
Computational Modelling of Red
Blood Cells

Josef Idris Khan

School of Computing Science
Sir Alwyn Williams Building

University of Glasgow
G12 8QQ

A dissertation presented in part fulfilment of the requirements of the
Degree of Master of Science at The University of Glasgow

September 15, 2014

Abstract

A mathematical model has been developed by Lew and Bookchin (1986) to describe be-
haviour of human red-blood cells under laboratory conditions. These authors also created
a computer program to numerically solve the set of equations in their model. This pro-
gram can simulate experiments in the laboratory and has proven useful over many years.
However, the program, written in the BASIC programming language, is now not very
portable. Moreover, the program has undergone numerous updates and extensions based
on published as well as unpublished work. There is, consequently, a need, in the interest
of scientific reproducibility, to update both the computer program and the documentation
for the red-blood cell model.

This dissertation reports the results of work carried out to attempt to document the latest
version of the revised red-blood cell model, as it is manifested in the computer program, as
well as create a new version of the computer program, in a modern programming language.

To carry out the project the original computer program had to be deciphered using the
source code, as well as several documents. Unfortunately, this proved to be a difficult and
time-consuming task. Consequently, neither the revised documentation nor the new com-
puter program were fully completed. Nonetheless, substantial progress was made. This
dissertation reports the results of the research work carried out to update the model docu-
mentation and the computer program.

Acknowledgements

I gratefully acknowledge the guidance and advice of my supervisor Dr. Simon Rogers
throughout this project.

I thank my client, Professor Virgilio L. ”Arieh” Lew, for his patience in answering my many
questions on his code and the science behind it. I had hoped that the computer program
and documentation produced in this project would prove useful to him, his colleagues, and
other researchers in the area of red-blood cell research, but alas, I did not seem to have
enough time to complete all parts of the project.

1

Contents

1 Introduction 5

2 Background 7

2.1 Human Red-Blood Cells (RBCs) . 7

2.2 Scientific Research on RBCs . 7

2.3 The Red-Blood Cell (RBC) Model . 8

2.4 The Computer Program of the RBC Model 9

2.5 Project Statement . 10

2.6 Rationale for the Project . 11

2.7 Literature Resources for the RBC Model . 11

2.8 Computer Program Resources for the RBC Model 12

3 Requirements 13

3.1 Stakeholders . 13

3.2 Requirements Capture . 13

3.3 Requirements Prioritisation . 14

3.3.1 Functional Requirements . 14

3.3.2 Non-functional Requirements . 16

3.4 Use Cases . 16

3.4.1 Use Cases Narrative Description . 16

3.5 Analysis of Requirements . 17

2

4 Deciphering the Computer Program for the RBC Model 19

4.1 Programming Language . 20

4.2 Program Documentation . 20

4.3 Comments in the Program . 20

4.4 Variable Labels in the Program . 20

4.5 Structure of the Program . 21

4.6 Modifications to the Program . 22

4.7 Equations used in the Program . 23

4.7.1 The Subject of the Equations . 23

4.7.2 Different Forms of the Equations . 23

4.7.3 Alternative Equations . 23

4.8 Algorithms used in the Program, etc., . 23

4.9 Magic Numbers in the Program . 24

4.10 Bugs in the Program . 24

4.11 Recalculations in the Program . 25

5 The Revised Human Red-Blood Cell (RBC) Model 26

5.1 The Equations used in the Model . 26

5.1.1 Equations from Conservation Laws 26

5.1.2 Equations that Define Specific Membrane Transport Mechanisms . . 30

5.2 The Procedure for using the equations in the RBC Model 34

5.3 The Algorithm used to calculate the Reference State of the RBC Model in
Lew and Bookchin (1986) . 34

5.4 The Algorithm used to calculate the Reference State of the RBC Model in
the old program . 36

5.5 The Algorithms used to calculate the RS for the new code 37

5.6 The Algorithms used to calculate the Dynamic State for the new code . . . 37

3

6 Software Design and Implementation 47

6.1 Software Architectural Pattern . 47

6.2 General Considerations . 48

6.3 Classes Design . 48

6.4 Model Classes/Objects. 50

6.5 View-Controller Classes . 50

6.6 The Algorithms used to calculate the Reference State 50

6.7 The Algorithms used to calculate the Dynamic State 51

6.8 Creation of the Code . 51

7 Software Evaluation 52

8 Conclusions 53

9 Future Work 54

4

Chapter 1

Introduction

Science could be described as the systematic study of phenomena to acquire new knowledge
based on measurements and logical reasoning. The method used to obtain that knowledge,
the scientific method, is a fundamental requirement for the study to be considered science.

The scientific method consists of a series of procedural steps to follow in the process of inves-
tigating a subject. These include, for example, carrying out observations or measurements
of the subject under investigation, attempting to explain those observations or measure-
ments with a hypothesis or theory, using the hypothesis or theory to make predictions about
the subject, carrying out further observations or measurements of the subject to test the
hypothesis or theory, analysing and interpreting those observations or measurements, and
modifying the hypothesis or theory if necessary.

An important aspect of the scientific method is that another person should be able to
independently confirm the results of the investigation to prove their validity. This requires
that the entire experiment with observations and measurements be reproducible. That is,
another person should be able to carry out the same experiment independently, but under
the same conditions, and find the same results (within the margins of experimental error).
This concept of scientific reproducibility is a crucial aspect of science and the scientific
method. Without it the results of an investigation cannot be considered to have been
verified or confirmed.

Science includes a number of areas such as formal sciences, applied sciences, natural sciences,
and social sciences. In all of these the scientific method must be followed. The natural
sciences include the physical and life sciences, such as, e.g., biophysics and biochemistry.
The applied sciences include, e.g., computer science.

The behaviour of a subject under investigation can be described on the basis of the results
of a number of observations without a detailed theory, in which case the description would
be termed empirical. The alternative approach would be to develop a detailed theoretical
description formulated using already established facts and logic, including mathematics.

To be scientifically valid the theory behind the description of the behaviour must be in-
dependently testable, or, in other words, falsifiable. That is, a person should be able to
independently test whether the theory is valid or not.

5

A mathematical model of a system consists of a set of equations that describe the system.
To investigate the behaviour of the system requires solving those sets of equations. Some
mathematical models can be solved analytically, that is by manipulating the symbols in
the equations of the model using established rules of mathematics.

However, some problems cannot be solved analytically. Such models could be solved com-
putationally (or numerically). That is, using techniques where approximations are used to
solve the equations. A typical approach is to consider a small step in the system, such as a
small time-step. During such a step a small change is made to one or more of the variables
in the equations and the changes in other variables are calculated. This is repeated for
many steps to determine the behaviour and development of the system. Computational
models, generally speaking, require the use of computers to solve the model.

