the inclusion of a ‘Preferred’ boolean in the candidate 
annotation table as each candidate annotation is only associated with a single 
Peak. However, the relationship between the Peak and its preferred annotation 
is a 1 to 1 relationship, and as such it was decided that the preferred candidate 
annotation was an attribute of the Peak analogous to the confirmation of its 
identification. 

3.5 Site Map and URL Mapping 

Based on the database schema, an ideal site-map was designed for the FrAnK 
application (Appendix C). However, the design was altered during development 
due to the time-constraints of development. The index page is accessed via the 
navigation bar of the PiMP application. From which the user, may navigate to 
pages listing their existing experiments (‘My Experiments’) and fragmentation 
sets (‘My Fragmentation Sets’). In subsequent iterations of FrAnK the user may 
access a ‘Notifications’ page, detailing changes made to their existing 
experiments by collaborators and the completion of background processes. 
Furthermore, the application may include a ‘Compound Library’, which would 
allow for the user to browse the compound data stored by the application’s 
database. 

From the ‘My Experiments’ page, the user may select or create an experiment. 
The ‘Experiment’ page displays the details of the experiment, including any 
associated experimental conditions and fragmentation sets. In the original design 
of the site-map, the creation of experimental conditions, samples, fragmentation 
sets and the drag-and-drop upload of sample files would be accessible from 
within this page. However, implementation was not achieved in the time 
available. At present, experimental conditions can be selected or created from the 
‘Experiment’ page. Selection of an experimental condition navigates to an 
‘Experimental Condition’ page which allows for the creation of samples and the 
upload of data files. Fragmentation sets can be selected or created from the 
‘Experiment’ page, once a data file has been uploaded. 

The ‘Fragmentation Set’ page, also accessible via the ‘My Fragmentation Sets’ 
page, displays the MS1 peaks derived from the data files of the associated 
experiment. The user may create a new ‘Annotation Query’, in order to generate 
new candidate annotations for the fragmentation set, upon selection of an 
‘Annotation Tool’ from a drop-down menu provided at the top of the page. Each 
MS1 peak displayed on the ‘Fragmentation Set’ page serves as a link to a ‘Peak’ 
page.  
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The ‘Peak’ page provides both a graphical and tabular display of the 
fragmentation spectra associated with the peak. The table of product peaks 
provides links to each product peak’s ‘Peak’ page, thereby allowing for navigation 
through n levels of MS/MS data.  Furthermore, the ‘Peak’ page provides details 
for the candidate annotations associated with the peak. At present, the candidate 
annotation table provides a link to select a candidate annotation as the 
‘preferred’ annotation for the peak. However, it is intended that the candidate 
annotations will serve as links, providing access to a compound page providing 
additional information. 

The URL Mapping for FrAnK is provided in Appendix C. The URL was designed 
to be as intuitive as possible to improve usability. In addition, the slug for a 
database entry was derived from the user-specified name where possible (e.g. the 
title of an experiment or name of a fragmentation set). However, the peaks and 
candidate annotations do not have intrinsic names. As such, unique identifiers 
for these database entries were provided as an alternative.    

3.6 Wireframes 

During the initial requirements gathering phase, the client stated that the back-
end functionality, as opposed to the aesthetics, of the application should be 
prioritised at this juncture. Nevertheless, wireframes were designed for key 
pages of the application, namely the ‘Experiment’ page, the ‘Fragmentation Set’ 
page and the ‘Peak’ page (Appendix C). While the wireframes are representative 
of the data stored by the FrAnK application, maintaining a uniform style of 
presentation to that of the PiMP application was considered a priority. The PiMP 
application has been successfully implemented by the client, and as such the 
users are already familiar with the existing layout and navigation of the 
application. Therefore it was considered that maintaining a similar theme to the 
PiMP application may increase user adoption and acceptance, reducing the 
duration of time required by the users familiarise themselves with the novel 
functionality.   
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Chapter 4 Implementation 

4.1 Development Process Overview 

As a Greenfield project and due to the availability of the client for the evaluation 
of prototypes an iterative approach to development was adopted. Intended to be 
developed further upon delivery, it was considered that the requirements for the 
application may require reassessment or reprioritising dependent upon the client 
feedback to prototypes. Therefore, the development of the application can be 
considered as two distinct iterations. 

FrAnK was developed on an HP 15 Laptop, consisting of an Intel Core i3-45005U 
processor and 7.7 GB RAM, running the Ubuntu 15.04 operating system. PiMP, 
including the dependencies described in section 2.4.2, was installed. To provide 
clarity for future developers, additional packages were installed such as mysql-
server 5.6.25, r-base-core 3.1.2-2, wine 1.6.1:1.6.2, rabbitmq-server 3.2.4-1 and 
oracle-java8 in addition to those stated in the ‘requirements_frank.txt’ document 
of the application. 

The initial iteration consisted of the development of a rudimentary Django 
application to simply enable a user to set-up of an experiment and upload MS 
source files. From this juncture, the implementation transitioned to the 
extraction of peak data from the uploaded mzXML files. Initially, this consisted 
of data generated from a single experimental protocol. LC-MS/MS data-
dependent acquisition (LC-MS/MS-DDA) was selected due to the frequency with 
which the protocol is utilised by the researchers of the Metabolomics facility. In 
order to achieve implementation, the process of peak extraction not only required 
the interfacing with R, but is performed as a background process using Celery. 
Upon implementation of LC-MS/MS-DDA peak extraction, the project 
transitioned to the retrieval of candidate annotations from a spectral reference 
library. Following an evaluation of the available documentation, the MassBank 
Web API was selected from those of interest to the client. In part, this was due to 
the clarity of the API documentation. Nevertheless, as a public library MassBank 
provides an extensive compound library which would be of value to the users. 
Implementation of the MassBank batch service was achieved through the 
packaging of query spectra within a SOAP request. The culmination of the initial 
phase of development was a prototype application consisting of the primary 
functionality, namely batch searching of fragmentation spectra, expected of the 
application. At which point, the prototype of the application was demonstrated to 
the client and a selection of potential users. 

Following the evaluation of the initial prototype, the client requested the 
implementation of an additional experimental protocol and spectral reference 
library. As such, the second phase of implementation consisted of incorporating 
the extraction of peak data generated by the GCMS Electron Impact Ionisation 
(GCMS-EII) protocol. As before, this was implemented via an interface with R. 
However, to generate a peak list an R script was created to perform peak 
extraction and grouping. In addition, the spectral reference libraries of NIST14 
were provided by the client for implementation. However, the querying of the 
libraries is performed by the MS PepSearch software developed for Windows. As 
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the client’s server runs a Linux-like operating system, Wine was used to run the 
MS PepSearch software. As before, the completion of the second phase 
culminated in the demonstration of a prototype to the client. Upon which, it was 
requested that FrAnK be integrated into the existing pipeline in a manner which 
would allow for retrieval of candidate annotations from within PiMP. However, 
integration could not be achieved within the allotted development time. 

4.2 Application Overview 

For those unfamiliar, Django is a web application framework based in Python 
which implements a Model-View-Template (MVT) design pattern. The PiMP 
project folder comprises various applications. Each application typically consists 
of a models.py, views.py, admin.py, urls.py, forms.py and tests.py files and the 
framework provides compatibility with various database management systems 
such as MySQL, PostgreSQL and SQLite. For those unfamiliar with the Django 
framework, the online documentation (Django Software Foundation, 2015) and 
walkthrough tutorials (Azzopardi and Maxwell, 2013) provide an excellent source 
of introductory material. 

The FrAnK application, encapsulated with a distinct folder of the PiMP project, 
contains each of the aforementioned python files. The models.py file contains 
python classes which typically map to a single database table, therefore 
providing a python representation of the database schema (referred to as the 
Object-Relational Model). These models are registered in the admin.py file of the 
application, to allow for the site administrators to access the data stored in the 
database in a direct manner via the admin interface provided by the Django 
framework. In addition, the urls.py file contains a tuple of regular expressions 
which serve to map incoming URLs to an appropriate view. A view, declared in 
the views.py file, provides the logic associated with each page of the application. 
Each view serves to return the appropriate html template, including necessary 
forms and object-relational model instances in response to either a GET or POST 
request. 

In addition to the standard files of a Django application, the FrAnK application 
includes the tasks.py, annotationTools.py and peakFactories.py files and the 
‘Frank_R’, ‘NISTQueryFiles’ and ‘TestingFiles’ folders. However, the contents 
and functional significance of these additional components will be discussed in 
detail in the subsequent sections. To provide context, screen dumps of selected 
pages have been included within Appendix D. 

4.3 LC-MS Data-Dependent Acquisition (MS/MS) 

Relevant Use Cases: Derive peak data from uploaded sample files, View 
fragmentation spectra. 

Upon completion of file upload, the ‘Create Fragmentation Set’ button is 
available to the user on the ‘Experiment’ page. Clicking the link renders a simple 
form, allowing the user to enter a unique name for the new fragmentation set. 
Submission of the form generates a POST request, which is directed via the 
url.py file to the create_fragmentation_set view. The view validates and processes 
the form, generating a corresponding FragmentationSet object. At this juncture, 
the create_fragmentation_set view performs an additional validation step to 
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ensure that at least one sample file has been uploaded to the experiment prior to 
the commencement of peak data extraction. If valid, the new FragmentationSet 
is committed to the database. 

Following creation of the Fragmentation Set object, the method 
input_peak_list_to_database is called from within the view. This method 
determines the experimental protocol of the experiment, from which the peak 
data of the Fragmentation Set is to be derived, and ensures peak data extraction 
is performed in a manner appropriate to the protocol. The duration of the process 
of peak extraction can vary depending upon the volume of data to be processed. 
Therefore to prevent the application from becoming unresponsive, Celery was 
implemented to perform processes asynchronously. Celery is based on distributed 
message passing, which allows for the asynchronous processing of queued tasks 
by ‘workers’ (Celery Project, 2015). Upon the identification of the LC-MS/MS-
DDA experimental protocol, the input_peak_list_to_database adds the 
msn_generate_peak_list task (located in the tasks.py file of the application) onto 
the queue for asynchronous processing. 

