

FrAnK: A Web Application for the
Annotation of Mass Spectral Peaks

Using Fragmentation Spectra

Scott J. Greig

School of Computing Science

Sir Alwyn Williams Building

University of Glasgow

G12 8RZ

A dissertation presented in part fulfillment of the requirements
of the Degree of Master of Science at the University of Glasgow

07/09/15

Abstract

In the field of Metabolomics, biological samples are routinely analysed using
Mass Spectroscopy (MS) techniques with the aim of quantifying and identifying
the constituent metabolites. The University of Glasgow Metabolomics Facility
has developed a proprietary web-based application (PiMP) for the analysis of
mass spectral data generated by the research staff using this technique.
However, PiMP does not support the extraction and storage of fragmentation
patterns, which are analogous to a structural fingerprint, thereby limiting the
veracity of metabolite identification.

To provide supporting evidence for putative metabolite identifications, a web-
based application to maintain the lineage of MS peaks and utilise their
fragmentation spectra in the retrieval of candidate annotations was developed.
The Fragment Annotation Kit (FrAnK) is a Django-based application which
implements Celery to facilitate the asynchronous processing of MS data sets.
Interfacing with R, peak data is derived and stored from mzXML source files
using scripts tailored to the experimental protocol. The hierarchical
fragmentation spectra are utilized in the retrieval of candidate annotations via
spectral reference libraries. In the form of a SOAP request, fragmentation
spectra may be submitted for analysis using the MassBank Web API.
Alternatively, the libraries of NIST14 are queried via the Windows-based MS
PepSearch software, supported within a Linux-like environment through Wine.
As each spectral reference library may generate numerous candidate annotations
for a given peak, the user may select a preferred candidate annotation, proposing
putative metabolite identification, from those annotations retrieved.

While limitations have been identified in the FrAnK application, the
development provides a framework to support the integration of novel software
and algorithms for the identification of metabolites.

Education Use Consent

I hereby give my permission for this project to be shown to other University of
Glasgow students and to be distributed in an electronic form.

Name: Scott Greig Signature:

Acknowledgements

I would like to thank both the project supervisor Dr Simon Rogers and the PhD
researcher Joe Wandy, who served as the secondary supervisor, for both their
technical support and guidance throughout all phases of the project. In addition,
I would like to thank all the members of staff at the Metabolomics Facility of
Glasgow Polyomics who kindly offered their support and the imparting of
invaluable technical and domain knowledge. Of note were Yoann Gloaguen, Dr
Ronan Daly, Dr Stefan Weidt and Dr Justin Van Der Hooft. In addition, I would
like to thank Dr Karl Burgess, the Head of Metabolomics, for assisting in the
evaluation of prototypes, providing guidance on the direction of development and
the evaluation of the final product.

In addition, I would like to recognize the contributions of Dr Simon Rogers, Joe
Wandy, Dr Karl Burgess and Tony Lawson for providing code which has been
integrated and acknowledged in the comments documenting the code. Dr Rogers
provided additional ‘Annotation Tools’, namely the ‘Precursor Mass Filter’ and
the ‘Network Sampler’, which have been implemented in FrAnK. Joe Wandy and
Tony Lawson provided the ‘frankMSnPeakMatrix.R’ and
‘frankXcmsSetFragments.R’ scripts, respectively, located in the ‘Frank_R’ folder
of the application. In addition, the ‘gcmsGeneratePeakList.R’ script within the
same folder is an adaptation of an R script which was provided by Dr Karl
Burgess.

Contents

Chapter 1 Introduction .. 1

1.1 Background ... 1
1.1.1 Metabolomics .. 1
1.1.2 Mass Spectrometry ... 2
1.1.3 Chromatographic Methods .. 3
1.1.4 Ionization .. 4
1.1.5 Mass Analysers and Detectors.. 4
1.1.6 Fragmentation... 5
1.1.7 Dissociation Methods ... 6
1.1.8 Data Dependent Acquisition (LCMS) ... 6
1.1.9 Data Independent Acquisition (LCMS) ... 7
1.1.10 Gas Chromatography-MS Electron Ionisation ... 8
1.1.11 Data Analysis ... 9

Chapter 2 Requirements .. 11

2.1 Problem Definition and Scope ..11

2.2 Client and Users ...11
2.2.1 The Client ... 11
2.2.2 The Users.. 11

2.3 Requirements Gathering ..12

2.4 Environment ...12
2.4.1 Summary of PiMP Functionality ... 12
2.4.2 Hardware and Software Requirements of PiMP .. 12

2.5 Competing Systems ..13

2.6 Existing Procedures ...14

2.7 Summary of Functional Requirements ...14

2.8 Summary of Non-Functional Requirements ..14

2.9 Use Case Summary ..15

Chapter 3 Design ... 16

3.1 Design Approach ...16

3.2 Risks and Uncertainties ..16

3.3 Entity-Relationship Modelling ...16

3.4 Database Design ..18

3.5 Site Map and URL Mapping ..20

3.6 Wireframes ..21

Chapter 4 Implementation .. 22

4.1 Development Process Overview ..22

4.2 Application Overview ..23

4.3 LC-MS Data-Dependent Acquisition (MS/MS) ...23

4.4 GCMS Electron Impact Ionisation ..25

4.5 MassBank Web-API ..27

4.6 NIST14 ...29

4.7 Testing Strategy ...31

Chapter 5 Evaluation ... 32
5.1.1 Client Evaluation ... 32
5.1.2 Qualitative Evaluation of Standards ... 33

Chapter 6 Discussion and Conclusion .. 35

6.1 Development Challenges ..35

6.2 Limitations of Existing Application ..36

6.3 Future Work ..36

6.4 Conclusions ...38

Chapter 7 References ... 39

Appendix A Glossary of Domain Terminology 1

Appendix B Requirements Documentation 2

Appendix C Design Documentation .. 11

Appendix D Implementation Documentation 18

Appendix E Evaluation Documentation 25

Appendix F README ... 30

 1

Chapter 1 Introduction

Historically, life sciences research has been predicated upon highly targeted
experimental approaches to investigate specific molecules of interest within
biological systems. Just as the three blind men were unable to reach a consensus
upon the shape of the elephant, life scientists have acknowledged that
investigating the complexities of biological systems in isolation is ineffectual and
the adoption of more holistic, untargeted approaches are essential. Potential
biomarkers of pathological states, novel therapeutic-targets and diagnostic
biomarkers may go unidentified (Courant et al., 2014). Since the inception of
genomics and transcriptomics in the 1980s, there has been increasing
collaboration between life-sciences researchers and computing scientists to meet
the challenges of new, holistic approaches within the biological “omics” fields.

In contrast to related –omics fields such as genomics, transcriptomics and
proteomics, to date the emerging field of metabolomics has received relatively
limited attention from computing scientists. In part, this has been due to the
relative infancy of the field and the challenge of bridging the gap between life
sciences domain knowledge and technical proficiency (Smith et al., 2014). As
such, attempts to develop software to identify small molecular metabolites have
been met with limited success to date. However, there is a concerted effort within
the field to improve the computational framework supporting this burgeoning
scientific discipline. In collaboration with the Metabolomics Facility at Glasgow
Polyomics, the project aims to develop a web application to aid researchers in the
identification of small biological metabolites using fragmentation patterns
generated using mass spectrometry. However, the field of metabolomics,
including the fundamentals of mass spectrometry, will initially be reviewed to
familiarise the reader with an overview of the necessary domain knowledge.

1.1 Background

1.1.1 Metabolomics

Since its introduction approximately 15 years ago, Metabolomics has been an
emerging discipline focused upon the high-throughput quantification and
identification of small molecular metabolites (typically 50-1500 Da) which are
synthesized by the metabolic pathways of biological systems (Courant et al.,
2014; Smith et al., 2014). Cellular physiology can be considered from three
distinct levels – gene expression and transcription (genomics and
transcriptomics; the blueprint of cellular processes), protein expression and state
(proteomics; the machinery which drives cellular processes) and the small
molecules which serve as either substrates or products of cellular pathways (the
net effect of cellular processes). The latter of which is the concern of the field of
Metabolomics, which reflects the phenotype or state of the metabolic processes of
a biological system.

In targeted metabolomics investigations, a selective subset of chemically-related
metabolites belonging to a specific cellular pathway of interest will be

 2

investigated (Courant et al., 2014). The advantage of such targeted approaches is
they are hypothesis-driven and, as such, the cellular pathway or metabolites of
interest are typically defined in advance. This allows for relatively simple
quantification and identification, however, the interpretation of such data is
limited in scope due to the selectivity of the experimental design. An alternative
is to adopt a ‘metabolic fingerprinting’ approach, allowing for the statistical
analysis of the wider metabolome across experimental factors (Courant et al.,
2014). This experimental approach is untargeted, and as such is open to new
findings. However, due to the lack of selectivity for a specific cellular pathway or
metabolite, the challenge remains to identify the metabolites of interest.

Defined as “all the metabolites within an organism”, the metabolome
encompasses both endogenous (such as amino acids, lipids, organic acids and
bases) and exogenous (such as xenobiotics) metabolites (Courant et al., 2014;
Glish and Vachet, 2003). Furthermore, the metabolites which comprise the
metabolome of a biological system may vary in their chemical and physical
properties, concentration and distribution within an organism. Despite the
associated challenges, improving the veracity of metabolite identification will not
only further academic knowledge of physiological processes but is likely to
identify novel therapeutic targets and biomarkers for patient diagnosis, drug
safety and efficacy.

1.1.2 Mass Spectrometry

Mass spectrometry (MS) is powerful analytical technique, used to determine the
molecular mass of the chemical constituents of a sample. MS is routinely used in
a variety of life sciences disciplines to quantify and identify physiologically
relevant compounds due to the sensitivity with which the “mass” of a molecule
can be measured (Mann et al., 2001). By virtue of the speed of sample analysis,
ease of automation and high sensitivity, MS is ideally suited to the high-
throughput analysis of complex, chemically-rich biological samples (Glish and
Vachet, 2003; Courant et al., 2014).

The mass spectrometer is comprised of three main components – an ionization
source, a mass analyser and a detector (figure 1; Glish and Vachet, 2003). In
order to “detect” the constituents of a sample, a mass spectrometer initially
ionizes the constituents, generating charged ions, in the Ionisation Source. The
mass analyser separates the gas-phase ions, while the detector is used to
measure the mass-to-charge ratio (m/z) and the abundance of the ions formed. In
order to prevent the collision of the ions with environmental gaseous molecules,
the mass analyser, detector and ion source typically operate under high-vacuum
conditions.

Figure 1: Overview of Mass Spectrometer Components (Adapted from
Berdie Rabanaque et al., 2012)

 3

The mass of a molecule is defined by its molar mass, therefore, the term “mass
spectrometry” is, in part, a misnomer as the instrument itself measures the
mass-to-charge ratio (m/z) of gas-phase ions as opposed to a molar mass (Glish
and Vachet, 2003). However, it should be noted that the term “mass” is
commonly used to refer to the m/z ratio of an ion when referring to MS data. As
the instrument measures the m/z ratio of gas-phase ions the effects of isotopes
must also be considered during the analysis. This distinction is highlighted by
Glish and Vachet (2003), who describe the example of chlorobenzene (molecular
weight 112.56) which may be measured as two distinct ions (m/z 112.01 and
114.01 respectively) with intensities commensurate to the relative abundance of
two chlorine isotopes (35Cl and 37Cl).

The ions detected by the instrument’s detector during a single scan are typically
displayed as a mass spectrum (figure 2a). A mass spectrum is a two-dimensional
plot of the abundance of an ion (referred to as “intensity”) versus its m/z (Glish
and Vachet, 2003; Berdie Rabanaque et al., 2012). Due to their rich chemical
composition, the constituent molecules of biological samples are typically
separated using chromatographic methods prior to MS analysis (see section
1.1.3). Therefore, several MS scans may be performed consecutively as the
sample elutes. The total ion current (TIC) chromatogram is a plot of the retention
time and the summed intensity of the ions, regardless of their m/z ratio, detected
at each time point (figure 2b).

Figure 2: Comparison between mass spectrum (A) and total ion current
chromatogram (B).

1.1.3 Chromatographic Methods

As the size of the metabolome is unknown, there may be tens or hundreds of
metabolites within a given biological sample with the identical molecular mass.
Therefore the ability of the MS instrument to resolve individual metabolites with
near identical m/z ratios becomes compromised. The constituents of a biological
sample can be separated based upon their chemical or physical properties. By
distributing the chemical constituents of the sample between a stationary and
mobile phase, the constituents can be separated based upon their chemical or
physical properties. The mobile phase, typically a gas or liquid, flows around the
stationary phase, either a liquid or solid, and the compounds are separated based
upon their relative affinities for the stationary phase. The retention time is a

 4

measure of the time taken for an analyte to elute from a chromatographic
column. While the inclusion of chromatographic methods improves the resolution
of instrumentation measurements of ion m/z, one limitation is that the retention
time may vary between experimental replicates. Gas chromatography-MS
(GCMS), referring to a gas mobile phase, is more suitable for small, nonpolar and
volatile compounds. Conversely, analysis of polar or ionic metabolites may be
achieved with Liquid Chromatography–MS (LCMS; Courant et al., 2014). If a gas
chromatographic separation method is used for analysis, the addition of a
derivatization reaction step prior to sample injection may be considered in order
to reduce polarity and increase volatility (Courant et al., 2014). The most
common derivatization procedures are alkylation, acylation, or silyation, the
active hydrogen in functional groups (-COOH, -OH, -NH, and –SH) are replaced
by acyl-, or silyl-groups to form esters or ethers (Courant et al., 2014).

1.1.4 Ionization

As previously stated, in order for the analytes of interest to be measured by the
mass spectrometer they must first be converted to gas-phase ions during at the
Ionisation Source. Ionisation can be achieved using various techniques; however,
Electrospray Ionisation (ESI) and Electron Impact Ionisation (EII) will be
highlighted due to their relevance to the current project.

ESI is regarded as a very ‘soft’ ionization technique, referring to the limited
fragmentation of the sample analytes which occurs using this method, commonly
used in conjuncture with liquid chromatography. As such, ESI which allowing
non-covalent complexes (such as interacting proteins) to be ionized intact thereby
vastly expanding the number of biological applications. One limitation of ESI is
the propensity for ion suppression, which can occur in samples with high salt
concentrations (>1 mM) or due to the presence of analytes with a high
concentration. Ion suppression refers to a diminished ionization efficiency, which
reduces the number of ions formed during ionization and subsequently
confounding detection.

EII (also referred to as “electron ionization”), is used alongside gas
chromatography to ionize and fragment metabolites prior to MS analysis. A
typical ionization source exposes the analyte to a stream of thermionic electrons
produced from a heated element. Close passage of highly energetic electrons to
the neutral analyte induces ionization. These cations (positively charged ions)
formed within the ionization source can then be expelled from the ionization
source using a repelling voltage. As such, the ions generated from the MS
analysis of GCMS EII are exclusively positive in polarity. In contrast to ESI, EII
is known as a “harsh” technique because of the degree of fragmentation induced.
While the energy of the ionizing electrons can be reduced to diminish the degree
of ionization and fragmentation, the sensitivity of the MS instrument to detect
the analytes will be negatively influenced.