Computational models are important because sometimes the system is too difficult to solve
analytically. This may be because the system is too complex to be solved analytically, or
an analytical solution is possible but too time-consuming to carry out. An example is a
model which involves numerous equations with a large number of variables. Computational
models are useful because they can be used to solve a wide range of problems. Further-
more, the simulations made by running the computational model can be considered to be
computational experiments. These can often be compared directly with actual laboratory
experiments. Consequently, some computational models can be used to predict behaviour
or results in experimental studies.

The project discussed in this dissertation is concerned with a computational model for
red-blood cells. The mathematical model has been modified numerous times, and, unfor-
tunately, the complete model is not fully documented anywhere. Consequently, one aim of
this project is to document that updated and modified red-blood cell model. In addition,
while a computer program for this computational model does exist, it has been created us-
ing an older computer programming language, which has a number of disadvantages. Thus,
another aim of this project is to re-write the old computer program as a new computer
program which uses a more modern programming language.

In Chapter 2 a brief description is given of the red-blood cell (RBC) model, including
published and unpublished work on that model. Furthermore, a brief account of the current
computer program is also given. The purpose and rationale for the project are outlined.
Requirements engineering aspects of the project are discussed in Chapter 3. Chapter 4
describes the main difficulty in this project, namely, the problems encountered deciphering
the old computer program. Using the various resources available and discussed later the
updated complete RBC model is fully documented. Chapter 5 presents this documentation.
The design and implementation of the software product produced in this project is described
in Chapter 6. An evaluation of that product is provided in Chapter 7. The main conclusions
of the project are given in Chapter 8, while possible future work is described in Chapter 9.

6

Chapter 2

Background

2.1 Human Red-Blood Cells (RBCs)

Human red-blood cells have a relatively simple structure compared to most other human
cells. The outer surface of the cell is the cell membrane and within this lies the gel-like
cytoplasm. In human red-blood cells the cytoplasm consists predominantly of the protein
haemoglobin which transports oxygen from the lungs to the rest of the body as the cells flow
as part of the blood pumped around the circulatory system. The haemoglobin in red-blood
cells also removes carbon dioxide from the body transporting it to the lungs to be expelled.
Mature human red-blood cells do not contain a nucleus, nor do they contain inclusions
in the cytoplasm that occur in many other cells. As with other cells, the red-blood cell
membrane facilitates the binding and transportation of ions and molecules between the cell
cytoplasm and the extra-cellular fluid.

The properties of a red-blood cell, such as the concentration of substances within it, can
change in response to changes in the environments inside and outside of the cell. Typically,
studies of red-blood cells examine the properties of the cells due to changes in the intra-
cellular and extracellular environment, as well as due to the various transport and binding
mechanism on the cell membrane.

2.2 Scientific Research on RBCs

Scientific research into human red-blood cells in the laboratory is an important area of
research that is relevant to the study of human physiology and to the study of diseases of
the blood, such as, e.g., sickle-cell anaemia.

Lew and Bookchin (1986) developed a mathematical model to describe the processes in-
volved in human red-blood cells. This red-blood cell (RBC) model is particularly useful for
comparisons with laboratory studies of such cells. As part of the modelling these authors
also created a computer program to numerically solve the equations in their mathematical
model. The paper by Lew and Bookchin (1986) describes both the mathematical model
and the results produced using the computer program.

7

While there are many areas of research in RBCs, this project is concerned specifically with
the model of Lew and Bookchin (1986) and subsequent developments of that model.

2.3 The Red-Blood Cell (RBC) Model

The mathematical model of Lew and Bookchin (1986) was the first model designed to
incorporate, as far as possible, all aspects relevant to the study of red-blood cells into a
single model. Previous models of red blood cells had only examined a limited number of
aspects. The mathematical model of Lew and Bookchin (1986) was designed to model
mature red blood cells, which are also known as erythrocytes. In particular, its purpose
was to incorporate, as far as possible, all aspects relevant to the study of such cells into a
single model. Previous models by other authors had only examined a limited number of
aspects. The integrated model of Lew and Bookchin (1986) was an important breakthrough
enabling the changes to the properties of red-blood cells to be studied comprehensively and
in detail for the first time.

In order to make the mathematical model of Lew and Bookchin (1986) tractable it was
designed to be comparatively simple. The model has now been used extensively since its
creation to study the behaviour of mature red-blood, which are also known as erythrocytes.

The model of Lew and Bookchin (1986) was later modified by Lew et al. (1991) to study
other blood-cells, namely immature red-blood cells, known as reticulocytes, which typically
survive for about 1 day in the blood, compared to about 120 days for mature red blood
cells (erythrocytes). The model of Lew et al. (1991) is relevant for the study of sickle cell
anemia.

Since its creation the computer program for the RBC model has been modified many times,
over many years. These revisions to the program were made to take into account further
refinements in the RBC model. Some of the changes or developments of the RBC model
have been published, e.g., Lew et al. (1991), which, for example, included, among other
things, transport processes across the cell membrane, which were not included in the original
model.

In addition, other changes to the program have been made based on as yet unpublished
work, such as an extension of the RBC model to take into account of the effects of magne-
sium and calcium transport across the cell membrane.

Furthermore, some of the changes to the computer program have involved not only the
inclusion of additional effects, but also modifications of how some of the original effects
were implemented. Consequently, at present, the latest revised version of the RBC model,
as represented by the current computer program of that model, is not fully documented
anywhere.

As mentioned in the Introduction, it is important that scientific results are reproducible.
Thus, to confirm their validity, the results of scientific research should be open to indepen-
dent scrutiny and testing. This applies not only to experimental work, but to theoretical
work too.

8

Consequently, it is important from the point of scientific scrutiny and reproducibility that
the latest revised version of the RBC model be documented.

2.4 The Computer Program of the RBC Model

As mentioned in the previous section, the latest version of the RBC model is not documented
in a published or an unpublished article. Although the complete RBC model is not fully
documented, another possible approach to fulfill the need for full scientific scrutiny of the
model might be via the computer program for the RBC model. Specifically, it might
be possible to determine the model either from separate documentation for the computer
program, from comments within the program itself, or following the code regardless of
comments.

Although the computer program has undergone numerous modifications, the documentation
for the computer program has not been kept up-to-date. Thus, the model cannot reliably
be determined from such documentation.

While it is true that the computer program does contain the latest version of the RBC
model there are a number of difficulties with the program which make it difficult for a
researcher to ascertain the model from it. The problems mainly relate to the following
points: the particular programming language chosen and how the computer program was
implemented. These are briefly described below.