As the name suggests, msn_generate_peak_list is the method responsible for the 
extraction of the peak data from the source files. The process of extracting peak 
data is complex. As such, the staff of the Metabolomics facility utilise existing R 
scripts to derive peak data. In order to generate a list of peaks from the mzXML 
files, the package rpy2 was used to provide a low-level interface from Python to 
R. The ‘frankMSnPeakMatrix.R’ script is sourced from the ‘Frank_R’ folder of the 
application and run by passing the root directory of the experiment.  

The ‘frankMSnPeakMatrix.R’ script (provided by Joe Wandy, modestly adapted), 
extracts the peaks from each source file using the xcmsSet function of the XCMS 
package. The lineage of each product peak is then derived using the 
‘frankXcmsSetFragments.R’ script (provided by Tony Lowson). The candidate 
MSN scans for each precursor peak are identified, and grouped. The selection 
criteria of which scan the product peaks are to be derived from can vary. 
However, at present the default is to derive the product peaks of the parent from 
the scan which corresponds to the highest precursor peak intensity. Once the 
lineage of the peaks is determined, the R subprocess returns a tabular list of the 
peaks which includes their msn level and any precursor peak. The ‘peak list’ is 
returned to the FrAnK application in the form of an rpy2.robjects data.frame. 

Processing of the ‘peak list’ is performed by the MSNPeakBuilder class (located 
in peakFactories.py) which validates the rpy2 dataframe upon construction. The 
populate_database_peaks method of the class is called by the 
msn_generate_peak_list task to initiate the conversion of the dataframe peak list 
to Peak objects and their subsequent addition to the database. The algorithm for 
the population of peaks from the peak list is detailed in figure 8. 

The algorithm is designed to ensure that only those peaks with an associated 
fragmentation spectrum are populated into the database. This ensures the 
redundancy of storing peaks with no fragmentation spectrum is prevented as 
these peaks cannot be queried against a spectral reference library to retrieve 
candidate annotations. Although recursive algorithms are typically resource 
intensive, the client specified in the initial brief that the maximum number of 
MSN levels typically ranges from 3-5 levels. As such, it is not envisaged that the 
implementation of a recursive algorithm would be deleterious to the performance 
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of the application. In addition, a dictionary was utilised to implement the 
algorithm. As the peak list is created in R, the ‘peak ID’ assigned to each peak in 
the dataframe has no relevance in the FrAnK application. As such, the creation 
of each peak includes its addition to a ‘created peaks’ dictionary, storing the R 
peak ID as the key and the primary key ID of the corresponding object in the 
application’s database as the value. Therefore, the frequency of database look-up 
is diminished and the efficiency of the algorithm is improved. 

 

Figure 8: Population of LCMS-MS/MS-DDA peak list algorithm 

Upon completion of peak data extraction, the status of the Fragmentation Set 
object is changed from ‘Processing’ to ‘Completed Successfully’ allowing the user 
can access the fragmentation set page of the application. This page displays the 
MS1 peaks derived from the source files. Selection of an MS1 peak, navigates the 
user to the peak page which displays the product peaks which comprise the 
fragmentation spectra of the precursor.  

4.4 GCMS Electron Impact Ionisation 

Relevant Use Cases: Derive peak data from uploaded sample files, View 
fragmentation spectra. 

As previously discussed in section 4.4, the creation of a fragmentation set by the 
user initiates the calling of the method input_peak_list_to_database by the 
create_fragmentation_set view. In contrast to the identification of LC-MS/MS-
DDA, the identification of the GCMS-EII experimental protocol causes the 
initiation of the gcms_generate_peak_list task. The extraction of peak data from 
source files generated from the GCMS-EII experimental protocol follows a 
similar pattern to that of the LC-MS/MS-DDA described previously. However, as 
discussed in section 1.1.10, the analysis of GCMS fragmentation spectra is 
confounded by the absence of a measurable parent peak due to the harsh nature 
of electron impact ionisation. As such, a distinct R script was required to group 
the derived peaks into distinct fragmentation spectra corresponding to the parent 
analyte. 
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Figure 9: GCMS-EII Peak Population Algorithm 

Using rpy2, the gcms_generate_peak_list task sources the 
‘gcmsGeneratePeakList.R’ script located in the ‘Frank_R’ folder of the 
application. The ‘gcmsGeneratePeakList.R’ script is an adaptation of an existing 
R script provided by the client. The adaptation was required as the existing R 
script performs the grouping of GCMS-EII data across distinct source files, 
whereas each input file should be considered in isolation within FrAnK. In a 
similar manner to the ‘frankMSnPeakMatrix.R’ script implemented in the 
analysis of LCMS-MS/MS-DDA, the ‘gcmsGeneratePeakList.R’ uses the xcmsSet 
function of the XCMS package to derive peaks from the mzXML files. From 
which a PeakML file is written from the XCMS set. While the mzML and mzXML 
file formats store raw MS data, the PeakML file is an XML file format for the 
storage of extracted features (Scheltema et al., 2011). The peaks within the 
PeakML file are then filtered to remove noise, and those peaks whose intensity is 
below a set threshold. The mzMatch ipeak.sort.RelatedPeaks method is then used 
to group peaks to establish their relation. Finally, the peak list is output to a text 
file and the R script returns a dataframe to the FrAnK application consisting of 
two character vectors corresponding to the name of the input file and text output 
file of the R script.  
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Upon the returning of an R dataframe, the gcms_generate_peak_list task 
instantiates a GCMSPeakBuilder object which is passed both the R dataframe 
(represented in python as an rpy2 data.frame object) and the primary key of the 
fragmentation set to be populated. The constructor for the GCMSPeakBuilder 
performs validation of the R dataframe and the fragmentation set id. The 
gcms_generate_peak_list task then calls the populate_database_peaks method of 
the GCMSPeakBuilder instance to begin the population of the peak list into the 
database. A summary of the algorithm used by the populate_database_peaks 
method of the GCMSPeakBuilder is provided in figure 9. 

In order to circumvent the challenge associated with the lack of a detected 
precursor peak, a pseudo-MS1 peak was introduced to maintain the lineage of 
parent and product ions. In each relation of peaks, the pseudo-MS1 peak 
corresponds to the duplication of the product ion which is most abundant. While 
this may seem redundant, the inclusion of the pseudo-MS1 peak is necessary to 
indicate that the remaining peaks in the relation are product ions despite the 
absence of a measurable precursor. Therefore, why not simply ‘promote’ the most 
abundant peak to the MS1 level? While this was considered, the pseudo-MS1 
peak remains a component of the fragmentation spectrum and therefore must 
remain in the MS2 level for identification when querying a spectral reference 
library. 

Although the algorithm successfully populates the GCMS-EII peaks into the 
database, subsequent iterations of the application should look to refactor the 
algorithm’s implementation. Retrospectively, there is redundancy introduced by 
the failure to identify the most abundant peak during the grouping of peaks into 
a dictionary from the R text output file. At present, the grouped_peaks dictionary 
stores a list of the product peaks for each grouping of peaks (identified by the 
‘relation id’ key). However, the resolution to this inefficiency would be to store a 
dictionary as opposed to a list. As such, each relation identified would store a list 
of the peaks in one key:value pair and the most abundant peak in a second 
key:value pair. This would remove the unnecessary additional iteration of all the 
peaks in the relation to identify the most abundant peak in the 
add_peaks_to_database component of the algorithm. Therefore, the efficiency of 
the implementation could be improved upon. 

In a similar manner to process described in section 4.4, the completion of the 
peak extraction process is relayed to the user via the update of the 
Fragmentation Set object status to ‘Completed Successfully’. This allows for the 
fragmentation set page to become accessible to the user and allows for inspection 
of the peak data. 

4.5 MassBank Web-API 

Relevant Use Cases: Generate or retrieve candidate annotations for MS peaks. 

From the fragmentation set page of the application, the user may select an 
AnnotationTool for the retrieval of candidate annotations for the peaks 
associated with the FragmentationSet object. Upon clicking of the ‘Create New 
Annotation Query’ button, a POST request is submitted to the fragmentation_set 
view of the application. Upon validation of the form, the name of the annotation 
tool selected by the user is extracted from the form. As such, the user is 
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navigated to the define annotation query page of the application. Dependent 
upon the annotation tool selected and the experimental protocol associated with 
the experiment from which the FragmentationSet object was derived, a form 
containing the relevant fields for the tool and choices appropriate to the protocol 
are displayed to the user. Having reviewed the documentation and tutorials 
available for the batch querying services provided by numerous spectral 
reference libraries, it was apparent that the standard of documentation and help 
available to those novice users was generally poor. As such, it was indented that 
the tailoring of potential search parameters and choices in FrAnK would simplify 
the retrieval of candidate annotations for novice users. 

Upon submission of the parameters for the annotation query, a POST request to 
the define_annotation_query view of the application derives the annotation tool 
from a slug contained in the request. Therefore, the form specific to the 
annotation tool is retrieved from the POST request. In order to store the 
parameters of the search to be performed, the set_annotation_query_parameters 
method located in views.py is called. Using the form to establish which 
AnnotationTool has been specified, and consequently which parameters should 
be stored, the method extracts the user’s input and populates the 
annotation_tool_params field of the new AnnotationQuery object in the form of a 
serialised dictionary. The populated AnnotationQuery object is returned to the 
define_annotation_query view. Subsequently, the method generate_annotations is 
called, which determines the AnnotationTool to be queried from the 
AnnotationQuery object and calls the ‘massbank_batch_search’ task (tasks.py) if 
the user has selected to query the MassBank Web-API. As such, the retrieval of 
candidate annotations for the peaks associated with the FragmentationSet object 
is performed as a background process using Celery. 