1.1.5 Mass Analysers and Detectors

Principally, there are five main types of mass analyser in circulation which can
be broadly considered in two categories, beam analysers and trapping analysers
(Glish and Vachet, 2003). The role of the mass analyser is to separate ions by
m/z ratio prior to detection. In the former, the ions from the ion source pass
through the analysing field, which serves to separate ions, to the detector in a

 5

beam. Conversely, trapping analysers trap the ions in the analysing field, and
are subsequently passed to the detector.

There are three distinct beam analysers. The time-of-flight (TOF) analyser is the
simplest, separating ions based on their velocity. Using a fixed potential between
the ion source and detector, ions with a lower m/z achieve a greater velocity than
those of greater m/z. As ions with the same charge obtain the same kinetic
energy, the duration of time taken to travel from the ion source to the detector is
used to determine ion mass (Glish and Vachet, 2003). The sector analysers rely
upon a similar principle. Analysis of m/z is achieved as ions with the same
kinetic energy-to-charge ratio follow an identical path through a magnetic field
and are then separated according to their momentum-to-charge ratio in a
magnetic sector (Glish and Vachet, 2003). Finally, the quadrupole analysers use
radio frequency and direct current voltages applied to four rods (Glish and
Vachet, 2003). As ions from the source pass through the mass analyser, those
with the same m/z follow a distinct, stable trajectory to the detector from those
with a different m/z ratio. Ions of distinct m/z can be sequentially directed to the
detector by varying the magnitude of the radio frequency voltages and direct
current voltages applied to the four rods (Glish and Vachet, 2003).

While the quadrupole mass analysers maintain electric fields in two dimensions,
the quadrupole ion trap (a trapping analyser) maintains electric fields in three
(Glish and Vachet, 2003). This quadrupole ion trap analyser therefore can
maintain ions within a stable trajectory within the instrument. In contrast to the
quadrupole mass analysers, the ions within the quadrupole ion trap do not
simply pass through the mass analyser in a mass-selective trajectory.
Measurement of the m/z is achieved by making the ion trajectories unstable in a
mass-selective manner, which allows for progress to the detector (Glish and
Vachet, 2003). In the Fourier-transform ion-cyclotron resonance (FT-ICR)
analyser, ions oscillate in a magnetic field at frequencies related to their m/z
ratio. As the ions oscillate in close proximity to two metal plates, an alternating
current is induced which can be used to derive the m/z ratio (Glish and Vachet,
2003).

1.1.6 Fragmentation

Fragmentation refers to the process in which a parent ion is dissociated, or
cleaved, generating product ions which correspond to sub-structures of the
parent ion. While fragmentation of ions occurs during the initial ionization of the
sample’s constituents within the Ionisation Source, this is typically an
undesirable consequence of the process necessary to generate measurable ions.
Nevertheless as the identity of the compound corresponding to a distinct peak is
typically unknown in metabolomic profiling studies, fragmentation of precursor
ions can be used to provide valuable structural information which aids in the
identification of the compound which formed the parent ion.

The fragmentation spectra of a parent ion can be considered analogous to a
chemical fingerprint, or mapping of its chemical structure. As the product ions
originate from the dissociation of the parent ion, each product ion corresponds to
a sub-structure of the parent ion. However, it should be noted that not all of the
parent ion’s chemical structure is represented in the fragmentation spectra as
the product ions correspond to only those fragments which have maintained a
charged state following dissociation. This residual loss of mass is referred to as

 6

the neutral loss. Within the structure of a chemical compound, distinct
substructures may have a greater propensity for cleavage than others.
Compounds are often classified based on homologous core structures that often
will either form a specific product ion or will be lost as a neutral fragment in the
MS/MS experiment. As such, under identical dissociation conditions, the pattern
of fragmentation of a parent ion is reproducible and can be used to identify
functional groups or the compound itself.

In order to garner this valuable resource of structural data, MS can be performed
using a technique referred to as Tandem MS (MS/MS). MS/MS may be conducted
within either a single instrument (referred to as tandem-in-time) or within
interconnected MS instruments (referred to as tandem-in-space). Whether
tandem-in-time or tandem-in-space MS is performed is dependent on the
capabilities of the instrumentation used in the investigation. Regardless, the
principles are the same in each approach.

During an initial full-scan MS stage, selected ions of a specified m/z are isolated
from the residual ions originating from the ion source. These isolated ions (the
parent ions) are induced to undergo a chemical reaction which induces their
cleavage, generating the fragments. The resulting ions from the reaction, termed
product ions, are analysed in a subsequent MS stage. Typically, MS/MS simply
corresponds to two stages of MS analysis, the full-scan of the sample ions and the
analysis of the fragmentation product ions. However, in tandem-in-time MS/MS
instrumentation it is possible to repeat the fragmentation process n times. As
such, the product ions of a precursor ion could themselves be fragmented,
generating a further generation of product ions for analysis.

1.1.7 Dissociation Methods

A crucial aspect of fragmentation experiments is the reaction that occurs to
induce dissociation of the parent ion. The most frequently used reaction is
unimolecular dissociation, which is generally enhanced by some form of ion
activation. Ion activation is necessary to increase the internal energy of the
parent ion so it will dissociate prior to analysis by MS2. In practice, activation
and dissociation cannot be separated, so the ion activation methods are simply
referred to as dissociation methods. The method almost universally used is
collision-induced dissociation (CID), which occurs within a distinct collision zone
of the MS instrument. In CID, the parent ion collides with a neutral target
(collision) gas and some of the kinetic energy of the parent ion can be converted
to internal energy.

1.1.8 Data Dependent Acquisition (LCMS)

Liquid chromatography MS/MS can be performed under information or data-
dependent acquisition conditions. This type of acquisition is termed “auto-
adaptive MS/MS product-ion scan mode”, in which parent ion selection during
the full-scan mode (termed the “survey scan”) is dependent upon predetermined
criteria (Marquet et al., 2003). Selection of the parent ions for dissociation is
typically dependent on the intensity of the ions in the survey scan. The most
intense ions are transmitted to the collision cell, where fragmentation occurs.
The resulting product ions are then analysed by a second MS phase (Marquet et
al., 2003; figure 3).

 7

Figure 3: Data-dependent acquisition.

1.1.9 Data Independent Acquisition (LCMS)

Whilst highly-powerful, one limitation of the data-dependent acquisition
technique is that selection of parent ions during the initial survey scan favours
metabolites with higher ionization efficiencies (Chapman et al., 2014). In order to
circumvent this bias and increase the detectable dynamic range, the concept of
data-independent acquisition was proposed (Chapman et al., 2014). In data-
independent acquisition, there are no intensity-based criteria for ion selection
based on prior scans. Instead, a predefined m/z range is investigated by
fragmenting all ions entering the mass spectrometer at a given retention time
(termed “broadband DIA”; Chapman et al., 2014). Alternatively, the m/z range
can be divided into smaller, discreet m/z ranges for isolation and subsequent
fragmentation. Therefore, the fragmentation of precursor ions is independent of
any prior data generated from the sample. Due to the fragmentation of all ions
entering the mass spectrometer, precursor-product ion lineage is lost in DIA.

 8

However, distinct experimental approaches can be implemented to circumvent
this apparent limitation. In the MSE technique, scans using a Q-TOF instrument
can cycle between ‘high-energy’ and ‘low-energy’ scans. While the ‘high-energy’
scan generates the fragmentation data, the ‘low-energy’ scan can be considered
analogous to the ‘survey scan’ of data-dependent acquisition (Egertson et al.,
2015; figure 4). Therefore, the lineage of parent and product ions can be resolved.

Figure 4: Data-independent acquisition.

1.1.10 Gas Chromatography-MS Electron Ionisation

As described in section 1.1.4, EII is a ‘harsh’ ionisation technique typically used
prior to the GCMS analysis of samples. Contrasting the use of ESI in LCMS
experiments, analytes exposed to EII typically fragment prior to MS analysis and
therefore fragmentation does not occur in the collision zone of the MS instrument
as it does for both the data-dependent and data-independent acquisition methods
detailed previously. As such, the full-scan of a GCMS analysis consists of product
ions generated from the analyte (the parent molecule). In short, the MS
instrument does not “detect” a parent ion for the fragmentation spectra
generated using GCMS. Nevertheless, the product ions detected by the

 9

instrument originate from an ‘anonymous’ product analyte during the
fragmentation of the sample. The fragments themselves may still be grouped,
which in turn allows for identification of the parent analyte (figure 5).

Figure 5: Gas-Chromatography Electron Impact Ionisation

1.1.11 Data Analysis

Typically, an MS-metabolomics experiment generates vast quantities of data.
The processing of such datasets manually would be incredibly time-consuming
and error-prone. Therefore, specific software tools and algorithms are essential to
the fulfilling the aims of metabolomics – quantification and identification.
Initially, the raw data, output by the MS instrumentation must be converted
from the instrumentation providers proprietary file format into a format suitable
for either statistical analysis or compound identification.

The ProteoWizard Library (http://proteowizard.sourceforge.net/) is an open-
source collection of software tools, initiated in 2007, to allow for easy conversion
of vendor-specific MS file formats to open-source MS-specific XML formats. The
aim of the project was to ensure that researchers focus upon the development of
novel analytical approaches as opposed to developing file conversion software.
While several open-source file formats are available (such as mzData, JCAMP-
DX and ANDI-MS), one commonly adopted format is the mzXML which is
beginning to be superseded by the mzML format. Nevertheless the mzXML
format, an XML based format, has maintained popularity in both proteomics and
metabolomics MS studies. As two formats (mzXML and mzData) were
undesirable, attempts have been made to generate a unified format, referred to
as “mzML”, which aimed to incorporate the most desirable features of both
formats.

At present, many proteomics and metabolomics spectral reference libraries are
accessible via a web client and remain the primary source used in compound
identification from fragmentation spectra (Go, 2010). Theoretical hits, or

 10

candidate annotations, are returned to the user in a tabular fashion upon the
submission of fragmentation spectra in an appropriate format. The
fragmentation spectra generated from an experiment are compared to those
stored in the library of reference compounds and are returned with a measure of
confidence. The unknown metabolite is typically identified by the experimenter
from candidate reference spectra which best match that of the unknown
metabolite. Representative spectral libraries commonly used in metabolomics
include the resource library from the US National Institute of Science and
Technology (NIST), the Golm Metabolite Database (GMD), MassBank, METLIN
and the Madison Metabolomics Consortium Database (MMCD; Go, 2010).

Despite their widespread use in the field of metabolomics, many spectral
reference libraries lack suitable documentation, tutorials or help pages for users
(Go, 2010). In addition, the reference compounds contained in each spectral
reference library vary, and therefore the querying of numerous resources may be
required to identify appropriate candidate annotations for a given peak.
However, both the compound name and formula are unreliable for the purposes
of comparing hits between libraries. As such, attempts to standardize compound
identification has led to an abundance of distinct codes, such as the IUPAC
International Chemical Identifier (InChi) and the Chemical Abstracts Service
(CAS) Registry Number, which may serve as unique compound identifiers and
allow for comparison between reference libraries.

 11

Chapter 2 Requirements

2.1 Problem Definition and Scope

Metabolomics aims to quantify and identify metabolites of physiological
significance within biological systems. At present, the latter poses significant
challenges to researchers within the field, due to a lack of suitable software tools,
algorithms and the volume of data generated. The aim of the project was to
develop a web-based application capable of generating candidate annotations
using fragmentation spectra derived via distinct experimental protocols in order
to aid researchers in metabolite identification. As such, the application must
maintain the lineage of parent and product peaks, in order to perform queries of
spectral reference libraries. While the application should standalone, it is
intended to be deployed within an existing proprietary pipeline in order to
provide supporting evidence for future scientific communications and improve
the efficiency of existing services.

2.2 Client and Users

2.2.1 The Client

The application is to be developed for the Metabolomics Facility of Glasgow
Polyomics. Glasgow Polyomics is a research centre within the College of Medical,
Veterinary and Life Sciences of the University of Glasgow situated within the
Wolfson Wohl Cancer Research Centre at the Garscube Campus. The
Metabolomics Facility provides services including the untargeted analysis of
polar metabolites and verification of compound identities using reference
standards. In addition, the facility supports academic research staff with broad
research interests within the field of metabolomics. The primary point of contact
was Dr Karl Burgess, the Head of Metabolomics (hereafter referred to as the
client).

2.2.2 The Users

In addition to the primary point of contact, several members of staff were
available during requirements gathering and for the evaluation of prototypes. As
such, they imparted invaluable knowledge of both the domain and the needs of
the users. Of note were Yoann Gloaguen (Deputy Metabolomics Laboratory
Manager and primary developer of the existing pipeline), Dr Ronan Daly (Data
Analyst Manager), Dr Stefan Weidt (Mass Spectrometry Technologist) and Dr
Justin Van Der Hooft (Mass Spectrometry Technologist).

The intended users of the application are the research staff within the
Metabolomics Facility. The users will have an advanced and detailed knowledge
of the scientific domain and familiarity with domain terminology. However,
technical proficiency is likely to vary. Some members of the research staff having
a strong computational background within the field of Bioinformatics, whilst
those from a bench-top research background may have less familiarity.
Nevertheless, all users will be familiar with use in web applications due to
familiarity with the existing pipeline.

 12

2.3 Requirements Gathering

An overview of the problem domain and an introduction to the relevant
technologies were provided in a series of meetings with both Dr Simon Rogers
and Joe Wandy at the onset of the project. This provided the impetus for the
initial research to garner sufficient knowledge of the necessary terminology prior
to the client brief.

The system requirements were elaborated upon in significant detail during an
initial meeting with both the client and the primary developer of the existing
pipeline, Dr Karl Burgess and Yoann Gloaguen, respectively. Based upon the
client brief, the functional and non-functional requirements of the proposed
system were documented (Appendix B). In turn, the primary user (a Scientific
Researcher) was identified and a set of use cases were defined and prioritised
using the MoSCoW methodology to refine the scope of the project. However, the
priority and content of the use cases were reviewed incrementally following the
demonstration of prototypes to the client and in agreement with the project
supervisor.

2.4 Environment

2.4.1 Summary of PiMP Functionality

The existing analytical pipeline consists of a Django-based web application
named PiMP, which allows users to create, modify and share MS projects from
their web browser. In addition to sample files, the user can upload calibration
files such as blanks, quality control (QC) and standard files in either the .mzXML
or .csv file formats. Upon completion of the file upload, the user may specify
pairwise comparisons between experimental conditions for an analysis. Using R,
the pipeline calls scripts to extract peak data from the source files which are
displayed to the user in the form of an interactive TIC chromatogram. From
which, the user can view the mass spectrum at a given retention time by clicking
on the corresponding data point in the TIC chromatogram. Candidate
annotations are derived for the peaks identified in the mass spectrum. However,
the veracity of candidate annotations in the existing pipeline is limited. Peak
data cannot be stored in a hierarchical manner within the existing database
schema, thereby preventing the utilization of fragmentation data. Therefore,
PiMP supports the analysis of peak data obtained from the ‘full-scan’ of the
initial MS phase, but not MS/MS. As such, the inability of the application to
maintain the lineage of the parent and precursor peaks has limited its
extensibility to incorporate data generated by additional experimental protocols.