The computer program is written in an older programming language, namely, the BASIC
(Beginner’s All-purpose Symbolic Instruction Code) programming language. The particular
dialect of BASIC used to create the computer program is the proprietary PowerBASIC,
which is based on the earlier TurboBASIC. The BASIC programming language in which
the computer program was constructed is now not very popular nor readily available for
a range of computers. Other programming languages have become more popular. Most
potential users of the computer program for the revised RBC model, other than Prof. Lew,
will, likely, not be familiar with the BASIC programming language.

However, even if a user is familiar with, or learns BASIC there still remain a number
of impediments to overcome with the current computer program. Each of the problems
mentioned below means that fully understanding and modifying the code is not easy for
such a user.

Generally, speaking, the computer program is not particularly well-commented. While
parts of the code are reasonably well-commented, other parts are not. This means that a
user of the current program has to attempt to decipher that code, which is time-consuming
and comparatively difficult.

The structure of the computer program is relatively difficult to follow. The code does
not use modern object-oriented design techniques, that is, it does not have a modular
design, which would make it much easier to follow and modify. Although PowerBASIC
does, apparently, support object-oriented programming, the old code used here was not
written using object-oriented programming. This is undoubtedly because the code was

9

written before object-oriented programming was popular. Later changes to the code did
not modify this overall design and approach.

As already mentioned the computer program has been modified incrementally over a number
of years. Many of the changes have been added in a somewhat unsystematic manner.
Consequently, the computer program does not have a particularly clear, or easy-to-follow
structure.

Ideally, a researcher in the field should be able to independently check and verify the validity
of the model in the computer program. As well as following the logic of the model in the
code such a user should be able to use the code. However, a significant problem with the
computer program is that it is not portable, that is, it is not usable on many different
types of computers. The compiled version of the computer program can be run without an
emulator on older 32-bit computers running Windows. However, the compiled executable
file can be also be run on more modern 64-bit machines, running Window, MacOS or Linux
using an emulator such as DOSBox (http://www.dosbox.com). The raw BASIC source code
itself could, possibly, also be run on more modern Windows machines using a more modern
PowerBASIC compiler. However this has not been checked. It requires the purchase of the
proprietary PowerBASIC software. Whether the raw BASIC source code could be run with
other BASIC compilers on more modern computers is unclear to this author. This has not
been investigated. Typically, current users of the computer program run it on older 32-bit
Windows machines. Such machines are becoming less common. This means that there are
difficulties running the computer program unless an older computer is available.

Moreover, modifications to the existing code are difficult due to the choice of the program-
ming language, the lack of full comments in the code, and the overall structure of the code,
which have already been mentioned in the context of following the model in the code.

The above observations indicate that the computer program could benefit by being written
in a more modern, portable and freely available programming language.

2.5 Project Statement

Basic considerations of the current state of the documentation for the RBC model and the
current state of the computer program of that model, which are both mentioned above,
indicate there is a clear need for an improvement for both.

Consequently, the aim of this project is two-fold:

• to document the latest version of the RBC model

• to re-write the computer program for the revised RBC model using a modern pro-
gramming language

Detailed requirements for this project will be discussed in Chapter 3.

10

2.6 Rationale for the Project

The revised RBC model and its computer program remain very useful to researchers in
the field. The manifestation of the model in code form enables a wide range of numerical
simulations to be carried out that are relevant to many experimental studies of human
red-blood cells.

It is therefore important, in the interests of open scientific scrutiny, that the revised RBC
model and its computer program should be available to and used by the widest possible
audience of researchers. To enable this, the complete revised model, as it now stands, needs
to be fully documented.

In addition, to overcome some of the drawbacks in the current BASIC computer program,
the code needs to be re-written. Specifically, the program needs to be written using a more
modern programming language, using modern programming techniques, with informative
program commenting and clear program documentation.

To create the new program for the revised RBC model, along with documentation for the
model and the program, requires that the full and relevant details of the model itself be
documented. To do this the literature on the RBC model, both published and unpublished
was examined. Furthermore, since it is the current BASIC computer program that contains
the most up-to-date version of the RBC model, it was necessary to thoroughly analyze that
code in combination with an examination of the documentation. However, for reasons that
will be explained in Chapter 4 a major difficulty in this project had been to decipher the
BASIC computer program.

2.7 Literature Resources for the RBC Model

In order to determine the details of the current version of the RBC model (as manifested
in the BASIC computer program) several papers were examined which describe different
aspects of the model. These are described below.

The original RBC model of Lew and Bookchin (1986) has already been mentioned briefly.
This article was the most important piece of literature in this project. The equations
and procedure presented in Lew and Bookchin (1986) were helpful in identifying some of
variables and parameters in the BASIC computer program as well as the procedures used
to solve the equations. Comparisons with the computer program, however, revealed some
differences in the procedures and the equations used.

The reticulocyte model of Lew et al. (1991) was also helpful in clarifying some of the terms
used in equations in the computer program. Although the RBC model does not attempt
to model reticulocytes, per se, some of the equations used in that model were helpful
in discerning terms and equations in the code. For example, that model was helpful in
identifying the addition of transport effects due to Na:Cl and K:Cl cotransporters.

Furthermore, the unpublished draft manuscript by Weiss and Lew (2014) on a cellular
homeostasis simulator also provided a useful description of the variables, parameters, pro-

11

cesses and equations involved in the RBC, from a more general perspective.

Examination of the computer program also indicated new material was added to include
calcium and magnesium in the model. An an unpublished draft manuscript by Lew (2014a)
on the calcium and magnesium extension to the model was helpful in elucidating those
aspects of the code.

Furthermore, electronic communication with the client, Prof. Lew, helped provide clarifica-
tion on a number of points in the papers and in the computer program. This communication,
moreover, led to agreement on some minor changes for the proposed new code.

2.8 Computer Program Resources for the RBC Model

There was some documentation pertaining directly to the code that was useful.

The main resources used to analyse the code were the BASIC source code itself, called
M1.BAS, see Lew (2014b). This was created by Lew and Bookchin (1986) and modified by
Prof. Lew over many years (from 1986 until the present). This source code can be opened
using a text editor and examined directly.

Furthermore, Prof. Lew provided two unpublished pieces of printed information that were
helpful in understanding the computer program. One was a set of notes on modelling
cellular homeostasis by Weiss and Lew (2014) which was mentioned earlier, while the other
was a general guide to using the BASIC program in practice by Lew (2000).

In addition, a precompiled executable version of the program was provided by the client,
called M1.EXE To run the computer program for the RBC model this executable file was
run on an old laptop running the Window XP operating system.

12

Chapter 3

Requirements

3.1 Stakeholders

There are two types of intended stakeholders for the software (computer program) and
documentation products to be developed. Both types of stakeholders are envisaged to be
researchers in the field of RBCs who are familiar with the science in that field.