The massbank_batch_search task instantiates a MassBankQueryTool (located in 
annotationTools.py) passing the IDs of both the FragmentationSet and 
AnnotationQuery objects to be processed for validation. Upon which, the method 
get_mass_bank_annotations() method of the instance is called by the 
massbank_batch_search task. The retrieval of candidate annotations from 
MassBank can be considered as three distinct processes. Initially the 
fragmentation spectra to be queried are formatted and then sent to the 
MassBank API in the form of a Simple Object Access Protocol (SOAP) request. 
Upon retrieval of the results from the API, the compounds and candidate 
annotations are populated into the database. A summary for the creation of the 
query spectra is provided in figure 10. 

Although the MassBank Web-API allows for the submission of both positive and 
negative spectra simultaneously, it was decided that to improve the veracity of 
candidate annotations the spectra should be send as two distinct queries to the 
API. To facilitate the sending of SOAP requests to the MassBank Web API, the 
Suds web services client for python was implemented. The serialised search 
parameters are extracted from the AnnotationQuery object and are included 
within a dictionary containing the query spectra for submission to the API via 
the Suds client. The client will intermittently query the MassBank Web API to 
receive updates of the status of the submitted task. Upon completion, the results 
are returned by a final query to the Web API. 
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Figure 10: Generate Query Algorithm for Massbank Batch Search 

The candidate annotations are returned to the application in the form of a list, 
containing a dictionary corresponding to each of the submitted spectra. Each 
spectrum is related back to its associated peak by reference to the unique peak 
slug included in the query. As such, the compound and annotation data are 
parsed from the returned results and are populated to the database. Finally, the 
status of the AnnotationQuery object is updated to relay the completion of the 
process to the user. For each AnnotationQuery object submitted by the user, the 
returned candidate annotations are displayed in a tabular format via the peak 
page of the application.  

4.6 NIST14 

Relevant Use Cases: Generate or retrieve candidate annotations for MS peaks. 

Upon the submission and processing of the NISTQueryForm and the generation 
a new AnnotationQuery object, the generate_annotations method located in 
views.py will call the nist_batch_search task. In a similar manner to the 
MassBankQueryTool, the instantiation of the NISTQueryTool validates the input 
of the ID of the AnnotationQuery object to be performed. The nist_batch_search 
task then calls the get_nist_annotations method of the NISTQueryTool object to 
begin the retrieve candidate annotations. 

The NIST14 Mass Spectral Library is accessible locally, via the MS PepSearch 
software developed for Windows. MS PepSearch, queries a peak list provided 
within an MSP file format via command line arguments, against the various 
reference libraries of NIST14. However this posed a significant challenge to its 
implementation, as a requirement of FrAnK was to maintain compatibility with 
the existing hardware and software of the client’s pipeline to ensure integration 
(see section 2.8). As the existing server runs on a Linux-like operating system, the 
compatibility layer software application Wine was implemented to allow for to be 
performed via the MS PepSearch program. 
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The initial step of the get_nist_annotations method of the NISTQueryTool object 
is to write a temporary MSP file to the ‘NISTQueryFiles’ folder of the application. 
The MSP file contains the individual fragmentation spectra associated with the 
FragmentationSet object to be annotated (figure 11). While similar to the 
algorithm used to format the queries sent to the MassBank API (figure 10), the 
algorithm is distinct due to the determination of whether the precursor peak’s 
m/z is to be incorporated into the query. Its inclusion is unnecessary for queries 
to the MassBank Web API but is important when querying NIST14 libraries. The 
local installation of NIST14 comprises five distinct spectral reference libraries 
which correspond to distinct experimental protocols. The ‘mainlib’ corresponds to 
fragmentation spectra derived from GCMS-EII experiments whereas both the 
‘nist_msms’ and ‘nist_msms2’ libraries consist of spectra obtained from 
LCMS/MS experiments. This distinction is highly relevant to the retrieval of 
candidate annotations from the ‘mainlib’, as the process of extraction of peak 
data from the GCMS source files generates a pseudo MS1 peak in the application 
(see section 4.4). As such, erroneous candidate annotations would be retrieved 
from the ‘mainlib’ of NIST14 were the precursor m/z included in any query 
submitted. 

 

Figure 11: Generate Query Algorithm for NIST14 Batch Search 

Upon completion of the writing of fragmentation spectra to the temporary MSP 
file, the get_nist_annotations method proceeds to formatting the call to MS 
PepSearch. This ensures the retrieval of candidate annotations are performed in 
accordance with the search parameters provided by the user via the 
NISTQueryForm. The user-specified parameters include the maximum number 
of hits to be retrieved for each spectrum, the search type and the reference 
libraries to be queried. In addition, the call also includes parameters which are 
associated with the NIST AnnotationTool object itself. Namely, the location of 
the MS PepSearch program and the NIST libraries within the directories 
reserved for the Wine program are derived from the AnnotationTool instance 
itself in the form of a serialized dictionary. The default parameters of the NIST 
AnnotationTool object can be altered via the population script populate_pimp.py.  
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The NIST14 libraries are then queried through the subprocess call to Wine, 
which outputs the candidate annotations as an additional temporary file within 
the ‘NISTQueryFiles’ folder. The output file is then read by the FrAnK 
application. The candidate annotations are then parsed, and populated into the 
database. Finally, the temporary files stored in the ‘NISTQueryFiles’ folder are 
removed and the status of the Annotation Query object is set to ‘Completed 
Successfully’ to indicate to the user the completion of the task. 

4.7  Testing Strategy 

Within the tests.py file of the application, tests have been provided for the 
FrAnK application. A summary of the end-to-end test cases implemented are 
shown in Appendix D. While complete unit testing was desirable, this could not 
be achieved in the time provided. As such, the testing strategy implemented was 
to prioritise end-to-end tests to encompass the testing of the views, tasks and 
models. Each of the views within the application has been tested to ensure the 
page renders successfully and those which include forms have been tested with 
varying inputs.  

One of the challenges of testing the FrAnK application was the use of Celery. In 
order to include the celery-performed tasks within the end-to-end testing, celery 
provides a ‘TEST-RUNNER’ variable within the ‘settings_dev.py’ file of the 
project folder. This allows for the typically asynchronous processes contained 
within the ‘tasks.py’ file of the application to be performed in a synchronous 
manner during testing. Therefore, the end-to-end tests encompass both the 
testing of the views and background processes. However, it is acknowledged that 
this is not the ideal practice. The ‘TestingFiles’ folder of the application contains 
sample GCMS and LCMS data files which are uploaded during the running of 
tests. It should be noted that the duration of time required to perform the tests 
provided may be extensive due to the volume of data contained within these files. 
As such, these tests have been commented out to allow for rapid testing. 
Nevertheless, this was a preferred approach as it was considered that testing 
aught to be performed using realistic datasets. As such, the sample mzXML files 
provided within the ‘TestingFiles’ folder are representative MS datasets which 
were provided by the client. 

As shown in Appendix D, the end-to-end testing demonstrates the functionality 
of the application. However, additional tests have been included in the ‘tests.py’ 
file and additional tests could be implemented to improve the coverage of the 
code. Notably, two tests were not passed by the current implementation. The 
first, which was to test the MassBank Web API, could not be performed due to 
the availability of the service. However, the second failure was derived from the 
failure of the specify_preferred_annotation view. Upon failure of the test, this 
feature was investigated and appeared to be working as anticipated. As such, the 
failure is likely due to the Test case as opposed to the implementation. 
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Chapter 5 Evaluation 

5.1.1 Client Evaluation 

The evaluation of the FrAnK application was performed alongside the client, Dr 
Karl Burgess, head of the Metabolomics Facility at Glasgow Polyomics. The 
evaluation consisted of two distinct elements. Initially the client was asked to 
perform a series of simple tasks to demonstrate the product and to garner 
feedback from the perspective of the user. In addition, the client was asked to a 
series of open-ended questions to garner further insight into the application, the 
development process and the client’s view of the future development of the 
application. Further details of the format of the client evaluation are provided in 
Appendix E. 

When asked for a general impression of the development of the FrAnK 
application, the client stated that the development had gone fantastically well 
that the process of evaluating prototypes at regular intervals was extremely 
beneficial. Subsequently, when asked if the existing functionality of FrAnK 
would be of value to the research staff of the facility the client confirmed that this 
would indeed be the case. Elaborating further, the client explained that 
researchers within the field of metabolomics utilise fragmentation support on a 
frequent basis. As such, the client anticipates that within approximately 6 
months it will be considered unacceptable to publish work without supporting 
evidence provided through fragmentation analysis. Therefore, the 
implementation of fragmentation support within the existing analytical pipeline 
is of the upmost importance to the research staff within the facility. A secondary 
consideration to the client was that commercial software is emerging to market 
which supports fragmentation analysis. However, the available open-source 
products have, thus far, failed to provide support. As such, the development of 
the application represents a competitive advantage within the field.  

One of the novel features of the application is that the framework readily 
supports the inclusion of additional spectral reference libraries. As noted in 
section 2.5, the existing competing applications provide limited coverage of the 
metabolome due to the sparse selection of reference libraries supported. As such, 
the client expressed that a key motivation for the development of FrAnK was 
that a broad range of libraries could be queried from within a single application. 
The client explained that this would be considered a key feature of the 
application, as chemicals must either be purchased or synthesized in order for a 
reference fragmentation spectrum to be determined.  As such, each spectral 
reference library consists of distinct compounds. When analysing a biological 
sample, it is often insufficient to simply query a single point of reference as rare 
metabolites are often a source of scientific interest. As such, the querying of a 
single library may not yield suitable candidate annotations if the metabolite is 
absent from the reference library. Therefore, the querying of multiple reference 
databases will become integral to generating scientific publications. 