2.4.2 Hardware and Software Requirements of PiMP

The existing application, based in Django 1.7, runs on a standard (non-
specialized) server which runs a Linux-based operating system. The data for the
application is stored in a concurrency-supporting MySQL database. Within the
application, concurrency within the application is supported through the use of
django-celery (Celery Project, 2015), which performs the computationally
intensive tasks added to a queue via a RabbitMQ message broker (Pivotal, 2015).

 13

The extracting of peak data from the source files is performed, using R scripts, as
a background process to maintain the responsiveness of the web server. The R
scripts are dependent upon the following standard R packages: ‘RUnit’, ‘DBI’,
‘RCurl’, ‘RJSONIO’, ‘XLConnect’, ‘outliers’, ‘gptk’ and ‘doParallel’. In addition,
the R scripts require the biocLite R packages ‘impute’ and ‘limma’ and the
installation of the ‘mzmatch.R’ package. The ‘mzmatch.R’ package integrates
both mzMatch and XCMS, which are open-source software packages for the
analysis of metabolomics data sets. Instructions for the installation of
‘mzmatch.R’ and its dependencies can be found online (mzMatch, 2015).

The research staff have access to desktop computers, which predominantly run
on Windows operating systems and have access to an array of internet browsers
including Firefox, Google Chrome and Internet Explorer. However, the existing
PiMP application has been optimized for Internet Explorer and therefore its use
by the staff has been encouraged by the current developers.

2.5 Competing Systems

Existing software applications currently available for the analysis of MS datasets
include both proprietary and open-source systems. These have been developed by
commercial enterprises or academic institutions and are typically available as
either GUI-based desktop clients or web services. To allow for comparison with
the proposed application, examples of web-based systems for the generation of
candidate annotations will be discussed to emphasise their limitations and the
requirement for development of proposed application.

ALLocator is a freely-available web application for the quantification and
identification of metabolites (Kessler et al., 2014). The ALLocator web platform
supports the upload of MS raw data in the .mzXML, .mzML, and .CDF formats
(Kessler et al., 2014). Using the centWave LC-MS feature detection method of the
XCMS R package, a peak list is derived (Kessler et al., 2014). The application
provides two distinct tools for spectra deconvolution. Spectra deconvolution refers
to a process which aims to improve the resolution of the measured peaks,
through the removal of artifacts introduced by the instrumentation (Marchetti
and Mignerey, 1993). Using the fragmentation spectra, the application returns
candidate annotations from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) repository. The application has been developed specifically to support
the analysis of LCMS-ESI datasets, and therefore does not support the additional
methodologies requested by the client. Furthermore, spectral queries are limited
to a single repository, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
reference library, thereby diminishing the total number of available reference
spectra.

A similar limitation has been identified for the Competitive Fragmentation
Modeling for Metabolite Identification (CFM-ID) web server (Allen et al., 2014).
Services include the annotation of peaks for a known chemical structure and the
ranking of candidate structures for a spectrum (Allen et al., 2014). For the
identification of the compounds, the server allows for the querying against
uploaded user-specified structures (up to a maximum of 100), the Human
Metabolome Database (HMD) and the KEGG libraries (Allen et al., 2014). While
more comprehensive coverage of potential metabolites is achieved by the

 14

inclusion of HMD, the volume of reference spectra may still be insufficient to
fulfill the needs of the client.

In contrast to CFM-ID and ALLocator, the MetaboAnalyst web-service provides
support for both GC and LC-MS datasets (Xia and Wishart, 2011). A unique
feature is the inclusion of multivariate statistical analysis, which is desirable but
is not, as yet, available within PiMP (Xia and Wishart, 2011). In addition, the
service provides extensive tutorials to guide inexperienced users through the
pipeline. Although peak annotation and putative pathway identification are
provided, the predominant aim of the service is to support quantification. As such
the developers of MetaboAnalyst acknowledge the service has limited annotation
functionality, due to an inability to process raw spectral MS data files (Xia and
Wishart, 2011). Furthermore, the service requires partially analysed MS data as
input, such as a peak lists, therefore inexperienced users are required to perform
processing of the data in advance.

2.6 Existing Procedures

At present, the retrieval of candidate annotations is dependent upon the
experimental protocol. For LCMS, PiMP can be used to retrieve candidate
annotations based on the “full scan” data of MS1 alone. However, it is the
veracity of annotations retrieved by PiMP the client aims to improve with the
utilization of fragmentation spectra. Alternatively, experimenters may format
the fragmentation spectra of an analysis appropriately, and directly query an
online or locally installed spectral reference library. However, this process is
labor intensive, error-prone and requires knowledge of the user interface of each
distinct library to be queried which may be problematic for inexperienced
members of staff.

2.7 Summary of Functional Requirements

The application must allow authorized users, to define a fragmentation
experiment and experimental samples. In turn, the application must allow for
user to upload MS data files to an experimental sample. The experimental
samples should be grouped by the application within distinct experimental
conditions defined by the user. From the uploaded sample files, the application
must allow the user to extract peak data (including the m/z, retention time and
intensity), which must be stored in the database in a hierarchical manner. The
application must display fragmentation spectra to the user in a graphical format.
The application must allow authorized users to retrieve or generate candidate
annotations for the peaks extracted from the source file. The application must
store the candidate annotations, data for the corresponding chemical compounds
and a measure of ‘hit’ confidence. Furthermore, analysis performed in the PiMP
application must generate, retrieve and display candidate annotations from the
application for those fragmentation data files uploaded to the PiMP application.

2.8 Summary of Non-Functional Requirements

The application must be developed using the Django framework (version 1.7) and
be compatible with the existing server and database management system
(MySQL) implemented by the client. The application must support the mzXML

 15

file format, but could also support the mzML file format anticipating future
needs. Due to the aspirations of the client to develop the application further, the
application must be capable of future enhancement. As a Greenfield project,
prototypes of the application should be demonstrated to the client at regular
intervals. The application is to be delivered to the client via a local Git repository,
no later than the 07/08/2015.

2.9 Use Case Summary

During the requirements gathering process, a single user was identified. A
scientific researcher will have extensive domain knowledge. The following use
cases were attributed to the scientific researcher whose motivation is to identify
the metabolites detected within an MS analysis of a biological sample. For
additional detail, descriptions of the ‘key’ use cases are provided in Appendix B.

A Scientific Researcher MUST have the ability to…

 Create and modify a fragmentation experiment
 Create and modify the experimental samples within an experiment
 Upload MS data files to an experimental sample
 Derive peak data from uploaded sample files
 Generate or retrieve candidate annotations for MS peaks
 View fragmentation spectra
 Generate fragmentation spectra from data files uploaded to the PiMP

application.
 Generate and view candidate annotations for peaks derived from data

files uploaded to the PiMP application.

A Scientific Researcher SHOULD have the ability to…

 Group experimental samples by experimental conditions.
 Specify a preferred candidate annotation for a peak.
 Share a fragmentation experiment with other authenticated users.

A Scientific Researcher COULD have the ability to…

 View the chemical structure of the compound associated with a candidate
annotation.

 Visually compare the measured fragmentation spectra, with that stored in
a spectral reference library.

 Consolidate peak data derived from several experimental replicate data
files.

 Extract and consolidate peak data from distinct MS1 and MS/MS data
files.

 Specify a method for the extraction of peak data from source files.

A Scientific Researcher WOULD have the ability to…

 Export peak data and candidate annotations.

 16

Chapter 3 Design

3.1 Design Approach

Upon completion of the requirements gathering and documentation phase of the
project, an evaluation of risks and uncertainties was performed to identify
potential pitfalls (section 3.2). Throughout the design process, the Fragment
Annotation Kit (FrAnK) application was designed based upon the identified use
cases (section 2.9). However, the iterative approach adopted during development
necessitated the evolution of designs in response to feedback garnered by the
demonstration of prototypes to both the client and users. To ensure integration
with PiMP and compatibility with the existing infrastructure, the N-tier
architecture of the current pipeline was maintained and therefore was not re-
evaluated.

The design process initiated with the creation of an entity-relationship diagram
(section 3.3). The aim was to model the data to be stored and provide a
foundation for the creation of an initial database schema. In addition, this
provided clarity which helped overcome an initial lack of domain knowledge at
the onset of the project. Using the entity-relationship diagram as a guide, an
initial database schema, detailing the format of the requisite fields, was
generated (section 3.4). The design phase then transitioned to focus upon the site-
and URL-mapping, detailing the user navigation through the application (section
3.5). From which, wireframes were designed to consider how the information
stored could be presented to the user in a clear and logical manner (section 3.6).

3.2 Risks and Uncertainties

Upon a review of the PiMP application, it was identified that numerous distinct
technologies had been implemented within the existing pipeline which I, as the
developer, had little to no familiarity with. While I had modest experience using
the Django framework, I was unfamiliar with Celery and the programming
language R. Furthermore, the integration of these technologies posed a
significant risk to the development of FrAnK. In addition, the querying of the
spectral reference libraries represented a risk due to the variety of the
technologies (varying in both the format and data content of both inputs and
outputs) implemented for batch processing of fragmentation spectra and the
clarity of the associated documentation.

The project also presented a significant requirements risk, due to a lack of
advanced domain knowledge. However, the use of use case and entity-
relationship modelling, study of relevant literature, demonstration of prototypes
and regular communication with the client, users and project supervisor were
used to diminish the impact of this risk upon development.

3.3 Entity-Relationship Modelling

To gain familiarity with the domain and provide clarity to the design of the
database schema, an entity-relationship diagram for FrAnK was prepared (figure

 17

6). A review of the PiMP database schema provided a starting point and was
invaluable in the identification of entities and their relationships. In addition,
the process of review provided insight into the analytical processes of the existing
pipeline, its limitations and points of potential integration for FrAnK.

Figure 6: Condensed Entity-Relationship Model

The researcher performs experiments which consist of the comparison between
experimental conditions, which in turn may be comprised of several biological
samples. The analysis of a biological sample using MS may generate numerous
data files, depending upon the experimental protocol adopted. Each data file
contains numerous peaks measured by the MS instrumentation. The
experimenter performs an analysis of the experiment using an ‘annotation tool’,
which generates candidate annotations for each peak, by querying of the
fragmentation spectra in a spectral reference library. Each candidate annotation,
labels each peak with a putative chemical compound identification. A chemical
compound may originate from one or many distinct spectral reference libraries.
Finally, each experiment in FrAnK may be associated with an experiment in

 18

PiMP. This would allow for integration between both the PiMP and FrAnK
applications.

While the entity-relationship diagram provided the foundation for an initial
database schema (Appendix C), several limitations were identified which were
addressed during the development process.

3.4 Database Design

As alluded to in the previous section, the mapping of the entity-relationship
model to a database schema (Appendix C) unveiled several initial assumptions
which would otherwise diminish extensibility.

While an experiment is generated by a single researcher, an experiment may be
of interest to several of the research staff. As such, an experiment may have
collaborators who wish to perform administrative tasks on the experiment (such
as upload additional data files or include additional experimental conditions) or
perform additional analysis of the fragmentation spectra. Therefore, a many-to-
many relationship was added to the experiment table to facilitate the addition of
collaborators to an experiment in subsequent iterations of FrAnK (figure 7).

The entity-relationship model identified that peak data is derived from the MS
data files. While this is indeed the case, the entity-relationship model failed to
reflect that there is not a single, but numerous distinct methods for the
extraction of peak data from a source file. This may be due to the varying pick-
picking criteria, filtering or the use of distinct software packages to derive the
peak data. As such, the content of the peak data generated from the same source
files may vary depending upon the algorithm implemented. To resolve this issue,
the database design introduced the concept of a ‘Fragmentation Set’, which can
be considered as the grouping of the peaks extracted from the source files of a
single experiment (figure 7). This added greater extensibility to the application,
as a single source of MS data may generate numerous distinct fragmentation sets
for analysis.

An additional modification was the inclusion of an ‘Annotation Query’, which is
analogous to the ‘Annotation Tool’ identified in the entity-relationship model.
The ‘Annotation Query’ is a user-generated request for the annotation of the
peaks contained within a single ‘Fragmentation Set’ (figure 7). As such, a query
is now associated with a single ‘Fragmentation Set’ as opposed to the
‘Experiment’ itself (figure 7). An ‘Annotation Query’ generates candidate
annotations through the use of an ‘Annotation Tool’ (formerly referred to as the
“Spectral Reference Library” in the original model), passing parameters specific
to the query. The inclusion of a many-to-many table (‘Annotation Query
Hierarchy’) will allow for the development of annotation tools which take the
candidate annotations retrieved from one or many parent ‘Annotation Query’
instances to derive new candidate annotations, thereby sub-querying an existing
‘Annotation Query’ (figure 7). When the entity-relationship model was initially
conceived, it was not considered that such ‘Annotation Tools’ would be developed.

 19

Figure 7: FrAnK Database Schema

This oversite necessitated the renaming of the ‘Spectral Reference Library’ of
entity-relationship model to the generic ‘Annotation Tool’ (figure 7). An
‘Annotation Tool’ is considered as any software, algorithm or web service which
may be queried for the retrieval or generation of novel candidate annotations.
Previously, it was assumed that the source of novel candidate annotations in the
FrAnK application would exclusively be through the querying of fragmentation
spectra to a spectral reference library. However, this unnecessarily constrains
the application, and limits the development of novel approaches to metabolite
identification. While the querying of spectral reference libraries is appropriate to
all experimental protocols, future ‘Annotation Tools’ may be developed for a
specific MS methodology.

In order to facilitate the limiting of an ‘Annotation Tool’ to a selective MS
methodology, an ‘Experimental Protocol’ table was introduced into the database
with a many-to-many relationship to the ‘Annotation Tool’ table (the ‘Annotation
Tool Protocol’; figure 7). As such, the experimental protocols and the tools

 20

appropriate to the methodology could be designated in a population script for the
application.

Finally, the entity-relationship model failed to acknowledge the selection of a
preferred candidate annotation for a given peak by an authorized user. As such,
the Peak table was modified to include a foreign key reference to a single
candidate annotation (figure 7). In addition, the user, the justification and time
for the selection of the annotation would be stored. During development, it was
considered that the inclusion of these additional fields may form a transitive
dependency within the database schema. Alternative approaches were
considered, such as the inclusion of a ‘Preferred’ boolean in the candidate
annotation table as each candidate annotation is only associated with a single
Peak. However, the relationship between the Peak and its preferred annotation
is a 1 to 1 relationship, and as such it was decided that the preferred candidate
annotation was an attribute of the Peak analogous to the confirmation of its
identification.

3.5 Site Map and URL Mapping

Based on the database schema, an ideal site-map was designed for the FrAnK
application (Appendix C). However, the design was altered during development
due to the time-constraints of development. The index page is accessed via the
navigation bar of the PiMP application. From which the user, may navigate to
pages listing their existing experiments (‘My Experiments’) and fragmentation
sets (‘My Fragmentation Sets’). In subsequent iterations of FrAnK the user may
access a ‘Notifications’ page, detailing changes made to their existing
experiments by collaborators and the completion of background processes.
Furthermore, the application may include a ‘Compound Library’, which would
allow for the user to browse the compound data stored by the application’s
database.