One type of stakeholder will be assumed to unfamiliar with the Java programming language.
Such stakeholders will be referred to as users. They will be able to use the software, follow
the documentation for the model, but not necessarily follow or modify the Java code itself
with confidence. The client for this project, Prof. Lew, is considered to be a user, and is
the main stakeholder.

Another type of stakeholder will be researchers who are familiar with the Java programming
language. Such users will be referred to as programmers. As well as being able to use the
software and follow the documentation for the model, these users will be able to examine
the code directly and modify it. They will be able to the validity of the model in the code
and change it.

3.2 Requirements Capture

The principal way that the requirements for the system were determined was by (electronic)
communication with the client, Prof. Lew. The basic intention is that the new computer
program must, as far as possible, provide all of the functionality of the original computer
program. However, for this program to be created and for it to be used effectively also
requires that the latest revised version of the RBC model be fully documented.

13

3.3 Requirements Prioritisation

3.3.1 Functional Requirements

After the requirements for the system were identified they were prioritised. The MoSCoW
prioritisation approach, commonly used in software development, was used to specify the
importance placed on each requirement. That is, the requirements are identified as the
following:

Must: those that are essential and must be implemented for the system to work properly

Should: those that are desirable, but not essential for the product to work properly

Could: those that could be implemented, if time permits

Won’t: those that are possible, in principle, but won’t be implemented.

In the description given below the functional requirements along with their prioritisation.
In addition a brief summary and rationale for each requirement is also noted with bullet
points.

The functional requirements listed below have been identified for the system. The sys-
tem/product:

1. Must:

(a) carry out the same calculations as the original code (except where agreed with
the client)

• necessary so that the new code can be use as a replacement for the old code

(b) allow the user to input and modify the variables and parameters in the model
that are modifiable in the original code (via a GUI interface)

• necessary so that the new code can be use as a replacement for the old code

(c) give the same numbers in the output data as the original code for the same
experimental conditions

• to ensure that the code is working correctly

(d) output the data in a similar format and to files as is done in the original code

• to enable the results of the new and old codes to be compared, to confirm
the new code gives correct results, and to facilitate users following their
previous approach of importing the results into Microsoft Excel to plot out
the results. (In the future the output formats could be changed).

(e) have the complete RBC model documented

• so that the revised model can be examined and checked by others

(f) be written using a modern programming language that is platform-independent

• to ensure that the software is portable, i.e., usable on a wide range of com-
puters with different operating systems.

14

(g) be written using a modern programming language that is freely available

• to support the principle that the software available to the widest possible
audience

(h) be written using object-oriented programming techniques

• to provide a logical, easy to follow structure, with a modular design, so that
future modifications readily be carried out by programmers

(i) have the program written with detailed comments in the code

• to enable the program to be easily understood and modified by programmers

2. Should:

(a) include, if possible, all options for modifying the experimental conditions in the
original code

• the initial aim is to get the code to work for default settings and then suc-
cessively add different options. Since the code was discovered to be more
complex than had initially been anticipated not all options may be incorpo-
rated, nevertheless, including them would be desirable.

(b) have a user guide for the program

• although the software will work without a guide, this requirement is desirable
to use the software more effectively

(c) have a glossary for all of the parameters and variables used in the program

• although the program could be examined using the in-line comments in the
code, a glossary would assist a programmer to be able to understand and
modify the code more easily

3. Could:

(a) provide a GUI interface to plot the output results

• This is not required for the software to work effectively. The old program
doesn’t do this. Currently users of the old code simply import the output
text files into Microsoft Excel in order to plot the results. However, this
would be nice to have if possible.

4. Won’t:

(a) include a web-based interface

• This might make the software even more available and accessible, however,
it won’t be possible to do this in this project. It is beyond the scope of this
project. It is mentioned because it could possibly be considered as a future
development

(b) be fully tested by several different users nor for a wide range of conditions

• that is, the number and type of tests will be limited due time constraints.
The reason for this is due to difficulties in producing the software product.
These are discussed later. They meant more time was spent on other aspects
of the project.

15

3.3.2 Non-functional Requirements

The main non-functional requirements for this project are the following. Some functions
which might otherwise be deemed non-functional in other systems, such as accessibil-
ity/availability, portability, being well-documented are considered functional in this project.
Hence, it should be borne in mind that this requirements exist, but are considered functional
here.

The system/product shall be:

1. Dependable/Reliable:

• that is, the software should not generally not fail to produce output, i.e., should
not fail to converge, more than the original code. Also the software note fail,
but rather should alert the user if invalid input is provided.

2. Maintainable:

• that is, the software should be easily maintainable by programmers, enabling
them to quickly and easily o modify the code to correct mistakes or errors, or to
add improvements to meet new requirements.

3. Usable:

• that is, the software should be easy to learn to use by users and programmers.
This means the interface should be intuitive and easy to use, with clear instruc-
tions and that the program documentation is helpful.

4. Testable:

• that is, the system should be easy for a user to test the output results are
correct. It should also be easy for a programmer to modify the code to carry
out additional tests.

3.4 Use Cases

The use cases scenarios were determined from the current functionality of the old program.
As already mentioned two types of actors are envisaged, users and programmers. To explain
the use cases, a narrative description is given below on how each actor can use the system.

3.4.1 Use Cases Narrative Description

A user receives the software package along with the documentation. The user reads over
the documentation. The user can use this to check the validity of the model. Then the
user starts the software application. The user is presented with a GUI to set up the initial
starting conditions of the experiment. The GUI shows the values of variables, some of which
are set to default values and others of which are calculated. The user is able to change

16

some of the set variables. To effect the changes made by the user the user can instruct the
software to recalculate all variables using the new input values. The user can accept the
displayed variables as specifying the initial starting conditions. The user is presented with
a GUI to set up and run a simulated experiment. The GUI shows the values of variables,
some of which are set to default values and others of which are calculated. The user is able
to change some of the set variables. The user is also able to choose from a range of options
to alter the experimental conditions. The user can choose whether additional variables are
required for output compared to the standard sets. The user chooses how the results should
be output. The user can then instruct the program to run the simulated experiment.

A programmer can perform all of the steps that the user can perform. In addition, the
programmer can also do the following steps. The programmer can read the source code for
the software (which is commented) The programmer can use these to check the validity of
the code. The programmer can also modify the code and run the modified code.

3.5 Analysis of Requirements

The main requirement for the system-to-be was that the software product, the computer
program for the revised RBC model, gave results which match those of the old program.
The correctness of software was checked at the software evaluation stage.

In order to ensure that the new program produced the same results as the old program
it was necessary to determine the details of the revised RBC model and incorporate them
into the program. This required, principally the deciphering of the old code using various
resources. This is discussed further in Chapter 4.