The interview proceeded to discussion of the user interface. At this juncture, the 
client expressed that the use of the existing PiMP base template was a positive to 
improve familiarity for the user. However, when I enquired further, the client 
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confirmed that additional descriptive text should be added to provide clarity to 
the application. The client indicated that the addition of a ‘Wizard-like’ feature 
would be beneficial or pop up help text. However, this could not be implemented 
in the development time remaining. As a compromise, additional help text was 
provided to each of the form fields and into the HTML pages to try to clarify any 
existing points of potential confusion. It was then posed to the client whether the 
data stored within the application was appropriate in style and content to allow 
for the researcher to evaluate candidate annotations effectively. The client 
responded that the application conveyed most of the required data; however, the 
client enquired as to the feasible to display the fragmentation spectrum of the 
candidate annotation to allow for a visual comparison between the measured 
spectrum and that of the candidate. Whilst the confidence value returned by the 
spectral reference libraries is a quantification of the match between spectra, the 
client explained that a visual comparison provides valuable insight to the 
researchers. The client has proposed that this may take the form of a ‘mirror-like’ 
display, consisting of the measured spectrum above and the inverted candidate 
spectrum underneath. Therefore, peaks within the spectra that do not align by 
m/z can readily be identified. 

As the client had successfully completed the tasks provided to demonstrate the 
application, when asked if there were any points during the evaluation task 
which were unclear or challenging the client simply responded that there were 
not and the tasks were straightforward. In addition, the client was asked 
whether or not the development had achieved the outcomes envisaged. The client 
responded that the anticipated outcomes were “pretty much” achieved, clarifying 
that with the exception of integration with the existing application PiMP, the 
application behaves as anticipated. 

Finally, the evaluation turned towards which features the client would wish to be 
implemented in the future. The client responded that there would be many 
features that would be of use to add into the existing FrAnK application. The 
obvious next stage of development would be to integrate the FrAnK application 
with PiMP in a manner conducive to supporting fragmentation analysis in the 
main pipeline. In addition, the client emphasised that additional spectral 
reference libraries would be added to improve coverage of the metabolome. 
Finally, it would be useful to consolidate the confidence scores retrieved across 
spectral reference libraries, generating a single representative confidence score.  

5.1.2 Qualitative Evaluation of Standards 

As stated previously, the aim of the application was to assist in the identification 
of metabolites of interest in biological samples. As such, the testing of the 
application using data derived from biological samples poses a challenge as their 
chemical composition is unknown. Therefore, a qualitative analysis of the 
application was performed using MS data files, corresponding to standard 
solutions, provided by the client. In MS, a standard is a solution created in the 
laboratory and as such, its constituents are known. While peaks derived from 
standards are commonly used to aid in the identification of metabolites within 
biological samples, they have been used to determine the veracity of the 
candidate annotations retrieved by the FrAnK application in this context. 

As such, peaks were extracted from the standard files and the candidate 
annotations retrieved through the querying of the NIST14 ‘nist_msms’ and 
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‘nist_msms2’ libraries were evaluated. Unfortunately, equivalent candidate 
annotations could not be assessed from the MassBank Web API as, at the time of 
evaluation, the batch service was ‘temporarily suspended’ (17/08/2015). The table 
shown in Appendix E summarises a sample of the compounds, on the left of the 
table, known to be included in the standards mixtures. On the right of the table, 
the values of a peak and an associated candidate annotation retrieved by NIST 
are shown. While these results are to be interpreted parsimoniously, as the peaks 
selected are not representative of the performance of the application as a whole 
across all peaks and are admittedly ‘cherry-picked’, they nevertheless appear to 
suggest that the application is performing as anticipated. In the examples 
provided, the candidate annotation with the greatest confidence is typically the 
mass of a proton different from the molecular mass of the compound. 
Furthermore, in instances in which the candidate annotation does not appear to 
match the compound included in the standard mixture, a similar molecular 
formula is retrieved or a clear derivative of the standard compound has been 
identified. 

While these results do not confirm that the application performs as intended, 
they are suggestive that plausible candidate annotations have been retrieved by 
the FrAnK application from the spectral reference library.  
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Chapter 6 Discussion and Conclusion 

6.1 Development Challenges 

Throughout the development of FrAnK, numerous obstacles had to be overcome. 
Despite a scientific background, the depth of the domain knowledge required to 
comprehend the requirements of the application, generate design documentation 
and provide viable solutions during the implementation was extensive and at 
times overwhelming. The project supervisors and staff at the Metabolomics 
Facility provided extensive support and were extremely patient throughout. 
Through the sourcing of relevant literature and constant quizzing of domain 
experts, I believe the challenges associated with my initial lack of domain 
knowledge were largely overcome. 

Nevertheless, the development of FrAnK posed significant technical challenges 
throughout. Foremost of these was the integration of such a range of diverse 
technologies, which were necessitated by the requirement to ensure the 
application maintained compatibility with the existing pipeline. From the onset, 
significant time was required to install the existing PiMP application, study its 
database schema and processes to gain insight into the analytical pipeline. In 
particular, PiMP integrates Django, MySQL, R (underpinned with Java) and 
Celery. Furthermore, it has been previously acknowledged that the R scripts 
used within FrAnK to extract peak data from LC-MS/MS data files were kindly 
provided. However, this in itself proved to be a challenge as, having no prior 
experience in the language, it was necessary to comprehend the complex 
processes contained within to appreciate the significance of inputs and outputs. 

While these challenges were faced and overcome during the initial evaluation 
phase of the project, the process of implementing the functionality required by 
FrAnK posed unique challenges. For the process of peak extraction from GCMS-
EII data sets I was provided with an R script which generates a peak list derived 
across numerous source files. However, this was unsuitable for the FrAnK 
application, which was to treat each source file in isolation. As such, I was 
required to generate a distinct R script for the generation of a GCMS-EII peak 
list. In addition to volume of data to be processed, the application’s use of Celery 
posed significant challenges due to the necessity to manage concurrent database 
transactions. Furthermore, in order to achieve the retrieval of candidate 
annotations it was required that Suds, Wine and MS PepSearch be implemented 
in the FrAnK application.    

While both the challenges associated with the domain and technologies can be 
considered distinct, they were at times intertwined. When sourcing suitable 
spectral reference libraries, I was required to investigate the documentation 
provided for each API. In addition to the diversity of technologies used, the 
overall clarity of the documentation was poor, with both technical and domain 
concepts explained in insufficient detail. The final challenge associated with the 
retrieval of candidate annotations was that the format of chemical data varies 
between spectral reference libraries. As such, the candidate annotations output 
by each API vary in both format and content.  
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6.2 Limitations of Existing Application 

At present, the FrAnK application lacks the ability for the user to modify, delete 
and share existing experiments, fragmentation sets and annotation queries. 
Furthermore, the aesthetic appearance of the application requires additional 
development. In response to the client evaluation, attempts were made to include 
additional help text to ease the process of learning for new users of the 
application. Nevertheless, it would be of great benefit for future iterations of the 
application to provide either a help Wizard or a tutorial feature. Despite 
significant effort, it is acknowledged that these limitations limit usability. 

While FrAnK prevents the user from uploading files which are not in the mzXML 
file format, additional checks could be included to minimize user errors. Using an 
XML parser, the files could be checked to ensure that product peaks are included 
in the files. Furthermore, the addition of the XML parser could be used to 
determine the polarity of the file from the source as it is performed in PiMP. 
However, at present, the user is required to specify the polarity of the file within 
the page form. In addition, the current application cannot differentiate between 
files derived from the LCMS and GCMS experimental protocols. This would be 
highly beneficial in avoiding user error. However, it is unclear at present how 
such a check could be implemented as MS instrumentation which derives the file 
may not be aware of the sample preparation processes which precede the 
analysis. 

With the retrieval of candidate annotations from both MassBank and NIST, 
there is potential for irregular variants in the format or content of the 
annotations returned which may cause errors in the application. For example, 
the name of the compound may exceed the maximum size of the CharField used 
to store the name of the chemical compound. Furthermore, as a public repository 
the data content and format of the candidate annotations returned from 
MassBank vary significantly. To date, all files supplied by the client have been 
annotated using NIST. However, it was not possible to annotate the peak data 
for the GCMS data files using MassBank, due to the suspension of the service. 
An additional limitation to be acknowledged is that the database schema 
recognizes that a given compound may originate from numerous spectral 
reference libraries. However due to the lack of standardization in compound 
naming conventions and identifying codes, the same compound may be 
erroneously duplicated in the FrAnK database at present if it is retrieved from 
distinct spectral reference libraries. 

Finally, an additional limitation of the application is the use of Matplotlib to 
generate the graphical display of the fragmentation spectra. The visualization of 
the fragmentation spectra should be implemented using Highcharts as is 
implemented within the PiMP application. As such, visualization could be made 
interactive to allow for navigation through the MSn levels of the data.  

6.3 Future Work 

The primary focus of future development upon FrAnK should focus initially upon 
the limitations identified in the previous section. However, upon completion the 
application could then be integrated into the pipeline to supplement the existing 
functionality within PiMP. Nevertheless the client has described within the 
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evaluation that fragmentation support is essential going forward. Due to the 
similarities between the two databases, integration could be achieved in the form 
of an additional task added to the tasks.py file. Taking a PiMP project as input, 
the task could generate the corresponding experiment entry in the FrAnK 
database. From which peaks and, subsequently, candidate annotations could be 
derived from the fragmentation spectra. The candidate annotations could then be 
presented in the PiMP application to allow for metabolite identification. 
Although this is likely to introduce redundancy into the data, it is nevertheless 
required in order for FrAnK to maintain standalone functionality. 