From the ‘My Experiments’ page, the user may select or create an experiment.
The ‘Experiment’ page displays the details of the experiment, including any
associated experimental conditions and fragmentation sets. In the original design
of the site-map, the creation of experimental conditions, samples, fragmentation
sets and the drag-and-drop upload of sample files would be accessible from
within this page. However, implementation was not achieved in the time
available. At present, experimental conditions can be selected or created from the
‘Experiment’ page. Selection of an experimental condition navigates to an
‘Experimental Condition’ page which allows for the creation of samples and the
upload of data files. Fragmentation sets can be selected or created from the
‘Experiment’ page, once a data file has been uploaded.

The ‘Fragmentation Set’ page, also accessible via the ‘My Fragmentation Sets’
page, displays the MS1 peaks derived from the data files of the associated
experiment. The user may create a new ‘Annotation Query’, in order to generate
new candidate annotations for the fragmentation set, upon selection of an
‘Annotation Tool’ from a drop-down menu provided at the top of the page. Each
MS1 peak displayed on the ‘Fragmentation Set’ page serves as a link to a ‘Peak’
page.

 21

The ‘Peak’ page provides both a graphical and tabular display of the
fragmentation spectra associated with the peak. The table of product peaks
provides links to each product peak’s ‘Peak’ page, thereby allowing for navigation
through n levels of MS/MS data. Furthermore, the ‘Peak’ page provides details
for the candidate annotations associated with the peak. At present, the candidate
annotation table provides a link to select a candidate annotation as the
‘preferred’ annotation for the peak. However, it is intended that the candidate
annotations will serve as links, providing access to a compound page providing
additional information.

The URL Mapping for FrAnK is provided in Appendix C. The URL was designed
to be as intuitive as possible to improve usability. In addition, the slug for a
database entry was derived from the user-specified name where possible (e.g. the
title of an experiment or name of a fragmentation set). However, the peaks and
candidate annotations do not have intrinsic names. As such, unique identifiers
for these database entries were provided as an alternative.

3.6 Wireframes

During the initial requirements gathering phase, the client stated that the back-
end functionality, as opposed to the aesthetics, of the application should be
prioritised at this juncture. Nevertheless, wireframes were designed for key
pages of the application, namely the ‘Experiment’ page, the ‘Fragmentation Set’
page and the ‘Peak’ page (Appendix C). While the wireframes are representative
of the data stored by the FrAnK application, maintaining a uniform style of
presentation to that of the PiMP application was considered a priority. The PiMP
application has been successfully implemented by the client, and as such the
users are already familiar with the existing layout and navigation of the
application. Therefore it was considered that maintaining a similar theme to the
PiMP application may increase user adoption and acceptance, reducing the
duration of time required by the users familiarise themselves with the novel
functionality.

 22

Chapter 4 Implementation

4.1 Development Process Overview

As a Greenfield project and due to the availability of the client for the evaluation
of prototypes an iterative approach to development was adopted. Intended to be
developed further upon delivery, it was considered that the requirements for the
application may require reassessment or reprioritising dependent upon the client
feedback to prototypes. Therefore, the development of the application can be
considered as two distinct iterations.

FrAnK was developed on an HP 15 Laptop, consisting of an Intel Core i3-45005U
processor and 7.7 GB RAM, running the Ubuntu 15.04 operating system. PiMP,
including the dependencies described in section 2.4.2, was installed. To provide
clarity for future developers, additional packages were installed such as mysql-
server 5.6.25, r-base-core 3.1.2-2, wine 1.6.1:1.6.2, rabbitmq-server 3.2.4-1 and
oracle-java8 in addition to those stated in the ‘requirements_frank.txt’ document
of the application.

The initial iteration consisted of the development of a rudimentary Django
application to simply enable a user to set-up of an experiment and upload MS
source files. From this juncture, the implementation transitioned to the
extraction of peak data from the uploaded mzXML files. Initially, this consisted
of data generated from a single experimental protocol. LC-MS/MS data-
dependent acquisition (LC-MS/MS-DDA) was selected due to the frequency with
which the protocol is utilised by the researchers of the Metabolomics facility. In
order to achieve implementation, the process of peak extraction not only required
the interfacing with R, but is performed as a background process using Celery.
Upon implementation of LC-MS/MS-DDA peak extraction, the project
transitioned to the retrieval of candidate annotations from a spectral reference
library. Following an evaluation of the available documentation, the MassBank
Web API was selected from those of interest to the client. In part, this was due to
the clarity of the API documentation. Nevertheless, as a public library MassBank
provides an extensive compound library which would be of value to the users.
Implementation of the MassBank batch service was achieved through the
packaging of query spectra within a SOAP request. The culmination of the initial
phase of development was a prototype application consisting of the primary
functionality, namely batch searching of fragmentation spectra, expected of the
application. At which point, the prototype of the application was demonstrated to
the client and a selection of potential users.

Following the evaluation of the initial prototype, the client requested the
implementation of an additional experimental protocol and spectral reference
library. As such, the second phase of implementation consisted of incorporating
the extraction of peak data generated by the GCMS Electron Impact Ionisation
(GCMS-EII) protocol. As before, this was implemented via an interface with R.
However, to generate a peak list an R script was created to perform peak
extraction and grouping. In addition, the spectral reference libraries of NIST14
were provided by the client for implementation. However, the querying of the
libraries is performed by the MS PepSearch software developed for Windows. As

 23

the client’s server runs a Linux-like operating system, Wine was used to run the
MS PepSearch software. As before, the completion of the second phase
culminated in the demonstration of a prototype to the client. Upon which, it was
requested that FrAnK be integrated into the existing pipeline in a manner which
would allow for retrieval of candidate annotations from within PiMP. However,
integration could not be achieved within the allotted development time.

4.2 Application Overview

For those unfamiliar, Django is a web application framework based in Python
which implements a Model-View-Template (MVT) design pattern. The PiMP
project folder comprises various applications. Each application typically consists
of a models.py, views.py, admin.py, urls.py, forms.py and tests.py files and the
framework provides compatibility with various database management systems
such as MySQL, PostgreSQL and SQLite. For those unfamiliar with the Django
framework, the online documentation (Django Software Foundation, 2015) and
walkthrough tutorials (Azzopardi and Maxwell, 2013) provide an excellent source
of introductory material.

The FrAnK application, encapsulated with a distinct folder of the PiMP project,
contains each of the aforementioned python files. The models.py file contains
python classes which typically map to a single database table, therefore
providing a python representation of the database schema (referred to as the
Object-Relational Model). These models are registered in the admin.py file of the
application, to allow for the site administrators to access the data stored in the
database in a direct manner via the admin interface provided by the Django
framework. In addition, the urls.py file contains a tuple of regular expressions
which serve to map incoming URLs to an appropriate view. A view, declared in
the views.py file, provides the logic associated with each page of the application.
Each view serves to return the appropriate html template, including necessary
forms and object-relational model instances in response to either a GET or POST
request.

In addition to the standard files of a Django application, the FrAnK application
includes the tasks.py, annotationTools.py and peakFactories.py files and the
‘Frank_R’, ‘NISTQueryFiles’ and ‘TestingFiles’ folders. However, the contents
and functional significance of these additional components will be discussed in
detail in the subsequent sections. To provide context, screen dumps of selected
pages have been included within Appendix D.

4.3 LC-MS Data-Dependent Acquisition (MS/MS)

Relevant Use Cases: Derive peak data from uploaded sample files, View
fragmentation spectra.

Upon completion of file upload, the ‘Create Fragmentation Set’ button is
available to the user on the ‘Experiment’ page. Clicking the link renders a simple
form, allowing the user to enter a unique name for the new fragmentation set.
Submission of the form generates a POST request, which is directed via the
url.py file to the create_fragmentation_set view. The view validates and processes
the form, generating a corresponding FragmentationSet object. At this juncture,
the create_fragmentation_set view performs an additional validation step to

 24

ensure that at least one sample file has been uploaded to the experiment prior to
the commencement of peak data extraction. If valid, the new FragmentationSet
is committed to the database.

Following creation of the Fragmentation Set object, the method
input_peak_list_to_database is called from within the view. This method
determines the experimental protocol of the experiment, from which the peak
data of the Fragmentation Set is to be derived, and ensures peak data extraction
is performed in a manner appropriate to the protocol. The duration of the process
of peak extraction can vary depending upon the volume of data to be processed.
Therefore to prevent the application from becoming unresponsive, Celery was
implemented to perform processes asynchronously. Celery is based on distributed
message passing, which allows for the asynchronous processing of queued tasks
by ‘workers’ (Celery Project, 2015). Upon the identification of the LC-MS/MS-
DDA experimental protocol, the input_peak_list_to_database adds the
msn_generate_peak_list task (located in the tasks.py file of the application) onto
the queue for asynchronous processing.

As the name suggests, msn_generate_peak_list is the method responsible for the
extraction of the peak data from the source files. The process of extracting peak
data is complex. As such, the staff of the Metabolomics facility utilise existing R
scripts to derive peak data. In order to generate a list of peaks from the mzXML
files, the package rpy2 was used to provide a low-level interface from Python to
R. The ‘frankMSnPeakMatrix.R’ script is sourced from the ‘Frank_R’ folder of the
application and run by passing the root directory of the experiment.

The ‘frankMSnPeakMatrix.R’ script (provided by Joe Wandy, modestly adapted),
extracts the peaks from each source file using the xcmsSet function of the XCMS
package. The lineage of each product peak is then derived using the
‘frankXcmsSetFragments.R’ script (provided by Tony Lowson). The candidate
MSN scans for each precursor peak are identified, and grouped. The selection
criteria of which scan the product peaks are to be derived from can vary.
However, at present the default is to derive the product peaks of the parent from
the scan which corresponds to the highest precursor peak intensity. Once the
lineage of the peaks is determined, the R subprocess returns a tabular list of the
peaks which includes their msn level and any precursor peak. The ‘peak list’ is
returned to the FrAnK application in the form of an rpy2.robjects data.frame.

Processing of the ‘peak list’ is performed by the MSNPeakBuilder class (located
in peakFactories.py) which validates the rpy2 dataframe upon construction. The
populate_database_peaks method of the class is called by the
msn_generate_peak_list task to initiate the conversion of the dataframe peak list
to Peak objects and their subsequent addition to the database. The algorithm for
the population of peaks from the peak list is detailed in figure 8.

The algorithm is designed to ensure that only those peaks with an associated
fragmentation spectrum are populated into the database. This ensures the
redundancy of storing peaks with no fragmentation spectrum is prevented as
these peaks cannot be queried against a spectral reference library to retrieve
candidate annotations. Although recursive algorithms are typically resource
intensive, the client specified in the initial brief that the maximum number of
MSN levels typically ranges from 3-5 levels. As such, it is not envisaged that the
implementation of a recursive algorithm would be deleterious to the performance

 25

of the application. In addition, a dictionary was utilised to implement the
algorithm. As the peak list is created in R, the ‘peak ID’ assigned to each peak in
the dataframe has no relevance in the FrAnK application. As such, the creation
of each peak includes its addition to a ‘created peaks’ dictionary, storing the R
peak ID as the key and the primary key ID of the corresponding object in the
application’s database as the value. Therefore, the frequency of database look-up
is diminished and the efficiency of the algorithm is improved.

Figure 8: Population of LCMS-MS/MS-DDA peak list algorithm

Upon completion of peak data extraction, the status of the Fragmentation Set
object is changed from ‘Processing’ to ‘Completed Successfully’ allowing the user
can access the fragmentation set page of the application. This page displays the
MS1 peaks derived from the source files. Selection of an MS1 peak, navigates the
user to the peak page which displays the product peaks which comprise the
fragmentation spectra of the precursor.

4.4 GCMS Electron Impact Ionisation

Relevant Use Cases: Derive peak data from uploaded sample files, View
fragmentation spectra.

As previously discussed in section 4.4, the creation of a fragmentation set by the
user initiates the calling of the method input_peak_list_to_database by the
create_fragmentation_set view. In contrast to the identification of LC-MS/MS-
DDA, the identification of the GCMS-EII experimental protocol causes the
initiation of the gcms_generate_peak_list task. The extraction of peak data from
source files generated from the GCMS-EII experimental protocol follows a
similar pattern to that of the LC-MS/MS-DDA described previously. However, as
discussed in section 1.1.10, the analysis of GCMS fragmentation spectra is
confounded by the absence of a measurable parent peak due to the harsh nature
of electron impact ionisation. As such, a distinct R script was required to group
the derived peaks into distinct fragmentation spectra corresponding to the parent
analyte.

 26

Figure 9: GCMS-EII Peak Population Algorithm

Using rpy2, the gcms_generate_peak_list task sources the
‘gcmsGeneratePeakList.R’ script located in the ‘Frank_R’ folder of the
application. The ‘gcmsGeneratePeakList.R’ script is an adaptation of an existing
R script provided by the client. The adaptation was required as the existing R
script performs the grouping of GCMS-EII data across distinct source files,
whereas each input file should be considered in isolation within FrAnK. In a
similar manner to the ‘frankMSnPeakMatrix.R’ script implemented in the
analysis of LCMS-MS/MS-DDA, the ‘gcmsGeneratePeakList.R’ uses the xcmsSet
function of the XCMS package to derive peaks from the mzXML files. From
which a PeakML file is written from the XCMS set. While the mzML and mzXML
file formats store raw MS data, the PeakML file is an XML file format for the
storage of extracted features (Scheltema et al., 2011). The peaks within the
PeakML file are then filtered to remove noise, and those peaks whose intensity is
below a set threshold. The mzMatch ipeak.sort.RelatedPeaks method is then used
to group peaks to establish their relation. Finally, the peak list is output to a text
file and the R script returns a dataframe to the FrAnK application consisting of
two character vectors corresponding to the name of the input file and text output
file of the R script.

 27

Upon the returning of an R dataframe, the gcms_generate_peak_list task
instantiates a GCMSPeakBuilder object which is passed both the R dataframe
(represented in python as an rpy2 data.frame object) and the primary key of the
fragmentation set to be populated. The constructor for the GCMSPeakBuilder
performs validation of the R dataframe and the fragmentation set id. The
gcms_generate_peak_list task then calls the populate_database_peaks method of
the GCMSPeakBuilder instance to begin the population of the peak list into the
database. A summary of the algorithm used by the populate_database_peaks
method of the GCMSPeakBuilder is provided in figure 9.

In order to circumvent the challenge associated with the lack of a detected
precursor peak, a pseudo-MS1 peak was introduced to maintain the lineage of
parent and product ions. In each relation of peaks, the pseudo-MS1 peak
corresponds to the duplication of the product ion which is most abundant. While
this may seem redundant, the inclusion of the pseudo-MS1 peak is necessary to
indicate that the remaining peaks in the relation are product ions despite the
absence of a measurable precursor. Therefore, why not simply ‘promote’ the most
abundant peak to the MS1 level? While this was considered, the pseudo-MS1
peak remains a component of the fragmentation spectrum and therefore must
remain in the MS2 level for identification when querying a spectral reference
library.