As well as producing the new program an essential requirement was also to fully document
the revised RBC model. This was done at the same time as creating the new program using
the resources discussed in Chapter 4. The revised RBC model is documented in Chapter 5.

The new computer program for the RBC model was chosen to be implemented in the Java
programming language. The reasons for this choice were the author’s familiarity with this
language, the presumed general familiarity of potential users of the program, and the fact
that the language is platform-independent, is an object-oriented programming language,
and because the language has a wide range of libraries and tools which could be used for
the further development of the code.

In order that the code enable user input and also to be user-friendly it was decided to use
a graphical user interface as part of the software. The graphical interface will use the Java
swing libraries. To further enhance usability it was decided that the variables displayed in
the GUI be given labels according to conventions in the research field. However, in the code
itself they are given more descriptive labels to avoid any confusion as to their meaning.

The proposed interface is intended to be intuitive and user friendly. It should be noted that
users of the software product, which are called ”users” and ”programmers” are assumed to
be knowledgeable in the field of research of RBCs. An arbitrary non-specialist is not the
intended target user of the software.

17

In order that the new code be maintainable the arrangement of variables and calculations
in the code should be arranged in a logical manner. Furthermore, the sequence of steps in
the code should be as logical and easy to follow as possible. To facilitate maintainability
the code will be arranged into classes and objects that are logical.

On the topic of testability, standard Java programming practices will be followed to ensure
testability. There will be separation of concerns, by the choices of appropriate classes and
variable labels. The code will be well-commented so that the various parts of the code can
be easy to follow. Moreover, the code will use of get and set methods for all variables so
that they can be obtained and set safely for testing, etc.

The original old code and many details, including unpublished work were provided by
the client. I am happy to provide the work reported in this project as a service to the
client. Specifically, I do not claim any rights to copyright over the software product or
documentation. I leave it to the client to decide on the copyright licensing.

The plan for implementing the functional requirements is given in System Design Stage
described in Chapter 6.

While the requirements for this project can be specified and prioritised and later discussed
how they will be implemented it is pertinent to consider whether there are any risks in
this project. Upon careful consideration it is clear that there is a potential major risk in
this project. Specifically, there is a risk that the details of the current old code cannot be
deciphered. This would hinder documentation of the full model and creation of the new
code. There is a risk that the deciphering may be difficult and more time-consuming than
anticipated. This risk will affect the effectiveness of the whole project.

In order to determine the model and then document the model, the algorithms used in the
code need to be determined. This was determined by a in stages using documentation and
the old code. This is discussed in Chapter 4.

18

Chapter 4

Deciphering the Computer
Program for the RBC Model

A major task in the project was to decipher the complete model as it now stands. To do
this the following sources of information were used:

• the original RBC model of Lew and Bookchin (1986)

• the reticulocyte model of Lew et al. (1991)

• the unpublished draft manuscript by Weiss and Lew (2014) on a cellular homeostasis
simulator

• the unpublished draft manuscript by Lew (2014a) on the calcium and magnesium
extension

• the unpublished notes by Lew (2014c) on modelling cellular homeostasis

• a guide by Lew (2000) to using the BASIC program in practice

• the source code for the current BASIC computer program, called M1.BAS obtained
from the client.

All of these sources of information were used together to determine the revised mathematical
model. Specifically they were used to determine the equations in the model, the meanings
of terms in those equations and the steps in the calculations. Once the details of the model
are understood the software product, i.e., the new program, was created.

The difficulties a user may have in understanding and modifying the computer program
for the RBC model have already been mentioned briefly. These are also pertinent to the
difficulties for the analysis and deciphering of the program in this project. These and other
difficulties with the program will now be discussed in more detail. Due to the difficulties
mentioned below considerable time and effort in this project was expended deciphering the
BASIC computer program for the RBC model.

19

4.1 Programming Language

The computer program for the RBC model is currently written in an old programming
language. It was necessary for the author to learn this language, at least partially, to be
able to understand the code.

4.2 Program Documentation

While there is some documentation explaining how to use the code and aspects of the
model, such as Lew (2000), it is now out-of-date. It does not document the full model used
by the code. This is because the code has undergone numerous modifications.

4.3 Comments in the Program

As has been mentioned earlier, the computer program is not particularly well-commented,
particularly those parts relating to changes to the original model. This makes following the
code difficult especially when calculations are carried out which do not seem to match the
documentation.

4.4 Variable Labels in the Program

In this discussion the term variable is used to indicate a variable in a computer program.
This can relate to a variable, parameter, or constant as used in the scientific sense.

The variables in the program are often not commented and, moreover, are given obscure
labels such as A(1), A(2), A(6), B(5), B(7), B(8), I(25), I(52) etc. It was thus difficult
to determine what the variables are in the code referred to in the model. Some variables
are documented in the code or are given in a glossary to the program guide with more
informative symbols enabling them to be inferred. However, many variables are not listed
in that glossary. An example of uncommented, obscure labelling is the following at the
beginning of the code:

’RS values of parameters and variables

370 A(1)=-10#:A(2)=6.450000000000004D-02:A(3)=.0258#:A(4)=7.2#

A(6)=0.01#:A(9)=34#

430 B(7)=1.5#:B(8)=37#:B(9)=4#:B(10)=2#

450 C(1)=10#:C(2)=140#:c(3)=95#:D(6)=0.001#:d(12)=0.0001#:E(8)=2d-10

490 M(1)=145#:M(2)=5#:M(3)=145#:M(5)=10#:M(7)=0#:M(9)=0#:M(10)=0#

i(77)=7.216#:i(78)=0.4#

Some of the variables like C(1), C(2), M(1), M(2) are defined in the aforementioned glossary,
others are not. Some of the variables can be deduced from later information which is given

20

when values are printed out. Determining the meaning of the labels used in the code was
not a trivial matter.

Another example of poorly commented labelling is the following:

’Default values if Mg screen is skipped

a23camk=10

a23mgmk=10

a23caik=10

a23mgik=10

mgt=2.5:q(7)=mgt

mgto=0.2

q0=0.05

atp=1.2

dpgp=15

V(2)=(1-A(11))+V(1)

gosub mgnr:’computes mgf in RS

pmg=0.01

Some of these are described later in the code:

input "MgoT? Default=0.2 mM. ENTER for default or change to: ",mgto

. . . .

print "MgiT? (in mmole/loc); default=2.5. This gives Mg2+ of about 0.3 "

print "mmole/lcw in oxygenated red cells with the default ATP+P and (2,3-DPG+P)

input "concentrations of 1.2 and 7.5 mmole/lc offered below. ",mgt

. . . .

input "ATP+P? (in mmole/loc); ENTER for default=1.2: ",atp

. . . .

input "2,3-DPG and other organic phosphates? (in mEq P/loc); ENTER for default=15:",dpgp

However, even with this information, the meaning of the variables is not immediately clear
to a non-expert.