While candidate annotations can be retrieved from the spectral reference 
libraries MassBank and NIST from within the FrAnK application, the true 
potential of the application can be realised with the addition of bespoke software 
and algorithms in the form of additional annotation tools. The candidate 
annotations derived from the spectral reference libraries may provide input for 
post hoc manipulations to improve the veracity of the annotations. While valid, 
the querying of mass spectral libraries alone is somewhat limited due to the 
dependency upon the coverage of the metabolome of the library. As such, many 
metabolites may go unidentified due to the lack of coverage offered by the 
existing services. However, the inclusion of additional spectral reference libraries 
would diminish this risk. During the client brief additional libraries were 
commented upon as suitable candidates and their addition would significantly 
improve the coverage of the metabolome included within the application, leading 
to greater reliability in metabolite identification as numerous sources could be 
used to provide supporting evidence. 

Subsequent iterations of FrAnK could include additional experimental protocols 
such as the LCMS-MS/MS data-independent acquisition, which could not 
implemented during the current project. In addition, additional parameters for 
the peak extraction tasks, which generate Fragmentation Sets, could be 
implemented to allow for greater flexibility. While the R scripts provided have 
been parameterized over the course of the project, the application does not 
currently include a form to support this. However, this should be considered a 
low priority as the client has stated previously that the workflow should remain 
as simply as possible for the research staff. As such, the additional parameters 
could be implemented as ‘advanced settings’.  Furthermore, it would be of merit 
for the user to be able to specify the source of the MS1 peaks to which MS/MS 
fragments are associated. These could be derived from a user uploaded peak list, 
a distinct mzXML file or from the existing PiMP application. These features 
would be of benefit to the identification of metabolites as the process of 
fragmentation reduces the frequency with which MS1 peaks can be measured by 
the instrumentation, thereby diminishing the resolution of the full-scan. At 
present, an existing R script has been developed by Joe Wandy which could be 
incorporated into FrAnK, replacing the existing LCMS/MS R script, to achieve 
this aim. 

As stated in the section 6.1, the lack of standardization within MS data and the 
format in which it is stored is noteworthy. As such, the current compound table 
within FrAnK will become unwieldy as new annotation tools are added into the 
application. Redundancy could be reduced by the querying of the returned 
annotations against the Chemical Translation Service’s master list of 
compounds. This service stores a catalogue of the repository-specific compound 
identifiers to allow for comparison between spectral reference libraries. At 
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present, PiMP implements this to maintain standardization within its compound 
table of the database and this should be extended to FrAnK. While a challenging 
endeavor, this would certainly be advantageous going forward. 

6.4 Conclusions 

With the recognition that the constituent metabolites which comprise biological 
systems cannot be investigated in isolation, it is inevitable that untargeted 
approaches will supersede conventional targeted studies. While untargeted 
approaches have gained traction in disciplines such proteomics and genomics, the 
software tools and algorithms necessary to realise the potential of metabolomics 
remain to be developed. In particular, the existing software to identify candidate 
annotations for MS peaks is limited. 

The FrAnK application has been developed to meet the need of improving 
metabolite identification through the utilization of fragmentation spectra. In the 
short-term, FrAnK provides the research staff at the Metabolomics Facility with 
a tool to significantly increase the rate at which MS data may be analysed and 
interpreted. It is hoped that this may provide supporting evidence for future 
scientific publications and improve the efficiency of existing services. The 
inclusion of the peak extraction from GCMS-EII experiments expands the 
number of experimental protocols which are supported within the existing 
pipeline. Furthermore, the potential coverage of the metabolome within the 
existing application has been increased by the inclusion of both the MassBank 
and NIST spectral reference libraries. 

The present application has limitations, which have been acknowledged in 
section 6.2. However, it is hoped that FrAnK may provide a framework, upon 
which, the much needed software and algorithms required to improve metabolite 
identification may be implemented and integrated. The veracity of the candidate 
annotations will only increase as additional spectral reference libraries and 
bespoke annotation tools are added to the existing application. 
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Appendix A   Glossary of Domain Terminology 

 

“data-dependent acquisition” (DDA)  

refers to the automated process of peak selection for dissociation based upon a 
criteria implemented following detection.  

“data-independent acquisition” (DIA): 

refers to the automated process of peak selection for dissociation based upon a 
criteria determined in advance of detection. 

“electron impact ionisation” (EII): 

a relatively ‘harsh’ ionisation technique, typically associated with gas 
chromatography, used prior to the analysis of samples through MS. 

“electrospray ionisation” (ESI): 

a relatively ‘soft’ ionisation technique, typically associated with liquid 
chromatography, used prior to the analysis of samples through MS. 

“fragmentation spectrum”: 

the collective ions generated by the cleavage of a parent ion through dissociation. 

“gas chromatography” (GC): 

a technique which uses a gas mobile phase for the separation of analytes based 
upon their physical or chemical properties. 

“parent ion” (GC): 

refers to an ion which is dissociated to form fragments. 

“product ion” (GC): 

refers to a single ion generated from the cleavage of a parent ion. 

“liquid chromatography” (GC): 

a technique which uses a liquid mobile phase for the separation of analytes based 
upon their physical or chemical properties. 
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Appendix B   Requirements Documentation 

Introduction 
 
The domain is metabolomics and mass spectrometry. 

 
The University of Glasgow Metabolomics Facility implements a web-based pipeline, 
PiMP, to store and analyse mass spectrometry (MS) datasets. MS detects ions 
derived from the sample analytes which, in turn, can be cleaved to generate 
fragments which correspond to a substructure of the precursor. The identification of 
the compound from which an ion originated can be achieved through the querying of 
its associated fragmentation spectra to a spectral reference database. The current 
web application supports the analysis of peaks based upon the full scan of a sample 
(MS1). While the analysis of MS1 data alone can lead to the identification of potential 
candidate annotations, the validity of identifications can be significantly improved by 
incorporating the fragmentation spectra. The current system is unable to store and 
utilise this valuable structural information at present. Therefore an additional 
application is required to incorporate the analysis of fragmentation data to improve 
the identification of metabolites.  

Summary of Client Brief 

The aim is to provide additional functionality, prioritising peak identification as 
opposed to quantification, to the existing proprietary web-based pipeline PiMP. As 
such, the client has proposed the development of a new application capable of 
integration. However, the new application will be used independently of PiMP for the 
analysis of experimental protocols not currently supported by the pipeline. This 
additional functionality is to be achieved by incorporating the ability to store and 
utilise fragmentation spectra, ensuring the hierarchical relationship between parent 
and product ions is maintained. In addition, the data held for each peak should then 
be used to query a range of reference databases to identify candidate compounds. 
The identified candidates will be returned with a confidence score, which should also 
be stored in the database. The existing application relies upon R scripts to derive 
peak data from the source files. However, the functionality of the new application 
could deviate from the reliance upon R if necessary. In addition, the client has 
suggested that the ProteoWizard tool msconvert could be alternative solution to 
deriving the peaks from the source files. Furthermore, the client described an existing 
R script which has been developed to derive peaks, maintaining their relations, from 
datasets originating from data-independent acquisition experiments. However, this 
was written in haste and may require refactoring. The client has listed the following 
reference libraries which are of interest: NIST LCMS and GCMS libraries, Lipidmaps, 
MetFrag, MassBank, Magma/mzCloud and MSFrag. The client identified, and 
detailed, four scenarios in which fragmentation spectra should be utilised to retrieve 
candidate annotations. 

Scenario 1: LCMS Data Dependent Acquisition (MS2) 

 Full scan of the sample is performed, generating the MS1 data 
 Peaks within a specific m/z range are selected based upon an 

experimenter defined criteria (such as top 10 most intense peaks). 
 These peaks are subsequently dissociated to generate fragmentation 

spectra which are can be associated with the precursor peak. 
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 Multiple scans can generate duplication of peaks, due to an analyte 
continuing to elute over multiple time points. To avoid large quantities of 
redundant data from repeatedly fragmenting the same analyte, ions of a 
specific m/z can be added to an exempt list for a specified duration of 
time. 

Scenario 2: LCMS Data Dependent Acquisition (MSN) 

 Full scan is performed, generating the MS1 data 
 Peaks are selected as previously described in Scenario 1. 
 However, the peaks constituting the MS2 fragmentation spectra can 

themselves be selected and fragmented again. In theory, this process can 
be repeated n times. However, the client acknowledged that the 
maximum number of levels performed rarely exceeds 3, and at most 5. 
 

Scenario 3: GCMS Electron Impact Ionisation 

 Electron Impact Ionisation is a form of “hard” ionisation, unlike the 
Electrospray Ionisation commonly used for LCMS experiments. 

 Electrons are focused into a beam, ionising the neutral molecules of the 
analytes but produces fragmentation of the analytes. 

 Generates a fragmentation spectrum, however, the parent ion is missing. 
 

Scenario 4: LCMS Data Independent Acquisition 

 A technique which performs fragmentation of all ions within a specific 
m/z ratio range, which are above background noise levels. 

 The technique consists of two scans, one at “high” energy (inducing 
dissociation) and a second at “low” energy.  

 However, the product ions can still be associated with a parent ion 

 

Documentation of Requirements 
 
Functional Requirements 

1. The application must enable authorised staff to create and edit 
experiments. 

2. The application must enable authorised staff to create and edit 
experimental samples. 

3. The application must enable authorised staff to upload data files to 
samples. 

4. The application must enable authorised staff to derive peak data from 
uploaded data files. 

5. The application must store the m/z, retention time and intensity of a 
peak. 

6. The application must store the lineage of a peak. 
7. The application must enable authorised staff to generate candidate 

annotations for a peak. 
8. The application must store a confidence value for a candidate annotation. 
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9. The application must store the name, formula and mass of a compound 
identified by a candidate annotation. 