Although the algorithm successfully populates the GCMS-EII peaks into the
database, subsequent iterations of the application should look to refactor the
algorithm’s implementation. Retrospectively, there is redundancy introduced by
the failure to identify the most abundant peak during the grouping of peaks into
a dictionary from the R text output file. At present, the grouped_peaks dictionary
stores a list of the product peaks for each grouping of peaks (identified by the
‘relation id’ key). However, the resolution to this inefficiency would be to store a
dictionary as opposed to a list. As such, each relation identified would store a list
of the peaks in one key:value pair and the most abundant peak in a second
key:value pair. This would remove the unnecessary additional iteration of all the
peaks in the relation to identify the most abundant peak in the
add_peaks_to_database component of the algorithm. Therefore, the efficiency of
the implementation could be improved upon.

In a similar manner to process described in section 4.4, the completion of the
peak extraction process is relayed to the user via the update of the
Fragmentation Set object status to ‘Completed Successfully’. This allows for the
fragmentation set page to become accessible to the user and allows for inspection
of the peak data.

4.5 MassBank Web-API

Relevant Use Cases: Generate or retrieve candidate annotations for MS peaks.

From the fragmentation set page of the application, the user may select an
AnnotationTool for the retrieval of candidate annotations for the peaks
associated with the FragmentationSet object. Upon clicking of the ‘Create New
Annotation Query’ button, a POST request is submitted to the fragmentation_set
view of the application. Upon validation of the form, the name of the annotation
tool selected by the user is extracted from the form. As such, the user is

 28

navigated to the define annotation query page of the application. Dependent
upon the annotation tool selected and the experimental protocol associated with
the experiment from which the FragmentationSet object was derived, a form
containing the relevant fields for the tool and choices appropriate to the protocol
are displayed to the user. Having reviewed the documentation and tutorials
available for the batch querying services provided by numerous spectral
reference libraries, it was apparent that the standard of documentation and help
available to those novice users was generally poor. As such, it was indented that
the tailoring of potential search parameters and choices in FrAnK would simplify
the retrieval of candidate annotations for novice users.

Upon submission of the parameters for the annotation query, a POST request to
the define_annotation_query view of the application derives the annotation tool
from a slug contained in the request. Therefore, the form specific to the
annotation tool is retrieved from the POST request. In order to store the
parameters of the search to be performed, the set_annotation_query_parameters
method located in views.py is called. Using the form to establish which
AnnotationTool has been specified, and consequently which parameters should
be stored, the method extracts the user’s input and populates the
annotation_tool_params field of the new AnnotationQuery object in the form of a
serialised dictionary. The populated AnnotationQuery object is returned to the
define_annotation_query view. Subsequently, the method generate_annotations is
called, which determines the AnnotationTool to be queried from the
AnnotationQuery object and calls the ‘massbank_batch_search’ task (tasks.py) if
the user has selected to query the MassBank Web-API. As such, the retrieval of
candidate annotations for the peaks associated with the FragmentationSet object
is performed as a background process using Celery.

The massbank_batch_search task instantiates a MassBankQueryTool (located in
annotationTools.py) passing the IDs of both the FragmentationSet and
AnnotationQuery objects to be processed for validation. Upon which, the method
get_mass_bank_annotations() method of the instance is called by the
massbank_batch_search task. The retrieval of candidate annotations from
MassBank can be considered as three distinct processes. Initially the
fragmentation spectra to be queried are formatted and then sent to the
MassBank API in the form of a Simple Object Access Protocol (SOAP) request.
Upon retrieval of the results from the API, the compounds and candidate
annotations are populated into the database. A summary for the creation of the
query spectra is provided in figure 10.

Although the MassBank Web-API allows for the submission of both positive and
negative spectra simultaneously, it was decided that to improve the veracity of
candidate annotations the spectra should be send as two distinct queries to the
API. To facilitate the sending of SOAP requests to the MassBank Web API, the
Suds web services client for python was implemented. The serialised search
parameters are extracted from the AnnotationQuery object and are included
within a dictionary containing the query spectra for submission to the API via
the Suds client. The client will intermittently query the MassBank Web API to
receive updates of the status of the submitted task. Upon completion, the results
are returned by a final query to the Web API.

 29

Figure 10: Generate Query Algorithm for Massbank Batch Search

The candidate annotations are returned to the application in the form of a list,
containing a dictionary corresponding to each of the submitted spectra. Each
spectrum is related back to its associated peak by reference to the unique peak
slug included in the query. As such, the compound and annotation data are
parsed from the returned results and are populated to the database. Finally, the
status of the AnnotationQuery object is updated to relay the completion of the
process to the user. For each AnnotationQuery object submitted by the user, the
returned candidate annotations are displayed in a tabular format via the peak
page of the application.

4.6 NIST14

Relevant Use Cases: Generate or retrieve candidate annotations for MS peaks.

Upon the submission and processing of the NISTQueryForm and the generation
a new AnnotationQuery object, the generate_annotations method located in
views.py will call the nist_batch_search task. In a similar manner to the
MassBankQueryTool, the instantiation of the NISTQueryTool validates the input
of the ID of the AnnotationQuery object to be performed. The nist_batch_search
task then calls the get_nist_annotations method of the NISTQueryTool object to
begin the retrieve candidate annotations.

The NIST14 Mass Spectral Library is accessible locally, via the MS PepSearch
software developed for Windows. MS PepSearch, queries a peak list provided
within an MSP file format via command line arguments, against the various
reference libraries of NIST14. However this posed a significant challenge to its
implementation, as a requirement of FrAnK was to maintain compatibility with
the existing hardware and software of the client’s pipeline to ensure integration
(see section 2.8). As the existing server runs on a Linux-like operating system, the
compatibility layer software application Wine was implemented to allow for to be
performed via the MS PepSearch program.

 30

The initial step of the get_nist_annotations method of the NISTQueryTool object
is to write a temporary MSP file to the ‘NISTQueryFiles’ folder of the application.
The MSP file contains the individual fragmentation spectra associated with the
FragmentationSet object to be annotated (figure 11). While similar to the
algorithm used to format the queries sent to the MassBank API (figure 10), the
algorithm is distinct due to the determination of whether the precursor peak’s
m/z is to be incorporated into the query. Its inclusion is unnecessary for queries
to the MassBank Web API but is important when querying NIST14 libraries. The
local installation of NIST14 comprises five distinct spectral reference libraries
which correspond to distinct experimental protocols. The ‘mainlib’ corresponds to
fragmentation spectra derived from GCMS-EII experiments whereas both the
‘nist_msms’ and ‘nist_msms2’ libraries consist of spectra obtained from
LCMS/MS experiments. This distinction is highly relevant to the retrieval of
candidate annotations from the ‘mainlib’, as the process of extraction of peak
data from the GCMS source files generates a pseudo MS1 peak in the application
(see section 4.4). As such, erroneous candidate annotations would be retrieved
from the ‘mainlib’ of NIST14 were the precursor m/z included in any query
submitted.

Figure 11: Generate Query Algorithm for NIST14 Batch Search

Upon completion of the writing of fragmentation spectra to the temporary MSP
file, the get_nist_annotations method proceeds to formatting the call to MS
PepSearch. This ensures the retrieval of candidate annotations are performed in
accordance with the search parameters provided by the user via the
NISTQueryForm. The user-specified parameters include the maximum number
of hits to be retrieved for each spectrum, the search type and the reference
libraries to be queried. In addition, the call also includes parameters which are
associated with the NIST AnnotationTool object itself. Namely, the location of
the MS PepSearch program and the NIST libraries within the directories
reserved for the Wine program are derived from the AnnotationTool instance
itself in the form of a serialized dictionary. The default parameters of the NIST
AnnotationTool object can be altered via the population script populate_pimp.py.

 31

The NIST14 libraries are then queried through the subprocess call to Wine,
which outputs the candidate annotations as an additional temporary file within
the ‘NISTQueryFiles’ folder. The output file is then read by the FrAnK
application. The candidate annotations are then parsed, and populated into the
database. Finally, the temporary files stored in the ‘NISTQueryFiles’ folder are
removed and the status of the Annotation Query object is set to ‘Completed
Successfully’ to indicate to the user the completion of the task.

4.7 Testing Strategy

Within the tests.py file of the application, tests have been provided for the
FrAnK application. A summary of the end-to-end test cases implemented are
shown in Appendix D. While complete unit testing was desirable, this could not
be achieved in the time provided. As such, the testing strategy implemented was
to prioritise end-to-end tests to encompass the testing of the views, tasks and
models. Each of the views within the application has been tested to ensure the
page renders successfully and those which include forms have been tested with
varying inputs.

One of the challenges of testing the FrAnK application was the use of Celery. In
order to include the celery-performed tasks within the end-to-end testing, celery
provides a ‘TEST-RUNNER’ variable within the ‘settings_dev.py’ file of the
project folder. This allows for the typically asynchronous processes contained
within the ‘tasks.py’ file of the application to be performed in a synchronous
manner during testing. Therefore, the end-to-end tests encompass both the
testing of the views and background processes. However, it is acknowledged that
this is not the ideal practice. The ‘TestingFiles’ folder of the application contains
sample GCMS and LCMS data files which are uploaded during the running of
tests. It should be noted that the duration of time required to perform the tests
provided may be extensive due to the volume of data contained within these files.
As such, these tests have been commented out to allow for rapid testing.
Nevertheless, this was a preferred approach as it was considered that testing
aught to be performed using realistic datasets. As such, the sample mzXML files
provided within the ‘TestingFiles’ folder are representative MS datasets which
were provided by the client.

As shown in Appendix D, the end-to-end testing demonstrates the functionality
of the application. However, additional tests have been included in the ‘tests.py’
file and additional tests could be implemented to improve the coverage of the
code. Notably, two tests were not passed by the current implementation. The
first, which was to test the MassBank Web API, could not be performed due to
the availability of the service. However, the second failure was derived from the
failure of the specify_preferred_annotation view. Upon failure of the test, this
feature was investigated and appeared to be working as anticipated. As such, the
failure is likely due to the Test case as opposed to the implementation.

 32

Chapter 5 Evaluation

5.1.1 Client Evaluation

The evaluation of the FrAnK application was performed alongside the client, Dr
Karl Burgess, head of the Metabolomics Facility at Glasgow Polyomics. The
evaluation consisted of two distinct elements. Initially the client was asked to
perform a series of simple tasks to demonstrate the product and to garner
feedback from the perspective of the user. In addition, the client was asked to a
series of open-ended questions to garner further insight into the application, the
development process and the client’s view of the future development of the
application. Further details of the format of the client evaluation are provided in
Appendix E.

When asked for a general impression of the development of the FrAnK
application, the client stated that the development had gone fantastically well
that the process of evaluating prototypes at regular intervals was extremely
beneficial. Subsequently, when asked if the existing functionality of FrAnK
would be of value to the research staff of the facility the client confirmed that this
would indeed be the case. Elaborating further, the client explained that
researchers within the field of metabolomics utilise fragmentation support on a
frequent basis. As such, the client anticipates that within approximately 6
months it will be considered unacceptable to publish work without supporting
evidence provided through fragmentation analysis. Therefore, the
implementation of fragmentation support within the existing analytical pipeline
is of the upmost importance to the research staff within the facility. A secondary
consideration to the client was that commercial software is emerging to market
which supports fragmentation analysis. However, the available open-source
products have, thus far, failed to provide support. As such, the development of
the application represents a competitive advantage within the field.

One of the novel features of the application is that the framework readily
supports the inclusion of additional spectral reference libraries. As noted in
section 2.5, the existing competing applications provide limited coverage of the
metabolome due to the sparse selection of reference libraries supported. As such,
the client expressed that a key motivation for the development of FrAnK was
that a broad range of libraries could be queried from within a single application.
The client explained that this would be considered a key feature of the
application, as chemicals must either be purchased or synthesized in order for a
reference fragmentation spectrum to be determined. As such, each spectral
reference library consists of distinct compounds. When analysing a biological
sample, it is often insufficient to simply query a single point of reference as rare
metabolites are often a source of scientific interest. As such, the querying of a
single library may not yield suitable candidate annotations if the metabolite is
absent from the reference library. Therefore, the querying of multiple reference
databases will become integral to generating scientific publications.

The interview proceeded to discussion of the user interface. At this juncture, the
client expressed that the use of the existing PiMP base template was a positive to
improve familiarity for the user. However, when I enquired further, the client

 33

confirmed that additional descriptive text should be added to provide clarity to
the application. The client indicated that the addition of a ‘Wizard-like’ feature
would be beneficial or pop up help text. However, this could not be implemented
in the development time remaining. As a compromise, additional help text was
provided to each of the form fields and into the HTML pages to try to clarify any
existing points of potential confusion. It was then posed to the client whether the
data stored within the application was appropriate in style and content to allow
for the researcher to evaluate candidate annotations effectively. The client
responded that the application conveyed most of the required data; however, the
client enquired as to the feasible to display the fragmentation spectrum of the
candidate annotation to allow for a visual comparison between the measured
spectrum and that of the candidate. Whilst the confidence value returned by the
spectral reference libraries is a quantification of the match between spectra, the
client explained that a visual comparison provides valuable insight to the
researchers. The client has proposed that this may take the form of a ‘mirror-like’
display, consisting of the measured spectrum above and the inverted candidate
spectrum underneath. Therefore, peaks within the spectra that do not align by
m/z can readily be identified.

As the client had successfully completed the tasks provided to demonstrate the
application, when asked if there were any points during the evaluation task
which were unclear or challenging the client simply responded that there were
not and the tasks were straightforward. In addition, the client was asked
whether or not the development had achieved the outcomes envisaged. The client
responded that the anticipated outcomes were “pretty much” achieved, clarifying
that with the exception of integration with the existing application PiMP, the
application behaves as anticipated.

Finally, the evaluation turned towards which features the client would wish to be
implemented in the future. The client responded that there would be many
features that would be of use to add into the existing FrAnK application. The
obvious next stage of development would be to integrate the FrAnK application
with PiMP in a manner conducive to supporting fragmentation analysis in the
main pipeline. In addition, the client emphasised that additional spectral
reference libraries would be added to improve coverage of the metabolome.
Finally, it would be useful to consolidate the confidence scores retrieved across
spectral reference libraries, generating a single representative confidence score.

5.1.2 Qualitative Evaluation of Standards

As stated previously, the aim of the application was to assist in the identification
of metabolites of interest in biological samples. As such, the testing of the
application using data derived from biological samples poses a challenge as their
chemical composition is unknown. Therefore, a qualitative analysis of the
application was performed using MS data files, corresponding to standard
solutions, provided by the client. In MS, a standard is a solution created in the
laboratory and as such, its constituents are known. While peaks derived from
standards are commonly used to aid in the identification of metabolites within
biological samples, they have been used to determine the veracity of the
candidate annotations retrieved by the FrAnK application in this context.