4.5 Structure of the Program

The structure of the code is not straightforward, with many jumps to different parts of
the code with GOTO and GOSUB commands. This makes following the logical sequence
difficult. This fragment of code provides an example of this difficulty.

21

2810 IF I(58)=5 THEN GOTO 5750

. . . .

2850 ’.................Experimental changes begin here......................

2870 CLS 2890 PRINT "1. TIME FACTORS.":PRINT

2910 IF (T(1)*60)=0 THEN GOTO 2930 ELSE GOTO 2990

2930 PRINT "Type a new value then ’Enter’ (or ’Enter’ alone for default values)."

2950 PRINT

2970 INPUT "LENGTH OF EXPERIMENT in minutes: ",T(4):PRINT

2990 IF (T(1)*60)=0 THEN GOTO 3030 ELSE GOTO 3010

. . . .

5750 CLS 5770 IF R=2 THEN GOTO 16230

5790 IF T(4)=0 THEN 5810 ELSE 5850

5810 PRINT "YOU MUST ENTER THE LENGTH OF THE EXPERIMENT!"

5830 GOTO 2970

5850 PRINT "After"; T(4); "minutes will you wish to make further changes, Y/N";

5870 INPUT A$: PRINT:

5890 PRINT "Satisfied with entries (ENTER) or start again (1)?: "

5910 INPUT "NB. Entering 1 will rerun the reference state! ",I(49)

5930 IF I(49)=1 THEN GOTO 250

4.6 Modifications to the Program

As previously mentioned the code has been developed over time. Some previously used
equations and assumptions were modified, and additional effects were also incorporated.
Direct comparison with, say, the original model of Lew and Bookchin (1986) did not always
help clarify the meaning of code. If after examining all of the documentation and the code
the code remained unclear (electronic) communication was made with Prof. Lew to help
clarify the modifications in the code.

810 ’Protonized buffer concentration

pkhepes=7.83-0.014*b(8)

a(5)=10^(-pkhepes)

Here a(5) is the dissociation constant of the extra-cellular H-buffer, KB, and rather than
being given as a constant in the original model, is now expressed as a function of the
temperature (in Celsius), b(8).

22

4.7 Equations used in the Program

4.7.1 The Subject of the Equations

Although the RBC model of Lew and Bookchin (1986) outlines the steps in the computa-
tions in that model, in many cases the subject of the equations had to be changed to be
able to use those equations as specified. Although not difficult, this time-consuming process
had to be carried out by the author before some of the equations in some steps could be
expressed explicitly. A full account of the algorithms used in the revised code, along with
the explicit equations used is given later in this report.

4.7.2 Different Forms of the Equations

Different forms of the Equations used the Program

Furthermore, some of the equations in the code, although they have all of the variables
expected, the equations appear to be different from those in the documentation. Upon
further examination this was determined to be due to the ability to express the equations
in different ways. For example, from Lew and Bookchin (1986) there is the coefficient

(Cc − Cme−k)

(1− e−k)
(4.1)

in the calculation of one of the types of fluxes but in the computer program the coefficient
is written as

(Cm − Ccek)

(1− ek)
(4.2)

These are, in fact, entirely equivalent. However, the point here is that all the equations
in the code had to be checked and compared with the equations in the papers. And any
apparent differences checked and resolved.

4.7.3 Alternative Equations

In some cases, different equations were used to calculate some of the variable. Sometimes
this was due to the fact that there was more than one equation already referred to in the
model which could be used, in other cases it was because the new equations were added
to the model. One example concerned the calculations of some of the fluxes. According to
the paper, the fluxes were to be calculated from the equation for total fluxes, whereas in
the code the fluxes were calculated from their own equations. This was not incorrect, in
principle, but the equations used did differ.

4.8 Algorithms used in the Program, etc.,

The order of some steps in the procedures were found to be different from the documen-
tation. This was determined not from the code but simple logic. For example, the initial

23

osmotic coefficient of haemoglobin, foHb, needs to be calculated before the quantity of the
impermeant intracellular anion, QX , rather than the other way around as given in steps
proposed in Lew and Bookchin (1986).

In addition, the sequence of some of the steps in the procedures are differed from that in the
code. Furthermore, additional steps were included in some places in the code, apparently
due to the inclusion of additional effects.

4.9 Magic Numbers in the Program

The code contained numerous examples of magic numbers, that is numbers used in the
code which would have been better given with named variables are constants.

Some examples include the following:

V(6)=-(8.615600000000004D-02)*(273#+B(8))*LOG(V(7))

where the first term is due to the ideal gas constant divided by the Faraday constant.

mgb=mgb0+((atp/v(2))*mgf/(0.08+mgf))+((dpgp/v(2))*mgf/(3.6+mgf))

where 0.08, 3.6 are dissociation constants and should better be expressed using variables.

In addition some of the equations had explicit coefficients relating to the valences of the
ions, such as +2, -2, +1, and -1. Many of the equations in the published papers do not
include explicit mention of the valences of the ions in the equations - just the use of magic
numbers. However, the draft by Weiss and Lew (2014) was helpful in clarifying the verbose
forms of some equations.

4.10 Bugs in the Program

There appear to be some (presumably minor(?)) bugs in the old computer program.

For example, although the medium concentrations of Na+ and anion, A−, given by Cm
Na

and Cm
A are set early in the code, they are (presumably inadvertently) adjusted later due

to code that was used by Prof. Lew while experimenting about adding some effects to
account for the adjustments of pH (Lew, private communication). Consultations with him
revealed that such changes should not be made at that stage in the code. Although these
adjustments only change the values slightly, they are, nonetheless, incorrect and confusing.

Another possible bug is the inclusion of the total quantity of Mg (which has bound and free
components) along with the quantity of the free ions of Mg in the equation for the sum of
quantities in the medium. This appears to be inconsistent with the closely related sum of
concentrations in the medium where only the free ions of Mg are included.

24

4.11 Recalculations in the Program

The way the code is designed it seems to unnecessarily recalculate some variables and
parameters. For example, some of the initial values for the total fluxes, such as ΦNa, ΦK ,
and ΦCo, are set in the initial conditions, but the very same fluxes are later recalculated
from other variables. These changes do not significantly change the values of the fluxes.
Nevertheless, this led to some confusion as to what the code was doing. While the step with
the calculations for such fluxes is appropriate after the initial conditions it is unnecessary
for setting/calculating the initial conditions.