10. The application must enable authorised staff to submit fragmentation 
spectra to a spectral reference library. 

11. The application must provide a graphical representation of the 
fragmentation spectra for a peak. 

12. The application must extract peak data from data files uploaded to PiMP. 
13. The application must provide candidate annotations for analyses 

performed in PiMP. 
14. The application should enable authorised staff to create and edit 

experimental conditions. 
15. The application should enable authorised staff to specify a preferred 

annotation for a given peak. 
16. The application should provide drag and drop file upload. 
17. The application should allow authorised users to grant access to an 

experiment to other authorised users. 
18. The application could display the chemical structure of a candidate 

annotation. 
19. The application could display the fragmentation spectra of a peak 

alongside that of a candidate annotation for direct visual comparison. 
20. The application could group peak data across experimental replicate 

source files. 
21. The application would enable the exporting of peak data and candidate 

annotations. 
22. The application would provide a tutorial for inexperienced users, 

unfamiliar with domain terminology. 
 

Quality Requirements 

1. The application must be capable of future enhancement to support the 
addition of novel experimental protocols and methods of generating 
candidate annotations. 
 

Platform Requirements 

1. The application must be developed using the Django framework (version 
1.7) 

2. The application must be compatible with client's existing server and 
database. 

3. The application must support the mzXML file format. 
4. The application could support the mzML file format. 

 
Process Requirements 

1. Prototypes of the application should be demonstrated at regular intervals. 
2. Requirements for the application should be re-assessed and prioritised 

following each demonstration of a prototype. 
3. The system should be delivered not later than 07/08/2015. 
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Key Use Case Descriptions 

 
Experiment Creation 
 

Name: Create New Experiment 

Users: Scientific Researcher 

Goals: To create a new experiment for fragmentation analysis. 

Summary: 
The user creates a new experiment, providing a description, title, 
experimental protocol and ionisation type. 

Priority: MUST HAVE 

Preconditions: 
The user must be authenticated, by having logged into the 
application. 

Steps: 

User Actions System Response 

1. Click on 'My Experiments' link. 
 
 

3. Click "Add new experiment" link. 
 
 
5. Input the name of the experiment, 
a description, the ionisation and 
experimental method and click 
"submit". 
 
 
 
 
 

8. Click on link to newly created 
experiment. 

 
2. Render 'My Experiments' 
page. 
 
 
4. Render "Create 
Experiment" page. 
 
 
 
 
6. Process the form, and add 
experiment to database . 
 
 
7. Render 'My Experiments' 
page. 
 
 
9. Render experiment page. 

Post conditions: 
A new experiment, associated with the user, has been defined in the 
database. 

Related Use Cases: None 

 
 
Experimental Condition Creation 
 

Name: Create New Experimental Condition 

Users: Scientific Researcher 

Goals: To create a new experimental condition to an experiment. 

Summary: 

The user can add experimental conditions within an experiment by 
specifying a name and a description. This creates a logical grouping 
for experimental samples. 

Priority: SHOULD HAVE 

Preconditions: The user must be authenticated and have created the experiment 
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previously. 

Steps: 

User Actions System Response 

1. Click 'Add Experimental 
Condition' link. 
 
 
3. Input the name and a description 
for the experimental condition and 
click submit. 
 
 
 
 
 
 
6. Click on the new experimental 
condition link. 

 
 
2. Render 'Add experimental 
condition' page. 
 
 
 
4. Process the form and add 
experimental condition to 
database. 
 
5. Render the experiment 
page. 
 
 
7. Render experimental 
condition page. 

Post conditions: 
A new experimental condition, associated with an experiment, has 
been defined in the database. 

Related Use Cases: Create New Experiment 

 
 
Experimental Sample Creation 
 

Name: Add Sample 

Users: Scientific Researcher 

Goals: To add a new experimental sample to an experimental condition. 

Summary: 
The user can add samples to an existing experimental condition. The 
user inputs a name, description and an organism for a sample.   

Priority: MUST HAVE 

Preconditions: 
The user must be authenticated, having created an experimental 
condition within an existing experiment. 

Steps: 

User Actions System Response 

1. Click 'Add New Sample' link. 
 
 

3. Add a name, a description and 
state the organism of the sample 
and click submit. 
 
 

 
2. Render 'Add New Sample' 
page. 
 
 
 
 
4. Process the form and add 
sample to database. 
 
5. Render the experimental 
condition page. 
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Post conditions: 
A new sample, associated with an experimental condition, has been 
defined in the database. 

Related Use Cases: Create New Experiment; Create New Experimental Condition 

 
 
Data File Upload 
 

Name: Upload Data File 

Users: Scientific Researcher 

Goals: To upload a new data file to an experimental sample. 

Summary: 
The user can upload data files via a form, providing the filepath of the 
file to be uploaded and selecting the polarity associated with the data 
file. 

Priority: MUST HAVE 

Preconditions: 
The user must be authenticated. The user must also create an 
experiment, defining the experimental conditions and samples. 

Steps: 

User Actions System Response 

1. Click 'Add New Sample File' 
link. 
 
 
3. Specify the polarity and the 
filepath of the file to be 
uploaded and click submit. 
 
 

 
 
2. Render 'Add New Sample File' 
page. 
 
 
 
 
4. Process the form and create a 
sample file in the database. Upon 
which, the file is uploaded to an 
appropriate directory in the 
application. 
 
5. Render the experimental 
condition page. 

Post conditions: 
A new data file, associated with an experimental sample, has been 
defined in the database and uploaded to the appropriate directory. 

Related Use Cases: Create New Experiment; Create New Experimental Condition; Create 
Experimental Sample 

 

 
Extract Peak Data 
 

Name: Extract Peak Data 

Users: Scientific Researcher 

Goals: To extract the peak data from the uploaded sample files. 

Summary: 

The user can extract peak data by creating a fragmentation set, 
specifying the name of the set and providing any required 
parameters. Upon completion of peak data processing, the peaks 
data is added to the database maintaining their lineage. 
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Priority: MUST HAVE 

Preconditions: 

The user must be authenticated. In addition, the user must create an 
experiment (including conditions and samples) and have uploaded 
the requisite data files. 

Steps: 

User Actions System Response 

1. Click 'Create Fragmentation 
Set' link. 
 
 
3. Specify the name of the set, 
and any additional peak 
extraction parameters and click 
submit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. User clicks on the new 
fragmentation set link. 

 
 
2. Render 'Create Fragmentation 
Set' page. 
 
 
 
 
 
4. Process the form and create a 
fragmentation set in the 
database.  
 
5. Extract the peak data from the 
source files in the experiment 
associated with the 
fragmentation set. 
 
6. Render experiment page, 
displaying status of peak 
extraction process. 
 
7. Upon completion of step 5, 
update status of fragmentation 
set to 'Completed Successfully'. 
 
 
9. Render the fragmentation set 
page. 

Post conditions: 

A new fragmentation set, associated with the experiment, is created 
in the database. Furthermore, the peak data is populated in the 
database, associated with the fragmentation set, in a hierarchical 
manner. 

Related Use Cases: Create New Experiment; Create New Experimental Condition; Create 
Experimental Sample; Upload Data File 

 
Generate Candidate Annotations 
 

Name: Generate Candidate Annotations for Peaks 

Users: Scientific Researcher 

Goals: 
To identify candidate annotations for each peak contained within a 
fragmentation set. 

Summary: 
The user selects an annotation tool, providing the tool specific 
parameters. The candidate annotations are then retrieved/generated 
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and populated into the database for each peak in the fragmentation 
set. 

Priority: MUST HAVE 

Preconditions: 
User has successfully created a fragmentation set containing peak 
data in the database. 

Steps: 

User Actions System Response 

1. Selecting an annotation tool, 
the user clicks 'Create 
Annotation Query'. 
 
 
 
3. A name and tool-specific 
parameters are input and submit 
is clicked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Click on a link for a specific 
peak. 

 
 
 
2. Render 'Create Annotation 
Query' page, containing the form 
specific to the annotation tool. 
 
 
 
4. Process the form and add the 
annotation query to the 
database.  
 
5. Creation of the annotation 
query begins the generation or 
retrieval of candidate annotations 
from the annotation tool. 
 
6. Render fragmentation set 
page, displaying status of query 
process. 
 
7. Upon completion of step 5, 
update status of the annotation 
query to 'Completed 
Successfully'. 
 
 
9. Render peak page, displaying 
candidate annotations in a 
tabular form. 

Post conditions: 
An annotation query is added to the database. Candidate 
annotations, and their associated compounds, are added to the 
database. 

Related Use Cases: Extract Peak Data 

 
Select A Preferred Candidate Annotation 

 
Name: Specify A Preferred Candidate Annotation 

Users: Scientific Researcher 

Goals: 
To specify a preferred annotation from the available candidate 
annotations, thereby proposing the identification of the metabolite 
corresponding to a peak. 
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Summary: 
The user selects a preferred annotation, adding a justification for 
selection, which other users may review. The preferred annotation is 
then associated with the peak in the database. 

Priority: SHOULD HAVE 

Preconditions: 
User has successfully generated or retrieved candidate annotations 
for a fragmentation set. 

Steps: 

User Actions System Response 

1. Selecting a candidate 
annotation, the user clicks 'Prefer 
Annotation'. 
 
 
3. A justification for the selection 
of the preferred candidate 
annotation is entered. 

 
 
 
2. Render 'Prefer Annotation' 
page. 
 
 
 
4. Process the form. 
 
5. Associate the preferred 
candidate annotation to the peak 
in the database.  
 
6. Render the fragmentation set 
page displaying the preferred 
candidate annotation and the 
associated chemical formula for 
the associated peak. 