As such, peaks were extracted from the standard files and the candidate
annotations retrieved through the querying of the NIST14 ‘nist_msms’ and

 34

‘nist_msms2’ libraries were evaluated. Unfortunately, equivalent candidate
annotations could not be assessed from the MassBank Web API as, at the time of
evaluation, the batch service was ‘temporarily suspended’ (17/08/2015). The table
shown in Appendix E summarises a sample of the compounds, on the left of the
table, known to be included in the standards mixtures. On the right of the table,
the values of a peak and an associated candidate annotation retrieved by NIST
are shown. While these results are to be interpreted parsimoniously, as the peaks
selected are not representative of the performance of the application as a whole
across all peaks and are admittedly ‘cherry-picked’, they nevertheless appear to
suggest that the application is performing as anticipated. In the examples
provided, the candidate annotation with the greatest confidence is typically the
mass of a proton different from the molecular mass of the compound.
Furthermore, in instances in which the candidate annotation does not appear to
match the compound included in the standard mixture, a similar molecular
formula is retrieved or a clear derivative of the standard compound has been
identified.

While these results do not confirm that the application performs as intended,
they are suggestive that plausible candidate annotations have been retrieved by
the FrAnK application from the spectral reference library.

 35

Chapter 6 Discussion and Conclusion

6.1 Development Challenges

Throughout the development of FrAnK, numerous obstacles had to be overcome.
Despite a scientific background, the depth of the domain knowledge required to
comprehend the requirements of the application, generate design documentation
and provide viable solutions during the implementation was extensive and at
times overwhelming. The project supervisors and staff at the Metabolomics
Facility provided extensive support and were extremely patient throughout.
Through the sourcing of relevant literature and constant quizzing of domain
experts, I believe the challenges associated with my initial lack of domain
knowledge were largely overcome.

Nevertheless, the development of FrAnK posed significant technical challenges
throughout. Foremost of these was the integration of such a range of diverse
technologies, which were necessitated by the requirement to ensure the
application maintained compatibility with the existing pipeline. From the onset,
significant time was required to install the existing PiMP application, study its
database schema and processes to gain insight into the analytical pipeline. In
particular, PiMP integrates Django, MySQL, R (underpinned with Java) and
Celery. Furthermore, it has been previously acknowledged that the R scripts
used within FrAnK to extract peak data from LC-MS/MS data files were kindly
provided. However, this in itself proved to be a challenge as, having no prior
experience in the language, it was necessary to comprehend the complex
processes contained within to appreciate the significance of inputs and outputs.

While these challenges were faced and overcome during the initial evaluation
phase of the project, the process of implementing the functionality required by
FrAnK posed unique challenges. For the process of peak extraction from GCMS-
EII data sets I was provided with an R script which generates a peak list derived
across numerous source files. However, this was unsuitable for the FrAnK
application, which was to treat each source file in isolation. As such, I was
required to generate a distinct R script for the generation of a GCMS-EII peak
list. In addition to volume of data to be processed, the application’s use of Celery
posed significant challenges due to the necessity to manage concurrent database
transactions. Furthermore, in order to achieve the retrieval of candidate
annotations it was required that Suds, Wine and MS PepSearch be implemented
in the FrAnK application.

While both the challenges associated with the domain and technologies can be
considered distinct, they were at times intertwined. When sourcing suitable
spectral reference libraries, I was required to investigate the documentation
provided for each API. In addition to the diversity of technologies used, the
overall clarity of the documentation was poor, with both technical and domain
concepts explained in insufficient detail. The final challenge associated with the
retrieval of candidate annotations was that the format of chemical data varies
between spectral reference libraries. As such, the candidate annotations output
by each API vary in both format and content.

 36

6.2 Limitations of Existing Application

At present, the FrAnK application lacks the ability for the user to modify, delete
and share existing experiments, fragmentation sets and annotation queries.
Furthermore, the aesthetic appearance of the application requires additional
development. In response to the client evaluation, attempts were made to include
additional help text to ease the process of learning for new users of the
application. Nevertheless, it would be of great benefit for future iterations of the
application to provide either a help Wizard or a tutorial feature. Despite
significant effort, it is acknowledged that these limitations limit usability.

While FrAnK prevents the user from uploading files which are not in the mzXML
file format, additional checks could be included to minimize user errors. Using an
XML parser, the files could be checked to ensure that product peaks are included
in the files. Furthermore, the addition of the XML parser could be used to
determine the polarity of the file from the source as it is performed in PiMP.
However, at present, the user is required to specify the polarity of the file within
the page form. In addition, the current application cannot differentiate between
files derived from the LCMS and GCMS experimental protocols. This would be
highly beneficial in avoiding user error. However, it is unclear at present how
such a check could be implemented as MS instrumentation which derives the file
may not be aware of the sample preparation processes which precede the
analysis.

With the retrieval of candidate annotations from both MassBank and NIST,
there is potential for irregular variants in the format or content of the
annotations returned which may cause errors in the application. For example,
the name of the compound may exceed the maximum size of the CharField used
to store the name of the chemical compound. Furthermore, as a public repository
the data content and format of the candidate annotations returned from
MassBank vary significantly. To date, all files supplied by the client have been
annotated using NIST. However, it was not possible to annotate the peak data
for the GCMS data files using MassBank, due to the suspension of the service.
An additional limitation to be acknowledged is that the database schema
recognizes that a given compound may originate from numerous spectral
reference libraries. However due to the lack of standardization in compound
naming conventions and identifying codes, the same compound may be
erroneously duplicated in the FrAnK database at present if it is retrieved from
distinct spectral reference libraries.

Finally, an additional limitation of the application is the use of Matplotlib to
generate the graphical display of the fragmentation spectra. The visualization of
the fragmentation spectra should be implemented using Highcharts as is
implemented within the PiMP application. As such, visualization could be made
interactive to allow for navigation through the MSn levels of the data.

6.3 Future Work

The primary focus of future development upon FrAnK should focus initially upon
the limitations identified in the previous section. However, upon completion the
application could then be integrated into the pipeline to supplement the existing
functionality within PiMP. Nevertheless the client has described within the

 37

evaluation that fragmentation support is essential going forward. Due to the
similarities between the two databases, integration could be achieved in the form
of an additional task added to the tasks.py file. Taking a PiMP project as input,
the task could generate the corresponding experiment entry in the FrAnK
database. From which peaks and, subsequently, candidate annotations could be
derived from the fragmentation spectra. The candidate annotations could then be
presented in the PiMP application to allow for metabolite identification.
Although this is likely to introduce redundancy into the data, it is nevertheless
required in order for FrAnK to maintain standalone functionality.

While candidate annotations can be retrieved from the spectral reference
libraries MassBank and NIST from within the FrAnK application, the true
potential of the application can be realised with the addition of bespoke software
and algorithms in the form of additional annotation tools. The candidate
annotations derived from the spectral reference libraries may provide input for
post hoc manipulations to improve the veracity of the annotations. While valid,
the querying of mass spectral libraries alone is somewhat limited due to the
dependency upon the coverage of the metabolome of the library. As such, many
metabolites may go unidentified due to the lack of coverage offered by the
existing services. However, the inclusion of additional spectral reference libraries
would diminish this risk. During the client brief additional libraries were
commented upon as suitable candidates and their addition would significantly
improve the coverage of the metabolome included within the application, leading
to greater reliability in metabolite identification as numerous sources could be
used to provide supporting evidence.

Subsequent iterations of FrAnK could include additional experimental protocols
such as the LCMS-MS/MS data-independent acquisition, which could not
implemented during the current project. In addition, additional parameters for
the peak extraction tasks, which generate Fragmentation Sets, could be
implemented to allow for greater flexibility. While the R scripts provided have
been parameterized over the course of the project, the application does not
currently include a form to support this. However, this should be considered a
low priority as the client has stated previously that the workflow should remain
as simply as possible for the research staff. As such, the additional parameters
could be implemented as ‘advanced settings’. Furthermore, it would be of merit
for the user to be able to specify the source of the MS1 peaks to which MS/MS
fragments are associated. These could be derived from a user uploaded peak list,
a distinct mzXML file or from the existing PiMP application. These features
would be of benefit to the identification of metabolites as the process of
fragmentation reduces the frequency with which MS1 peaks can be measured by
the instrumentation, thereby diminishing the resolution of the full-scan. At
present, an existing R script has been developed by Joe Wandy which could be
incorporated into FrAnK, replacing the existing LCMS/MS R script, to achieve
this aim.

As stated in the section 6.1, the lack of standardization within MS data and the
format in which it is stored is noteworthy. As such, the current compound table
within FrAnK will become unwieldy as new annotation tools are added into the
application. Redundancy could be reduced by the querying of the returned
annotations against the Chemical Translation Service’s master list of
compounds. This service stores a catalogue of the repository-specific compound
identifiers to allow for comparison between spectral reference libraries. At

 38

present, PiMP implements this to maintain standardization within its compound
table of the database and this should be extended to FrAnK. While a challenging
endeavor, this would certainly be advantageous going forward.

6.4 Conclusions

With the recognition that the constituent metabolites which comprise biological
systems cannot be investigated in isolation, it is inevitable that untargeted
approaches will supersede conventional targeted studies. While untargeted
approaches have gained traction in disciplines such proteomics and genomics, the
software tools and algorithms necessary to realise the potential of metabolomics
remain to be developed. In particular, the existing software to identify candidate
annotations for MS peaks is limited.

The FrAnK application has been developed to meet the need of improving
metabolite identification through the utilization of fragmentation spectra. In the
short-term, FrAnK provides the research staff at the Metabolomics Facility with
a tool to significantly increase the rate at which MS data may be analysed and
interpreted. It is hoped that this may provide supporting evidence for future
scientific publications and improve the efficiency of existing services. The
inclusion of the peak extraction from GCMS-EII experiments expands the
number of experimental protocols which are supported within the existing
pipeline. Furthermore, the potential coverage of the metabolome within the
existing application has been increased by the inclusion of both the MassBank
and NIST spectral reference libraries.

The present application has limitations, which have been acknowledged in
section 6.2. However, it is hoped that FrAnK may provide a framework, upon
which, the much needed software and algorithms required to improve metabolite
identification may be implemented and integrated. The veracity of the candidate
annotations will only increase as additional spectral reference libraries and
bespoke annotation tools are added to the existing application.

 39

Chapter 7 References

Allen F, Pon A, Wilson M, Greiner R and Wishart D (2014). CFM-ID: a web server for
annotation, spectrum prediction and metabolite identification from tandem mass spectra.
Nucleic Acids Research. 42: W94-95.

Azzopardi L and Maxwell D. How to Tango With Django 1.7. Url:
http://www.tangowithdjango.com/book17/. Accessed 15/07/2015.

Berdie Rabanaque B, Casala i Ribes I, Fernandez Vidal I, Jauregui Pallares O, Marimon
Corbella, RM, Perona Moreno J and Teixidor Casamitjana P (2012). Basics of Mass
Spectrometry. Handbook of instrumental techniques from CCiTUB.
http://hdl.handle.net/2445/32138.

Celery Project, 2015. Celery: Distributed Task Queue. Url: http://www.celeryproject.org/.
Accessed 05/08/2015.

Chapman JD, Goodlett DR, Masselon CD (2014). Multiplexed and Data-Independent
Tandem Mass Spectrometry for Global Proteome Profiling. Mass Spectrometry Reviews.
33: pp 452-470

Courant F, Antignac J-P, Dervilly-Pinel G, Le Bizec B (2014). Basics of Mass
Spectrometry Based Metabolomics. Proteomics. 14: pp 2369-2388.

Django Software Foundation, 2015. Django Documentation. Url:
https://docs.djangoproject.com/en/1.7/. Accessed 20/07/2015

Egertson JD, MacLean B, Johnson R, Xuan Y, MacCoss MJ (2015). Multiplexed peptide
analysis using data-independent acquisition and Skyline. Nature Protocols. 10: pp 887-
903.

Glish GL, Vachet RW (2003). The Basics of Mass Spectrometry in the Twenty First
Century. Nature Reviews Drug Discovery. 2:2 pp 140-150

Go EP (2010). Database resources in metabolomics: an overview. Journal of
Neuroimmune Pharmacology. 5: pp 18-30.

Heinonen M, Shen H, Zamboni N, Rousu J (2012). Metabolite identification and
molecular fingerprint prediction through machine learning. Bioinformatics. 28: pp 2333-
2341.

Kessler N, Walter F, Persicke M, Albaum SP, Kalinowski J, Goesmann A, Niehaus K and
Nattkemper TW (2014). ALLocator: an interactive web platform for the analysis of
metabolomics LC-ESI-MS datasets, enabling semi-automated, user-revised compound
annotation and mass isotopomer ratio analysis. PLoS One. 9: e113909.

Mann M, Hendrickson RC, Pandey A (2001). Analysis of Proteins and Proteomes By Mass
Spectrometry. Annual Review of Biochemistry. 70: pp 437-73.

Marchetti AA and Mignerey AC (1993). Deconvolution of mass spectra. Nuclear
Instruments and Methods in Physics Research. 324: pp 288-296.

 40

Marquet P, Saint-Marcoux F, Gamble TN, Leblanc JCY (2003). Comparison of a
preliminary procedure for the general unknown screening of drugs and toxic compounds
using a quadrupole-linear ion-trap mass spectrometer with a liquid chromatography-
mass spectrometry reference technique. Journal of Chromatography B. 783: pp 9-18.

mzMatch, 2015. Installation of mzmatch.R and mzmatch packages. Url:
http://mzmatch.sourceforge.net/installation.php. Accessed: 05/08/2015.

Pivotal, 2015. RabbitMQ. Url: http://www.rabbitmq.com/. Accessed 05/08/15.

Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R (2011).
PeakML/mzMatch: A File Format, Java Library, R Library, and Tool-Chain for Mass
Spectrometry Data Analysis. Analytical Chemistry. 83: pp 2786-2793.

Smith R, Mathis AD, Ventura D, Prince JT (2014). Proteomics, lipidomics, metabolomics:
a mass spectrometry tutorial from a computer scientist’s point of view. BMC
BioInformatics. 15:S9.

Xia J and Wishart DS (2009). Web-based inference of biological patterns, function and
pathways from metabolomics data using MetaboAnalyst. Nature Protocols. 6: pp 743-760

 1

Appendix A Glossary of Domain Terminology

“data-dependent acquisition” (DDA)

refers to the automated process of peak selection for dissociation based upon a
criteria implemented following detection.

“data-independent acquisition” (DIA):

refers to the automated process of peak selection for dissociation based upon a
criteria determined in advance of detection.

“electron impact ionisation” (EII):

a relatively ‘harsh’ ionisation technique, typically associated with gas
chromatography, used prior to the analysis of samples through MS.

“electrospray ionisation” (ESI):

a relatively ‘soft’ ionisation technique, typically associated with liquid
chromatography, used prior to the analysis of samples through MS.

“fragmentation spectrum”:

the collective ions generated by the cleavage of a parent ion through dissociation.

“gas chromatography” (GC):

a technique which uses a gas mobile phase for the separation of analytes based
upon their physical or chemical properties.

“parent ion” (GC):

refers to an ion which is dissociated to form fragments.

“product ion” (GC):

refers to a single ion generated from the cleavage of a parent ion.

“liquid chromatography” (GC):

a technique which uses a liquid mobile phase for the separation of analytes based
upon their physical or chemical properties.