25

Chapter 5

The Revised Human Red-Blood
Cell (RBC) Model

For simplicity the system is assumed to consist of two distinct regions, (the interior of) a
single red-blood cell and the extra-cellular fluid in which it is suspended. These are referred
to as the cell and the medium. The conditions, properties and substances contained within
each of these regions can, in principle, vary. The two regions are separated by the cell
membrane which facilitates the transportation of substances between the two regions.

5.1 The Equations used in the Model

The equations used in the Human Red-Blood Cell (RBC) Model are now considered in
detail.

5.1.1 Equations from Conservation Laws

The law of conservation of mass leads to the conservation of water volume.

Conservation of Water Volume

Water is the solvent inside the cell and the medium. The passive diffusion of water is osmosis
and it depends on the number of solute particles. The total osmotic pressure of the solution
in each compartment is assumed to be the sum of the osmotic pressure contributions of all
the component solutes in the solution. The osmotic pressure of the cell solution is given by

Πc = ΣkΠc
k (5.1)

where Πc is the total osmotic pressure of the cell solution, Πc
k is the osmotic pressure

component of the solution for solute k in the cell water, and Σk indicates summation over
all relevant solutes in the cell.

26

Similarly,
Πm = ΣjΠ

m
j (5.2)

where Πm is the total osmotic pressure of the medium solution, Πm
j is the osmotic pressure

component of the solution for solute j in the medium water, and Σj indicates summation
over all relevant solutes in the medium.

Conservation of water volume implies that Πc = Πm. This leads to

ΣkΠc
k = ΣjΠ

m
j (5.3)

All relevant solutes for each region (i.e., cell or medium) need to be included in the above
equation. In particular, solutes that are transportable between the regions (termed perme-
ant) and those that are not transportable (impermeant) must be included. The permeant
ionic solutes are: Na+, K+, Ca2+, Mg2+, H+, and OH− and A−, where A− stands for a
permeant anion (such as chloride (Cl−) or hydrogen carbonate (bicarbonate) (HCO−

3)) and
the other symbols represent the elements. Generally speaking, A− can be assumed to be
the same as Cl−. The above permeant ionic solutes have concentrations both in the cell
and in the medium.

Impermeant solutes for the cell include Hb ad X, where Hb stands for the hemoglobin
molecule and X stands for an impermeant intracellular anion that is not protonizable (that
is, unable to add a proton or H+ ion).

As for the medium, one impermeant solute is, BT , the total (impermeant) extracellular
H-buffer. This actually comprises two components a) a bound form, BB and b) a free
form, B−

F . The free form is a monovalent anion. Other impermeant solutes include Y−,
an impermeant extracellular monovalent anion (such as the gluconate ion (C6 H11 O−

7)),
Y+, an impermeant extracellular monovalent cation (such as the glucamine ion(C6 H15 N
O+

5)), Y0, an impermeant extracellular electrically neutral molecule (such as sucrose (C12

H22 O11)).

Furthermore, magnesium and calcium can occur in bound form as well as the free-form of
bivalent cations already mentioned. These forms can exist in both the cell and the medium.
The total magnesium and calcium are indicated by MgT and CaT , while the bound forms
are indicated by MgB and CaB. To avoid confusion the free-forms will sometimes be referred
to as MgF and CaF instead of Mg2+ and Ca2+.

Furthermore, Ca2+ ions within the cell can be studied by the introduction of a substance
called benz2. The latter is a Ca2+ chelator (i.e., a substance that binds the Ca2+ ions). It
has an effective electrical charge of -2. In this report benz is used to indicate benz2. Thus
Qc

benz stands for the quantity (amount) of benz2 in the cell.

Ethylene glycol tetraacetic acid (EGTA) and ethylene diamine tetraacetic acid (EDTA) are
ligands, that is, molecules which bond to a central metal ion. They are useful as chelating
agents for Ca2+ ions in the extra-cellular fluid. They each have an effective electrical charge
of -1. Since only one of these will be used at any given time, in this report EDGTA is used
to indicate either EGTA or EDTA.

Water molecules (H2O) can dissociate into molecular hydroxide ions (OH−) and hydrogen
ions (H+):

H2O ↔ H+ +OH− (5.4)

27

For aqueous media the equilibrium condition for water dissociation in the physical con-
ditions applicable to cells in vivo is with Cr

HC
r
OH = 10−14 M where Cr

H , Cr
OH are the

concentrations of solutes H and OH in region r (in mole (M)). Neutrality occurs with
Cr
H = Cr

OH = 10−7 M = 10−4 mM. These concentrations are much smaller than the con-
centrations of other relevant solutes, as well as the numerical computational errors of the
other terms. Consequently, H+ and OH− may be ignored in the osmotic balance equation
(also referred to as the isotonicity equation).

Reiterating, the relevant solutes for the cell, for the purposes of osmotic pressure balance,
are (i.e., k =) Na+, K+, Ca2+, Mg2+, A−, benz2−, and Hb, and X, (the electrical charge
of the last two can vary). The relevant solutes for the medium, for the purposes of osmotic
pressure balance, are (i.e., j =) Na+, K+, Ca2+, Mg2+, A−, BT , Y−, Y+, Y0, and EDGTA−.
Note BT = BB + B−

F .

Henceforth, k and j will refer to the solutes but without explicit indication of the electrical
charge, except for the Y solutes. Thus the relevant values for k are k = Na, K, CaF , MgF ,
A, Hb, X, benz, and for j are j = Na, K, CaF , MgF , A, B, Y−, Y+, Y0, EDGTA.

The osmotic pressure of an ideal solution with low concentration can be derived from van’t
Hoff’s equation (also known as the Morse equation):

Πr
s = Ck

sRTi (5.5)

where Πr
s is the osmotic pressure of solute s in region r, Cr

s is the concentration of solute
s in region r (in moles/L), R is the ideal gas constant (8.314 J K−1), T is the absolute
temperature (in Kelvin), and i is the dimensionless van’t Hoff factor which is the number of
ions or molecules into which the dissolved species dissociates. This equation is only valid for
very dilute solutions. The equation can, however, be extended to non-ideal solutions and
for more concentrated solutions using correction factors called osmotic coefficients. Thus
the equation above becomes

Πr
s = fsC

r
sRTi (5.6)

where fs is the osmotic coefficient for solute s.

It should also be noted that the osmotic coefficient of hemoglobin unbound to protons is
assumed the same as that for hemoglobin bound to protons.

So from equations (5.3) and (5.6)

fNaQ
c
Na + fKQ

c
K + fMgFQ

c
MgF

+ fCaFQ
c
CaF

+ fAQ
c
A + fHbQ

c
Hb + fXQ

c
X + fbenzQ

c
benz =

V c
w(fNaC

m
Na + fKC

m
K + fMgFC

m
MgF

+ fCaFC
m
CaF

+ fAC
m
A + fBC

m
B + fY −Cm

Y − + fY +Cm
Y + +

fY 0Cm
Y 0 + fEDGTAC

m
EDGTA) (5.7)

where Qc
k is the amount (i.e., quantity) of solute k in one litre of original packed cells, which

is given by
Qc

k = V c
w × Cc

k (5.8)

where Cc
k is the concentration of solute k in the cell and V c

w is the volume of cell water.