Post conditions: 
A preferred annotation is associated with the selected peak in the 
database, alongside the user and the justification for selection. 

Related Use Cases: Generate Candidate Annotations for Peaks 
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Appendix C   Design Documentation 

 

Initial FrAnK Database Schema Derived From ER Model 
 

It should be noted that the Django Framework automatically generates an 
implicit table for Many-To-Many relationships. Therefore, those tables 
containing simply two foreign key references have been omitted for clarity. 
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FrAnK Site-Map Design 
 

The following is a site-map which was designed based upon the project 
requirments and identified use cases. 
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Current FrAnK Site Map 
 

The following is the site-map corresponding to the current implementation of the 
application. Due to factors of time, several elements of the original design could 
not be implemented. These are discussed in additional detail in section 3.5. 
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FrAnK URL Mapping 
 

 

   

Page/View Name URL

frank_index "/frank/"

my_experiments "/frank/my_experiments/"

add_experiment "/frank/my_experiments/add_experiment/"

experiment_summary "/frank/my_experiments/experiment_slug /"

add_experimental_condition
"/frank/my_experiments/experiment_slug /

add_experimental_condition/"

condition_summary "/frank/my_experiments/experiment_slug /condition_slug /"

add_sample
"/frank/my_experiments/experiment_slug /

condition_slug /add_sample"

add_sample_file
"/frank/my_experiments/experiment_slug /

condition_slug /sample_slug /add_sample_file/

create_fragmentation_set
"/frank/my_experiments/experiment_slug /

create_fragmentation_set/"

my_fragmentation_sets "/frank/my_fragmentation_sets/"

fragmentation_set "/frank/my_fragmentation_sets/fragmentation_set_slug /"

define_annotation_query
"/frank/my_fragmentation_sets/fragmentation_set_slug / 

annotation_tool_slug /define_annotation_query_parameters/"

peak_summary "/frank/my_fragmentation_sets/fragmentation_set_slug /peak_slug /"

make_spectra_plot
"/frank/my_fragmentation_sets/fragmentation_set_slug /

peak_slug /msn_spectra_plot.png/"

specify_preferred_annotation
"/frank/my_fragmentation_sets/fragmentation_set_slug /peak_name /

annotation_id /specify_preferred_annotation/"
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Wireframe Designs 
 
Experiment Page 
 

 
 

As the PiMP application has been successfully implemented and adopted by the 
staff of the Metabolomics Facility, it would be logical for the FrAnK application 
to maintain the already familiar layout to improve user acceptance. As such, the 
proposed ‘Experiment’ page of FrAnK follows a similar template to that of the 
Project set-up of the parent PiMP application. From the ‘Experiment Admin’ tab, 
the user may add collaborators to an experiment and add experimental 
conditions. As such, the initial step in the experimental set-up is the definition of 
the experimental design. As can be seen from the above wireframe, the ‘Sample 
Admin’ tab of the workflow allows the user to create new experimental samples 
and upload files using the existing PiMP drag-and-drop file upload (accessed 
from the upload files button in blue). Upon upload, files can be dragged and 
dropped into the appropriate sample bin indicating whether the file is a 
fragmentation file (MS/MS) or a distinct full-scan of the MS1 peaks (MS1). 
 
Fragmentation Set Page 

The ‘Fragmentation Set’ page displays the annotation queries, requesting the 
annotation of the peaks contained in the set, at the top of the page in a tabular 
manner. In addition, the user can select an annotation tool for the retrieval of 
candidate annotations via a drop-down menu. The ‘Create New Query’ button 
will navigate the user to a page displaying a form specific to the specified 
annotation tool for declaration of the query parameters. Furthermore, the 
‘Fragmentation Set’ page will display the MS1 peaks contained within the set. 
The MS1 peaks will be ordered in ascending order by the measured mass to allow 
for easy lookup by the researcher. For each peak, the mass, retention time and 
intensity will be displayed. Additional columns will be provided to display the 
chemical compound and formula associated with a user-specified preferred-
annotation for a peak. As the Fragmentation Set may be conceived from 
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numerous source files, the peaks will be grouped by source file for clarity. The 
table is intended to be interactive, with the inclusion of a dropdown button 
corresponding to each peak. Selection of the dropdown button will expand the 
table to display a sub-table, containing the peak data corresponding to the 
fragmentation spectra of the peak, indented from the main table. Selection of the 
drop-down button will collapse the table back to its original state. 
 
 

 
 
Peak Page 
 

 
 

The ‘Peak’ page displays the relevant MS data for the peak and a graphical 
representation of the associated fragmentation spectra. In addition to plotting 
the product peaks of the parent, the graph will plot the precursor peak (dashed 
blue line of graph) to allow for visual inspection by the researcher. The graph is 
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intended to serve as an interactive navigation tool, providing links to the ‘Peak’ 
pages associated with those peaks comprising the fragmentation spectrum. At 
the bottom of the page, a table of putative candidate annotations will be 
displayed, grouped by the annotation query from which they originated. It is 
intended that the name of the chemical compound identified by each candidate 
annotation will serve as a link to a ‘Compound’ page. This would provide 
additional compound data and in future iterations may display a visual 
comparison between the observed fragmentation spectrum and that of the 
spectral reference library from which the candidate annotation was originally 
retrieved. 
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Appendix D   Implementation Documentation 

Application Screen Dumps 
 
My Experiments Page 

 

 

Experiment Page 
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Fragmentation Set Page 

 

 

Define Annotation Query Page 
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Peak Page (Top) 

 

 

Peak Page (Bottom) 
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Summary of End-to-End Testing 

 
 

Name of View 
Description of 

Test 
Inputs 

Anticipated 
Outcome 

Outcome 

index 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

index 
Ensure 

unauthorised 
user is redirected 

Get 
request 

Status code 200 
Status code 

200 

my_experiments 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_experiment 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_experiment 
Test the addition 

of new 
experiment 

Valid 
POST 

request  

New 
experiment 

added to 
database 

New 
experiment 

added to 
database 

add_experiment 

Attempt to 
create 

experiment with 
duplicate name 

Duplicate 
POST 

request 

Page renders 
with form 

error, 
experiment not 

added to 
database 

Page renders 
with form 

error, 
experiment 

not added to 
database 

experiment_summary 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_experimental_condition 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_experimental_condition 

Test the addition 
of new 

experimental 
condition 

Valid 
POST 

request 

New 
experimental 

condition 
added to 
database 

New 
experimental 

condition 
added to 
database 

add_experimental_condition 

Attempt to 
create 

experimental 
condition with 
duplicate name 

Duplicate 
POST 

request 

Page renders 
with form 

error, 
experimental 
condition not 

added to 
database 

Page renders 
with form 

error, 
experimental 
condition not 

added to 
database 
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condition_summary 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_sample 
Ensure page 
renders for 

authorised user 

Get 
request 

Status code 200 
Status code 

200 

add_sample 
Test the addition 
of a new Sample 

Valid 
POST 

request 

New Sample 
added to 
database 

New Sample 
added to 
database 

add_sample 

Attempt to 
create a Sample 
with duplicate 

name 

Duplicate 
POST 

request 

Page renders 
with form 

error, sample 
not added to 

database 

Page renders 
with form 

error, sample 
not added to 

database 

add_sample_file 
Ensure page 
renders for 

authorised users 

Get 
request 

Status code 200 
Status code 

200 

add_sample_file 
Ensure new 

Sample Files can 
be uploaded 

Valid 
POST 

request 

Sample file 
added to 
database 

Sample file 
added to 
database 

add_sample_file 

Attempt to 
upload a 

duplicate file to a 
Sample 

Duplicate 
POST 

request 

Page renders 
with form 

error, sample 
file is not 

duplicated in 
database 

Page renders 
with form 

error, sample 
file is not 

duplicated in 
database 

add_sample_file 
Attempt to 

upload an invalid 
file format 

Invalid 
POST 

request 

Page renders 
form errors to 

user 

Page renders 
form errors to 

user 

create_fragmentation_set 
Ensure page 

renders 
successfully 

Get 
request 

Status code 200 
Status code 

200 

create_fragmentation_set 

Create a new 
fragmentation 

set from an LCMS 
experiment 

Valid 
Post 

Request 

Peaks extracted 
and 

Fragmentation 
Set added to 

database 

Peaks 
extracted and 
Fragmentation 
Set added to 

database 

create_fragmentation_set 

Create a new 
fragmentation 

set from an 
GCMS 

experiment 

Valid 
Post 

Request 

Peaks extracted 
and 

Fragmentation 
Set added to 

database 

Peaks 
extracted and 
Fragmentation 
Set added to 

database 

create_fragmentation_set 

Ensure 
Fragmentation 

Set name is 
unique 

Duplicate 
POST 

request 

Page renders 
form errors to 

user 

Page renders 
form errors to 

user 
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create_fragmentation_set 

Ensure 
fragmentation 
set cannot be 

created without 
source files 

Invalid 
POST 

Request 

Page renders 
form errors to 

user 

Page renders 
form errors to 

user 

fragmentation_set_summary 
Ensure page 

renders 
successfully 

Get 
request 

Status code 200 
Status code 

200 

fragmentation_set 
Ensure page 

renders 
successfully 

Get 
request 

Status code 200 
Status code 

200 

fragmentation_set 

Test MassBank 
can be selected 
for Annotation 

Query 

Valid 
Post 

Request 
Status code 200 

Status code 
200 

fragmentation_set 

Test NIST can be 
selected for 
Annotation 

Query 

Valid 
Post 

Request 
Status code 200 

Status code 
200 

fragmentation_set 

Test Precursor 
Mass Filter can 
be selected for 

Annotation 
Query 

Valid 
Post 

Request 
Status code 200 

Status code 
200 

peak_summary 
Ensure page 

renders 
successfully 

Get 
request 

Status code 200 
Status code 

200 

define_annotation_query 

Ensure page 
renders 

successfully - 
MassBank 
Selection 

Get 
request 

Status code 200 
Status code 

200 

define_annotation_query 

Ensure page 
renders 

successfully - 
NIST Selection 

Get 
request 

Status code 200 
Status code 

200 

define_annotation_query 

Ensure page 
renders 

successfully - 
Precursor Mass 
Filter Selection 

Get 
request 

Status code 200 
Status code 

200 

define_annotation_query 
Create valid 

annotation query 
(MassBank) 