 2

Appendix B Requirements Documentation

Introduction

The domain is metabolomics and mass spectrometry.

The University of Glasgow Metabolomics Facility implements a web-based pipeline,
PiMP, to store and analyse mass spectrometry (MS) datasets. MS detects ions
derived from the sample analytes which, in turn, can be cleaved to generate
fragments which correspond to a substructure of the precursor. The identification of
the compound from which an ion originated can be achieved through the querying of
its associated fragmentation spectra to a spectral reference database. The current
web application supports the analysis of peaks based upon the full scan of a sample
(MS1). While the analysis of MS1 data alone can lead to the identification of potential
candidate annotations, the validity of identifications can be significantly improved by
incorporating the fragmentation spectra. The current system is unable to store and
utilise this valuable structural information at present. Therefore an additional
application is required to incorporate the analysis of fragmentation data to improve
the identification of metabolites.

Summary of Client Brief

The aim is to provide additional functionality, prioritising peak identification as
opposed to quantification, to the existing proprietary web-based pipeline PiMP. As
such, the client has proposed the development of a new application capable of
integration. However, the new application will be used independently of PiMP for the
analysis of experimental protocols not currently supported by the pipeline. This
additional functionality is to be achieved by incorporating the ability to store and
utilise fragmentation spectra, ensuring the hierarchical relationship between parent
and product ions is maintained. In addition, the data held for each peak should then
be used to query a range of reference databases to identify candidate compounds.
The identified candidates will be returned with a confidence score, which should also
be stored in the database. The existing application relies upon R scripts to derive
peak data from the source files. However, the functionality of the new application
could deviate from the reliance upon R if necessary. In addition, the client has
suggested that the ProteoWizard tool msconvert could be alternative solution to
deriving the peaks from the source files. Furthermore, the client described an existing
R script which has been developed to derive peaks, maintaining their relations, from
datasets originating from data-independent acquisition experiments. However, this
was written in haste and may require refactoring. The client has listed the following
reference libraries which are of interest: NIST LCMS and GCMS libraries, Lipidmaps,
MetFrag, MassBank, Magma/mzCloud and MSFrag. The client identified, and
detailed, four scenarios in which fragmentation spectra should be utilised to retrieve
candidate annotations.

Scenario 1: LCMS Data Dependent Acquisition (MS2)

 Full scan of the sample is performed, generating the MS1 data
 Peaks within a specific m/z range are selected based upon an

experimenter defined criteria (such as top 10 most intense peaks).
 These peaks are subsequently dissociated to generate fragmentation

spectra which are can be associated with the precursor peak.

 3

 Multiple scans can generate duplication of peaks, due to an analyte
continuing to elute over multiple time points. To avoid large quantities of
redundant data from repeatedly fragmenting the same analyte, ions of a
specific m/z can be added to an exempt list for a specified duration of
time.

Scenario 2: LCMS Data Dependent Acquisition (MSN)

 Full scan is performed, generating the MS1 data
 Peaks are selected as previously described in Scenario 1.
 However, the peaks constituting the MS2 fragmentation spectra can

themselves be selected and fragmented again. In theory, this process can
be repeated n times. However, the client acknowledged that the
maximum number of levels performed rarely exceeds 3, and at most 5.

Scenario 3: GCMS Electron Impact Ionisation

 Electron Impact Ionisation is a form of “hard” ionisation, unlike the
Electrospray Ionisation commonly used for LCMS experiments.

 Electrons are focused into a beam, ionising the neutral molecules of the
analytes but produces fragmentation of the analytes.

 Generates a fragmentation spectrum, however, the parent ion is missing.

Scenario 4: LCMS Data Independent Acquisition

 A technique which performs fragmentation of all ions within a specific
m/z ratio range, which are above background noise levels.

 The technique consists of two scans, one at “high” energy (inducing
dissociation) and a second at “low” energy.

 However, the product ions can still be associated with a parent ion

Documentation of Requirements

Functional Requirements

1. The application must enable authorised staff to create and edit
experiments.

2. The application must enable authorised staff to create and edit
experimental samples.

3. The application must enable authorised staff to upload data files to
samples.

4. The application must enable authorised staff to derive peak data from
uploaded data files.

5. The application must store the m/z, retention time and intensity of a
peak.

6. The application must store the lineage of a peak.
7. The application must enable authorised staff to generate candidate

annotations for a peak.
8. The application must store a confidence value for a candidate annotation.

 4

9. The application must store the name, formula and mass of a compound
identified by a candidate annotation.

10. The application must enable authorised staff to submit fragmentation
spectra to a spectral reference library.

11. The application must provide a graphical representation of the
fragmentation spectra for a peak.

12. The application must extract peak data from data files uploaded to PiMP.
13. The application must provide candidate annotations for analyses

performed in PiMP.
14. The application should enable authorised staff to create and edit

experimental conditions.
15. The application should enable authorised staff to specify a preferred

annotation for a given peak.
16. The application should provide drag and drop file upload.
17. The application should allow authorised users to grant access to an

experiment to other authorised users.
18. The application could display the chemical structure of a candidate

annotation.
19. The application could display the fragmentation spectra of a peak

alongside that of a candidate annotation for direct visual comparison.
20. The application could group peak data across experimental replicate

source files.
21. The application would enable the exporting of peak data and candidate

annotations.
22. The application would provide a tutorial for inexperienced users,

unfamiliar with domain terminology.

Quality Requirements

1. The application must be capable of future enhancement to support the
addition of novel experimental protocols and methods of generating
candidate annotations.

Platform Requirements

1. The application must be developed using the Django framework (version
1.7)

2. The application must be compatible with client's existing server and
database.

3. The application must support the mzXML file format.
4. The application could support the mzML file format.

Process Requirements

1. Prototypes of the application should be demonstrated at regular intervals.
2. Requirements for the application should be re-assessed and prioritised

following each demonstration of a prototype.
3. The system should be delivered not later than 07/08/2015.

 5

Key Use Case Descriptions

Experiment Creation

Name: Create New Experiment

Users: Scientific Researcher

Goals: To create a new experiment for fragmentation analysis.

Summary:
The user creates a new experiment, providing a description, title,
experimental protocol and ionisation type.

Priority: MUST HAVE

Preconditions:
The user must be authenticated, by having logged into the
application.

Steps:

User Actions System Response

1. Click on 'My Experiments' link.

3. Click "Add new experiment" link.

5. Input the name of the experiment,
a description, the ionisation and
experimental method and click
"submit".

8. Click on link to newly created
experiment.

2. Render 'My Experiments'
page.

4. Render "Create
Experiment" page.

6. Process the form, and add
experiment to database .

7. Render 'My Experiments'
page.

9. Render experiment page.

Post conditions:
A new experiment, associated with the user, has been defined in the
database.

Related Use Cases: None

Experimental Condition Creation

Name: Create New Experimental Condition

Users: Scientific Researcher

Goals: To create a new experimental condition to an experiment.

Summary:

The user can add experimental conditions within an experiment by
specifying a name and a description. This creates a logical grouping
for experimental samples.

Priority: SHOULD HAVE

Preconditions: The user must be authenticated and have created the experiment

 6

previously.

Steps:

User Actions System Response

1. Click 'Add Experimental
Condition' link.

3. Input the name and a description
for the experimental condition and
click submit.

6. Click on the new experimental
condition link.

2. Render 'Add experimental
condition' page.

4. Process the form and add
experimental condition to
database.

5. Render the experiment
page.

7. Render experimental
condition page.

Post conditions:
A new experimental condition, associated with an experiment, has
been defined in the database.

Related Use Cases: Create New Experiment

Experimental Sample Creation

Name: Add Sample

Users: Scientific Researcher

Goals: To add a new experimental sample to an experimental condition.

Summary:
The user can add samples to an existing experimental condition. The
user inputs a name, description and an organism for a sample.

Priority: MUST HAVE

Preconditions:
The user must be authenticated, having created an experimental
condition within an existing experiment.

Steps:

User Actions System Response

1. Click 'Add New Sample' link.

3. Add a name, a description and
state the organism of the sample
and click submit.

2. Render 'Add New Sample'
page.

4. Process the form and add
sample to database.

5. Render the experimental
condition page.

 7

Post conditions:
A new sample, associated with an experimental condition, has been
defined in the database.

Related Use Cases: Create New Experiment; Create New Experimental Condition

Data File Upload

Name: Upload Data File

Users: Scientific Researcher

Goals: To upload a new data file to an experimental sample.

Summary:
The user can upload data files via a form, providing the filepath of the
file to be uploaded and selecting the polarity associated with the data
file.

Priority: MUST HAVE

Preconditions:
The user must be authenticated. The user must also create an
experiment, defining the experimental conditions and samples.

Steps:

User Actions System Response

1. Click 'Add New Sample File'
link.

3. Specify the polarity and the
filepath of the file to be
uploaded and click submit.

2. Render 'Add New Sample File'
page.

4. Process the form and create a
sample file in the database. Upon
which, the file is uploaded to an
appropriate directory in the
application.

5. Render the experimental
condition page.

Post conditions:
A new data file, associated with an experimental sample, has been
defined in the database and uploaded to the appropriate directory.

Related Use Cases: Create New Experiment; Create New Experimental Condition; Create
Experimental Sample

Extract Peak Data

Name: Extract Peak Data

Users: Scientific Researcher

Goals: To extract the peak data from the uploaded sample files.

Summary:

The user can extract peak data by creating a fragmentation set,
specifying the name of the set and providing any required
parameters. Upon completion of peak data processing, the peaks
data is added to the database maintaining their lineage.

 8

Priority: MUST HAVE

Preconditions:

The user must be authenticated. In addition, the user must create an
experiment (including conditions and samples) and have uploaded
the requisite data files.

Steps:

User Actions System Response

1. Click 'Create Fragmentation
Set' link.

3. Specify the name of the set,
and any additional peak
extraction parameters and click
submit.

8. User clicks on the new
fragmentation set link.

2. Render 'Create Fragmentation
Set' page.

4. Process the form and create a
fragmentation set in the
database.

5. Extract the peak data from the
source files in the experiment
associated with the
fragmentation set.

6. Render experiment page,
displaying status of peak
extraction process.

7. Upon completion of step 5,
update status of fragmentation
set to 'Completed Successfully'.

9. Render the fragmentation set
page.

Post conditions:

A new fragmentation set, associated with the experiment, is created
in the database. Furthermore, the peak data is populated in the
database, associated with the fragmentation set, in a hierarchical
manner.

Related Use Cases: Create New Experiment; Create New Experimental Condition; Create
Experimental Sample; Upload Data File

Generate Candidate Annotations

Name: Generate Candidate Annotations for Peaks

Users: Scientific Researcher

Goals:
To identify candidate annotations for each peak contained within a
fragmentation set.

Summary:
The user selects an annotation tool, providing the tool specific
parameters. The candidate annotations are then retrieved/generated

 9

and populated into the database for each peak in the fragmentation
set.

Priority: MUST HAVE

Preconditions:
User has successfully created a fragmentation set containing peak
data in the database.

Steps:

User Actions System Response

1. Selecting an annotation tool,
the user clicks 'Create
Annotation Query'.

3. A name and tool-specific
parameters are input and submit
is clicked.

8. Click on a link for a specific
peak.

2. Render 'Create Annotation
Query' page, containing the form
specific to the annotation tool.

4. Process the form and add the
annotation query to the
database.

5. Creation of the annotation
query begins the generation or
retrieval of candidate annotations
from the annotation tool.

6. Render fragmentation set
page, displaying status of query
process.

7. Upon completion of step 5,
update status of the annotation
query to 'Completed
Successfully'.

9. Render peak page, displaying
candidate annotations in a
tabular form.

Post conditions:
An annotation query is added to the database. Candidate
annotations, and their associated compounds, are added to the
database.

Related Use Cases: Extract Peak Data

Select A Preferred Candidate Annotation

Name: Specify A Preferred Candidate Annotation

Users: Scientific Researcher

Goals:
To specify a preferred annotation from the available candidate
annotations, thereby proposing the identification of the metabolite
corresponding to a peak.

 10

Summary:
The user selects a preferred annotation, adding a justification for
selection, which other users may review. The preferred annotation is
then associated with the peak in the database.

Priority: SHOULD HAVE

Preconditions:
User has successfully generated or retrieved candidate annotations
for a fragmentation set.

Steps:

User Actions System Response

1. Selecting a candidate
annotation, the user clicks 'Prefer
Annotation'.

3. A justification for the selection
of the preferred candidate
annotation is entered.

2. Render 'Prefer Annotation'
page.

4. Process the form.

5. Associate the preferred
candidate annotation to the peak
in the database.

6. Render the fragmentation set
page displaying the preferred
candidate annotation and the
associated chemical formula for
the associated peak.

Post conditions:
A preferred annotation is associated with the selected peak in the
database, alongside the user and the justification for selection.

Related Use Cases: Generate Candidate Annotations for Peaks

 11

Appendix C Design Documentation

Initial FrAnK Database Schema Derived From ER Model

It should be noted that the Django Framework automatically generates an
implicit table for Many-To-Many relationships. Therefore, those tables
containing simply two foreign key references have been omitted for clarity.

 12

FrAnK Site-Map Design

The following is a site-map which was designed based upon the project
requirments and identified use cases.

 13

Current FrAnK Site Map

The following is the site-map corresponding to the current implementation of the
application. Due to factors of time, several elements of the original design could
not be implemented. These are discussed in additional detail in section 3.5.

 14

FrAnK URL Mapping

Page/View Name URL

frank_index "/frank/"

my_experiments "/frank/my_experiments/"

add_experiment "/frank/my_experiments/add_experiment/"

experiment_summary "/frank/my_experiments/experiment_slug /"

add_experimental_condition
"/frank/my_experiments/experiment_slug /

add_experimental_condition/"

condition_summary "/frank/my_experiments/experiment_slug /condition_slug /"

add_sample
"/frank/my_experiments/experiment_slug /

condition_slug /add_sample"

add_sample_file
"/frank/my_experiments/experiment_slug /

condition_slug /sample_slug /add_sample_file/

create_fragmentation_set
"/frank/my_experiments/experiment_slug /

create_fragmentation_set/"

my_fragmentation_sets "/frank/my_fragmentation_sets/"

fragmentation_set "/frank/my_fragmentation_sets/fragmentation_set_slug /"

define_annotation_query
"/frank/my_fragmentation_sets/fragmentation_set_slug /

annotation_tool_slug /define_annotation_query_parameters/"

peak_summary "/frank/my_fragmentation_sets/fragmentation_set_slug /peak_slug /"

make_spectra_plot
"/frank/my_fragmentation_sets/fragmentation_set_slug /

peak_slug /msn_spectra_plot.png/"

specify_preferred_annotation
"/frank/my_fragmentation_sets/fragmentation_set_slug /peak_name /

annotation_id /specify_preferred_annotation/"

 15

Wireframe Designs

Experiment Page

As the PiMP application has been successfully implemented and adopted by the
staff of the Metabolomics Facility, it would be logical for the FrAnK application
to maintain the already familiar layout to improve user acceptance. As such, the
proposed ‘Experiment’ page of FrAnK follows a similar template to that of the
Project set-up of the parent PiMP application. From the ‘Experiment Admin’ tab,
the user may add collaborators to an experiment and add experimental
conditions. As such, the initial step in the experimental set-up is the definition of
the experimental design. As can be seen from the above wireframe, the ‘Sample
Admin’ tab of the workflow allows the user to create new experimental samples
and upload files using the existing PiMP drag-and-drop file upload (accessed
from the upload files button in blue). Upon upload, files can be dragged and
dropped into the appropriate sample bin indicating whether the file is a
fragmentation file (MS/MS) or a distinct full-scan of the MS1 peaks (MS1).

Fragmentation Set Page

The ‘Fragmentation Set’ page displays the annotation queries, requesting the
annotation of the peaks contained in the set, at the top of the page in a tabular
manner. In addition, the user can select an annotation tool for the retrieval of
candidate annotations via a drop-down menu. The ‘Create New Query’ button
will navigate the user to a page displaying a form specific to the specified
annotation tool for declaration of the query parameters. Furthermore, the
‘Fragmentation Set’ page will display the MS1 peaks contained within the set.
The MS1 peaks will be ordered in ascending order by the measured mass to allow
for easy lookup by the researcher. For each peak, the mass, retention time and
intensity will be displayed. Additional columns will be provided to display the
chemical compound and formula associated with a user-specified preferred-
annotation for a peak. As the Fragmentation Set may be conceived from

 16

numerous source files, the peaks will be grouped by source file for clarity. The
table is intended to be interactive, with the inclusion of a dropdown button
corresponding to each peak. Selection of the dropdown button will expand the
table to display a sub-table, containing the peak data corresponding to the
fragmentation spectra of the peak, indented from the main table. Selection of the
drop-down button will collapse the table back to its original state.

Peak Page

The ‘Peak’ page displays the relevant MS data for the peak and a graphical
representation of the associated fragmentation spectra. In addition to plotting
the product peaks of the parent, the graph will plot the precursor peak (dashed
blue line of graph) to allow for visual inspection by the researcher. The graph is

 17

intended to serve as an interactive navigation tool, providing links to the ‘Peak’
pages associated with those peaks comprising the fragmentation spectrum. At
the bottom of the page, a table of putative candidate annotations will be
displayed, grouped by the annotation query from which they originated. It is
intended that the name of the chemical compound identified by each candidate
annotation will serve as a link to a ‘Compound’ page. This would provide
additional compound data and in future iterations may display a visual
comparison between the observed fragmentation spectrum and that of the
spectral reference library from which the candidate annotation was originally
retrieved.

 18

Appendix D Implementation Documentation

Application Screen Dumps

My Experiments Page

Experiment Page

 19

Fragmentation Set Page

Define Annotation Query Page

 20

Peak Page (Top)

Peak Page (Bottom)

 21

Summary of End-to-End Testing

Name of View
Description of

Test
Inputs

Anticipated
Outcome

Outcome

index
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

index
Ensure

unauthorised
user is redirected

Get
request

Status code 200
Status code

200

my_experiments
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_experiment
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_experiment
Test the addition

of new
experiment

Valid
POST

request

New
experiment

added to
database

New
experiment

added to
database

add_experiment

Attempt to
create

experiment with
duplicate name

Duplicate
POST

request

Page renders
with form

error,
experiment not

added to
database

Page renders
with form

error,
experiment

not added to
database

experiment_summary
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_experimental_condition
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_experimental_condition

Test the addition
of new

experimental
condition

Valid
POST

request

New
experimental

condition
added to
database

New
experimental

condition
added to
database

add_experimental_condition

Attempt to
create

experimental
condition with
duplicate name

Duplicate
POST

request

Page renders
with form

error,
experimental
condition not

added to
database

Page renders
with form

error,
experimental
condition not

added to
database

 22

condition_summary
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_sample
Ensure page
renders for

authorised user

Get
request

Status code 200
Status code

200

add_sample
Test the addition
of a new Sample

Valid
POST

request

New Sample
added to
database

New Sample
added to
database

add_sample

Attempt to
create a Sample
with duplicate

name

Duplicate
POST

request

Page renders
with form

error, sample
not added to

database

Page renders
with form

error, sample
not added to

database

add_sample_file
Ensure page
renders for

authorised users

Get
request

Status code 200
Status code

200

add_sample_file
Ensure new

Sample Files can
be uploaded

Valid
POST

request

Sample file
added to
database

Sample file
added to
database

add_sample_file

Attempt to
upload a

duplicate file to a
Sample

Duplicate
POST

request

Page renders
with form

error, sample
file is not

duplicated in
database

Page renders
with form

error, sample
file is not

duplicated in
database

add_sample_file
Attempt to

upload an invalid
file format

Invalid
POST

request

Page renders
form errors to

user

Page renders
form errors to

user

create_fragmentation_set
Ensure page

renders
successfully

Get
request

Status code 200
Status code

200

create_fragmentation_set

Create a new
fragmentation

set from an LCMS
experiment

Valid
Post

Request

Peaks extracted
and

Fragmentation
Set added to

database

Peaks
extracted and
Fragmentation
Set added to

database

create_fragmentation_set

Create a new
fragmentation

set from an
GCMS

experiment

Valid
Post

Request

Peaks extracted
and

Fragmentation
Set added to

database

Peaks
extracted and
Fragmentation
Set added to

database

create_fragmentation_set

Ensure
Fragmentation

Set name is
unique

Duplicate
POST

request

Page renders
form errors to

user

Page renders
form errors to

user

 23

create_fragmentation_set

Ensure
fragmentation
set cannot be

created without
source files

Invalid
POST

Request

Page renders
form errors to

user

Page renders
form errors to

user

fragmentation_set_summary
Ensure page

renders
successfully

Get
request

Status code 200
Status code

200

fragmentation_set
Ensure page

renders
successfully

Get
request

Status code 200
Status code

200

fragmentation_set

Test MassBank
can be selected
for Annotation

Query

Valid
Post

Request
Status code 200

Status code
200

fragmentation_set

Test NIST can be
selected for
Annotation

Query

Valid
Post

Request
Status code 200

Status code
200

fragmentation_set

Test Precursor
Mass Filter can
be selected for

Annotation
Query

Valid
Post

Request
Status code 200

Status code
200

peak_summary
Ensure page

renders
successfully

Get
request

Status code 200
Status code

200

define_annotation_query

Ensure page
renders

successfully -
MassBank
Selection

Get
request

Status code 200
Status code

200

define_annotation_query

Ensure page
renders

successfully -
NIST Selection

Get
request

Status code 200
Status code

200

define_annotation_query

Ensure page
renders

successfully -
Precursor Mass
Filter Selection

Get
request

Status code 200
Status code

200

define_annotation_query
Create valid

annotation query
(MassBank)

Valid
Post

Request

Candidate
Annotations

Retrieved
TEST FAILED

define_annotation_query
Create valid

annotation query
(NIST)

Valid
Post

Request

Candidate
Annotations

Retrieved

Candidate
Annotations

Retrieved

 24

define_annotation_query

Create valid
annotation query
(Precursor Mass

Filter)

Valid
Post

Request

Candidate
Annotations

Retrieved

Candidate
Annotations

Retrieved

specify_preferred_annotation
Ensure page

renders
successfully

Get
request

Status code 200
Status code

200

specify_preferred_annotation
Add a preferred
annotation to a

peak

Valid
Post

Request

Preferred
annotation

added to peak
TEST FAILED

 25

Appendix E Evaluation Documentation

Evaluation Tasks

1. Create a new experiment

Step 1 – Select “My Experiments” from the “Home” page.

Step 2 – Select “Add New Experiment” from the “My Experiments” page.

Step 3 – Enter a Title (“Standard 1 Experiment”) and Description for the New
Experiment. In addition, select the Ionisation Method (“Electron Ionisation
Spray”) and a Detection Method (“LCMS Data Dependent Acquisition”).

Step 4 – Press “Submit” to create the new experiment.

2. Create a new experimental condition

Step 1 – From the “My Experiments” page, select the new experiment (“Standard
1 Experiment”).

Step 2 – Select “Add New Experimental Condition”

Step 3 – Enter a Name (“Standard 1 Mixture”) and Description for the New
Experimental Condition.

Step 4 – Press “Submit” to create the new experimental condition.

3. Create a new sample to the experimental condition

Step 1 – From the “Standard 1 Experiment” page, select the new experimental
condition (“Standard 1 Mixture”).

Step 2 – Select “Add Sample”

Step 3 – Enter a Name (“Standard 1”) and Description for the New Sample.
Leave the Organism field blank as the Sample is not biological in nature.

Step 4 – Press “Submit” to create the new sample.

4. Upload new sample files to the sample

Step 1 – From the “Standard 1 Mixture” page, select the “Add Sample File” link
beneath the Sample Table for “Standard 1”.

 26

Step 2 – Select the polarity of the file (‘Positive’) and select the file for upload
(“Home/ProjectTestData/MS2Data/Standards/STD_MIX1_POS_60stepped_1E5_
Top5.mzXML”), then click ‘Submit’.

Step 3 – Select the “Add Sample File” link beneath the Sample Table for
“Standard 1” for a second time.

Step 4 – Select the polarity of the second file (‘Negative’) and select the file for
upload
(“Home/ProjectTestData/MS2Data/Standards/STD_MIX1_NEG_60stepped_1E5_
Top5.mzXML”), then click ‘Submit’.

5. Create a Fragmentation Set

Step 1 – Return to the “Standard 1 Experiment” via the link at the bottom of the
page.

Step 2 – The “Generate New Fragmentation Set” link should now be visible.

Step 3 – Click on the link and enter a name for the Fragmentation Set
(“Standard 1 Fragmentation Set”) and click submit.

Step 4 – The status of the newly created Fragmentation Set should now be
visible.

6. Create a new Annotation Query

Step 1 – Once the status of the Fragmentation Set is “Completed Successfully”,
the peak data extracted from the source files will now be accessible via a link,
please click it.

Step 2 – The “Standard 1 Fragmentation Set” page should show, via a table, the
MS1 peak data for the source files (note, this is not a complete listing, rather
those MS1 peaks with fragmentation data associated with them).

Step 3 – From the drop-down menu at the top, please select an Annotation Tool
to use to annotate the fragmentation spectra (‘NIST’). Then click “Create New
Annotation Set”.

Step 4 – From the page please enter the parameters for the search….

Name: Standard 1 Annotation Query

Maximum Number of Hits: 10

Search Type: Generic Search MS/MS Search in MS/MS Library

Libraries: Select “Tandem (MS/MS) Library – Small Molecules”

 Select “Tandem (MS/MS) Library – Biologically Active Peptides”

 27

Step 5 – Click “Submit”, the status of the new Annotation Query should be
displayed.

Step 6 – Once the status of the new Annotation Query is “Completed
Successfully”, the candidate annotations can be viewed by click on a Peak link.

7. Specify a Preferred Annotation

Step 1 – From the “Standard 1 Fragmentation Set” page, select one of the peak
identifiers (which serve as links).

Step 2 – At the top of the “Peak” page is a graphical representation of the
fragmentation spectra associated with the peak. Beneath the graph of the
fragmentation spectra, is a table of the peaks which comprise the fragmentation
spectra, which can be used to link to different levels of MSn data. At the bottom
of the page should be a table of candidate annotations returned by the NIST
Annotation Query. To “prefer” a candidate annotation, click on the “Select
Annotation” link in the right-most column of the table.

Step 3 – The “Preferred Annotation” page should render. At this juncture, a
justification for the selection of the annotation can be provided. Click “Submit”.

Step 4 – From the “Peak” page, return to the “Standard 1 Fragmentation Set”
page using the link at the bottom of the page.

Step 5 – In the table of MS1 peaks associated with the Fragmentation Set, should
now appear the name of the chemical associated with the preferred annotation
and its chemical formula.

 28

Interview Questions - Client

1. What are your general impressions of the development of the application to
date?

2. Do you think the functionality of the application would be valuable to the
research staff at the facility?

3. How would you rate the overall usability of the application’s user interface?

4. Do you think the text descriptions of the various links and fields accurately
convey their purpose? Were there any descriptions in particular that you found to
be ambiguous or confusing?

5. Does the application present the researcher with all the necessary data
required to evaluate the candidate annotations and fragmentation spectra? Is
this conveyed in an appropriate manner?

6. Do you have any recommendations or suggestions for improving the user
interface?

7. Were there any points during the evaluation tasks that you became stuck? If
so, could you could you elaborate upon these?

8. Has the development of the application achieved what you envisaged to be the
outcomes of the project?

9. Are there any key elements of functionality you would like to have been added
to the application over the course of the project?

10. Were you satisfied with the process used to develop the application? In
particular, was the prototyping of the application valuable to you?

11. Do you believe that the current application provides the flexibility
required for future development?

12. What future development of the application do you envisage?

 29

Qualitative Evaluation of Candidate Annotations

 30

Appendix F README

The following are guidelines for the running of the FrAnK application...

FrAnK was developed on an HP 15 Laptop, consisting of an Intel Core i3-45005U
processor and 7.7 GB RAM, running the Ubuntu 15.04 operating system. PiMP,
including the dependencies described in section 2.4.2, was installed. To provide
clarity for future developers, additional packages were installed such as mysql-
server 5.6.25, r-base-core 3.1.2-2, wine 1.6.1:1.6.2, rabbitmq-server 3.2.4-1 and
oracle-java8 in addition to those stated in the ‘requirements_frank.txt’ document
of the application. The querying of MassBank is performed through Suds, a
python package providing a client for the sending and retrieval of SOAP
requests. The package should be included in the ‘requirements_frank.txt’ file.

In order to run the application, the set-up guide included within the PiMP
application should be followed, including the installation of any dependencies
such as ‘mzmatch.R’. However at this juncture, the population script of the
application should not be run. Whilst using the virtual environment created in
the PiMP setup guide, ensure that the command ‘pip install –r
requirements_frank.txt’ is also run to install the dependencies for the new
application.

To perform analysis in PiMP and the retrieval of candidate annotations from
FrAnK, it is highly recommended to future developers that mysqlserver and
rabbitmq are installed to allow for asynchronous processing as the SQLite
database commonly used in Django application development does not support
concurrent transactions. In addition to MySQL and celery, wine should be
installed. Upon installation, the mapping of the wine software to the file
hierarchy of the local system by the command line argument ‘winecfg’ and the
selection of the appropriate tab at the top of the GUI display. Having gained
familiarity with which directory corresponds to the ‘C:\\’ in wine, NIST 14 can
be installed to this location. In order to query the spectral reference libraries of
NIST 14, you will require the MS PepSearch program which must also be
installed through wine. The 64-bit version of MS PepSearch for Windows should
be compatible with the wine software.

It is recommended that once the installation of the dependencies associated with
FrAnK have been installed that the population script, ‘populate_pimp.py’ be run
to provide default values for both the PiMP and FrAnK applications. However,
prior to running the script, the hardcoded paths required as defaults for the
AnnotationTools should be amended to reflect the local installation. As such,
were a local installation of MassBank to become available, the address passed to
the SOAP client could easily be altered to a local port.