Valid 
Post 

Request 

Candidate 
Annotations 

Retrieved 
TEST FAILED 

define_annotation_query 
Create valid 

annotation query 
(NIST) 

Valid 
Post 

Request 

Candidate 
Annotations 

Retrieved 

Candidate 
Annotations 

Retrieved 
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define_annotation_query 

Create valid 
annotation query 
(Precursor Mass 

Filter) 

Valid 
Post 

Request 

Candidate 
Annotations 

Retrieved 

Candidate 
Annotations 

Retrieved 

specify_preferred_annotation 
Ensure page 

renders 
successfully 

Get 
request 

Status code 200 
Status code 

200 

specify_preferred_annotation 
Add a preferred 
annotation to a 

peak 

Valid 
Post 

Request 

Preferred 
annotation 

added to peak 
TEST FAILED 
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Appendix E   Evaluation Documentation 

Evaluation Tasks 

1. Create a new experiment 

Step 1 – Select “My Experiments” from the “Home” page. 

Step 2 – Select “Add New Experiment” from the “My Experiments” page. 

Step 3 – Enter a Title (“Standard 1 Experiment”) and Description for the New 
Experiment. In addition, select the Ionisation Method (“Electron Ionisation 
Spray”) and a Detection Method (“LCMS Data Dependent Acquisition”). 

Step 4 – Press “Submit” to create the new experiment. 

 

2. Create a new experimental condition 

Step 1 – From the “My Experiments” page, select the new experiment (“Standard 
1 Experiment”). 

Step 2 – Select “Add New Experimental Condition” 

Step 3 – Enter a Name (“Standard 1 Mixture”) and Description for the New 
Experimental Condition.  

Step 4 – Press “Submit” to create the new experimental condition. 

 

3. Create a new sample to the experimental condition 

Step 1 – From the “Standard 1 Experiment” page, select the new experimental 
condition (“Standard 1 Mixture”). 

Step 2 – Select “Add Sample” 

Step 3 – Enter a Name (“Standard 1”) and Description for the New Sample. 
Leave the Organism field blank as the Sample is not biological in nature.  

Step 4 – Press “Submit” to create the new sample. 

 

4. Upload new sample files to the sample 

Step 1 – From the “Standard 1 Mixture” page, select the “Add Sample File” link 
beneath the Sample Table for “Standard 1”. 
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Step 2 – Select the polarity of the file (‘Positive’) and select the file for upload 
(“Home/ProjectTestData/MS2Data/Standards/STD_MIX1_POS_60stepped_1E5_
Top5.mzXML”), then click ‘Submit’. 

Step 3 – Select the “Add Sample File” link beneath the Sample Table for 
“Standard 1” for a second time. 

Step 4 – Select the polarity of the second file (‘Negative’) and select the file for 
upload 
(“Home/ProjectTestData/MS2Data/Standards/STD_MIX1_NEG_60stepped_1E5_
Top5.mzXML”), then click ‘Submit’. 

 

5. Create a Fragmentation Set 

Step 1 – Return to the “Standard 1 Experiment” via the link at the bottom of the 
page. 

Step 2 – The “Generate New Fragmentation Set” link should now be visible. 

Step 3 – Click on the link and enter a name for the Fragmentation Set 
(“Standard 1 Fragmentation Set”) and click submit. 

Step 4 – The status of the newly created Fragmentation Set should now be 
visible. 

 

6. Create a new Annotation Query 

Step 1 – Once the status of the Fragmentation Set is “Completed Successfully”, 
the peak data extracted from the source files will now be accessible via a link, 
please click it. 

Step 2 – The “Standard 1 Fragmentation Set” page should show, via a table, the 
MS1 peak data for the source files (note, this is not a complete listing, rather 
those MS1 peaks with fragmentation data associated with them). 

Step 3 – From the drop-down menu at the top, please select an Annotation Tool 
to use to annotate the fragmentation spectra (‘NIST’). Then click “Create New 
Annotation Set”. 

Step 4 – From the page please enter the parameters for the search…. 

Name:  Standard 1 Annotation Query 

Maximum Number of Hits:  10 

Search Type:  Generic Search MS/MS Search in MS/MS Library 

Libraries: Select “Tandem (MS/MS) Library – Small Molecules” 

  Select “Tandem (MS/MS) Library – Biologically Active Peptides” 
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Step 5 – Click “Submit”, the status of the new Annotation Query should be 
displayed. 

Step 6 – Once the status of the new Annotation Query is “Completed 
Successfully”, the candidate annotations can be viewed by click on a Peak link. 

 

7. Specify a Preferred Annotation 

Step 1 – From the “Standard 1 Fragmentation Set” page, select one of the peak 
identifiers (which serve as links). 

Step 2 – At the top of the “Peak” page is a graphical representation of the 
fragmentation spectra associated with the peak. Beneath the graph of the 
fragmentation spectra, is a table of the peaks which comprise the fragmentation 
spectra, which can be used to link to different levels of MSn data. At the bottom 
of the page should be a table of candidate annotations returned by the NIST 
Annotation Query. To “prefer” a candidate annotation, click on the “Select 
Annotation” link in the right-most column of the table. 

Step 3 – The “Preferred Annotation” page should render. At this juncture, a 
justification for the selection of the annotation can be provided. Click “Submit”. 

Step 4 – From the “Peak” page, return to the “Standard 1 Fragmentation Set” 
page using the link at the bottom of the page. 

Step 5 – In the table of MS1 peaks associated with the Fragmentation Set, should 
now appear the name of the chemical associated with the preferred annotation 
and its chemical formula. 
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Interview Questions - Client 

1. What are your general impressions of the development of the application to 
date? 

2. Do you think the functionality of the application would be valuable to the 
research staff at the facility? 

3. How would you rate the overall usability of the application’s user interface? 

4. Do you think the text descriptions of the various links and fields accurately 
convey their purpose? Were there any descriptions in particular that you found to 
be ambiguous or confusing?  

5. Does the application present the researcher with all the necessary data 
required to evaluate the candidate annotations and fragmentation spectra? Is 
this conveyed in an appropriate manner? 

6. Do you have any recommendations or suggestions for improving the user 
interface? 

7. Were there any points during the evaluation tasks that you became stuck? If 
so, could you could you elaborate upon these? 

8. Has the development of the application achieved what you envisaged to be the 
outcomes of the project? 

9. Are there any key elements of functionality you would like to have been added 
to the application over the course of the project? 

10. Were you satisfied with the process used to develop the application? In 
particular, was the prototyping of the application valuable to you? 

11. Do you believe that the current application provides the flexibility 
required for future development? 

12. What future development of the application do you envisage? 
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Qualitative Evaluation of Candidate Annotations 
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Appendix F   README 

The following are guidelines for the running of the FrAnK application... 

FrAnK was developed on an HP 15 Laptop, consisting of an Intel Core i3-45005U 
processor and 7.7 GB RAM, running the Ubuntu 15.04 operating system. PiMP, 
including the dependencies described in section 2.4.2, was installed. To provide 
clarity for future developers, additional packages were installed such as mysql-
server 5.6.25, r-base-core 3.1.2-2, wine 1.6.1:1.6.2, rabbitmq-server 3.2.4-1 and 
oracle-java8 in addition to those stated in the ‘requirements_frank.txt’ document 
of the application. The querying of MassBank is performed through Suds, a 
python package providing a client for the sending and retrieval of SOAP 
requests. The package should be included in the ‘requirements_frank.txt’ file. 

In order to run the application, the set-up guide included within the PiMP 
application should be followed, including the installation of any dependencies 
such as ‘mzmatch.R’. However at this juncture, the population script of the 
application should not be run. Whilst using the virtual environment created in 
the PiMP setup guide, ensure that the command ‘pip install –r 
requirements_frank.txt’ is also run to install the dependencies for the new 
application.  

To perform analysis in PiMP and the retrieval of candidate annotations from 
FrAnK, it is highly recommended to future developers that mysqlserver and 
rabbitmq are installed to allow for asynchronous processing as the SQLite 
database commonly used in Django application development does not support 
concurrent transactions. In addition to MySQL and celery, wine should be 
installed. Upon installation, the mapping of the wine software to the file 
hierarchy of the local system by the command line argument ‘winecfg’ and the 
selection of the appropriate tab at the top of the GUI display. Having gained 
familiarity with which directory corresponds to the ‘C:\\’ in wine, NIST 14 can 
be installed to this location. In order to query the spectral reference libraries of 
NIST 14, you will require the MS PepSearch program which must also be 
installed through wine. The 64-bit version of MS PepSearch for Windows should 
be compatible with the wine software. 

It is recommended that once the installation of the dependencies associated with 
FrAnK have been installed that the population script, ‘populate_pimp.py’ be run 
to provide default values for both the PiMP and FrAnK applications. However, 
prior to running the script, the hardcoded paths required as defaults for the 
AnnotationTools should be amended to reflect the local installation. As such, 
were a local installation of MassBank to become available, the address passed to 
the SOAP client could easily be altered to a local port. 

 

 

 
 