28

Usually, the osmotic coefficient of all solutes bar hemoglobin are assumed to be unity. Thus
the equation for osmotic pressure is thus given by:

Qc
Na +Qc

K +Qc
MgF

+Qc
CaF

+Qc
A + fHbQ

c
Hb +Qc

X +Qc
benz

= V c
w(Cm

Na + Cm
K + Cm

MgF
+ Cm

CaF
+ Cm

A + Cm
B + Cm

Y − + Cm
Y + + Cm

Y 0 + Cm
EDGTA) (5.9)

Following McConaghy and Maizels (1961) and Freedman and Hoffman (1979) the osmotic
coefficient of hemoglobin is given by the empiral equation

fHb = 1 + b
Qc

Hb

V c
w

+ c

(
Qc

Hb

V c
w

)2

(5.10)

where b and c are virial coefficients.

Equation (2.9) can also be re-written as

fHb = 1 + bCc
Hb + c (Cc

Hb)
2 (5.11)

where Cc
Hb = Qc

Hb/V
c
w.

Conservation of Electroneutrality

The electrical charge of each region (cell or medium) must remain neutral. That is,

Σkq
c
k = 0 (5.12)

and
Σjq

m
j = 0 (5.13)

where qck is the total electrical charge of solute k within the cell and qmj is the total electrical
charge of solute j in the medium.

The total electrical charge of solute i in the cell is given by

qck = zkQ
c
k (5.14)

where zk is the valence (i.e., mean net electrical charge number) of solute k and Qc
k is the

amount (i.e., quantity) of solute k in one litre of original packed cells.

As before we will ignore the contributions from solutes H+ and OH−. Thus charge neutrality
within the cell is given by

zNaQ
c
Na + zKQ

c
K + zMgQ

c
Mg + zCaQ

c
Ca + zAQ

c
A + zHbQ

c
Hb + zXQ

c
X + zbenzQ

c
benz = 0 (5.15)

From Lew and Bookchin (1986) the valence (or mean net electrical charge) of hemoglobin
is given by

zHb = a(pHc − pIc) (5.16)

where a is the coefficient representing the slope of the titration curve (in mEq/mmol), pHc

is the cell pH, and pIc is the cell pH when zHb = 0.

29

Electroneutrality in the cell means the valence of the impermeant intracellular anion, X,
can be determined from:

zX = −
(zAQ

c
A + zbenzQbenz + zNaQ

c
Na + zKQ

c
K + zMgFQ

c
Mg + zCaFQ

c
Ca + zHbQ

c
Hb)

Qc
X

(5.17)

5.1.2 Equations that Define Specific Membrane Transport Mechanisms

Membrane transport processes may be divided into two broad categories, namely, active
transport and passive transport. Transport processes across the cell membrane are selective
and only transport a specific subset of solutes.

Passive transport involves three types of diffusion, namely, simple diffusion, channel-mediated
diffusion, and carrier-mediated diffusion. The latter two are both also considered to be facil-
itated diffusion. In each of the different types of passive transport the solute is transported
from the region of high concentration to the region of low concentration.

For active transport the processes are pump-mediated. The pump on the cell membrane
transports one or more specific solutes from the region of low concentration to the region
of high concentration for that solute, i.e., against the solute concentration gradient. The
pump uses the energy released by the breakdown of adenosine triphosphate (ATP) molecules
within the cell to effect the transportation.

In the case of simple diffusion small uncharged polar molecules like water (H2O) as well as
lipid-soluble (hydrophobic) molecules (such as O2, CO2) can diffuse across the cell mem-
brane. However, large uncharged polar molecules, such as sucrose, as well as (electrically
charged) ions such as Na+, K+, Ca2+, Mg2+, and Cl− cannot transport by simple diffusion.

Facilitated diffusion is where diffusion is helped by transport proteins in the cell membrane.
There are two types, carriers and channels. These can be used to transport solutes in the
direction of the solute concentration gradient.

The total flux of the solute s through the cell membrane is given by

Φs = ΣMΦM
s (5.18)

where Φs is the total flux of the solute s through the cell membrane and ΦM
s is the flux

of the solute s through the cell membrane for cell membrane transport mechanism M .
The summation is over all transport mechanisms. The relevant cell membrane transport
mechanisms, M , differ for each solute s, as described below.

The original model of Lew and Bookchin (1986) modelled “passive” transport by leaks,
or low-saturation facilitated diffusion, however the code was later upgraded to model this
instead as due to co-transport with Cl−, referred to here as NaA cotransport and KA
cotransport, where, as before, A is taken to be an anion (typically Cl−).

The different transport processes across the cell membrane will now be discussed briefly.

30

The sodium-potassium pump

The flux of sodium through the sodium-potassium pump is given by

ΦP
Na = −Φmax

Na

 Cc
Na(

Cc
Na +KmNa

[
1 +

Cc
K

KIK

])

3 Cm

K(
Cm
K +KmK

[
1 +

Cm
Na

KINa

])

2

(5.19)

where Φmax
Na is the sodium efflux through the sodium-potassium pump saturated with in-

ternal sodium and external potassium at the ATP levels of normal RBCs, and where coef-
ficients KmNa , KIK , KmK , KINa

, represent the dissociation constant for Na activation of
the sodium-potassium pump in the cell, the dissociation constant for K inhibition of the
sodium-potassium pump in the cell, the for dissociation constant for K activation of the
sodium-potassium pump in the medium, and the for dissociation constant for Na inhibition
of the sodium-potassium pump in the medium.

The sodium-potassium pump pumps 3 Na+ ions out of the the cell while pumping 2 K+

ions into the the cell. Thus the flux of potassium through the sodium-potassium pump as

ΦP
K = −2

3
ΦP
Na (5.20)

The Calcium Pump

Usually there is a large transmembrane electrochemical gradient of Ca2+ which drives Ca2+

into the cell. However, the Calcium (Ca2+) pump is a transport protein in the cell membrane
which counters this effect by actively transporting Ca2+ out of the cell.

Goldman-type electrodiffusion

Goldman-type electrodiffusion refers to facilitated diffusion via electrodiffusional channels.
That is the ions diffuse across the cell membrane due the presence a voltage (or an electrical
potential difference) across the cell membrane. The diffusion depends on the electrical
potential across the membrane as well as the concentrations of ions inside and outside of
the cell.

The flux equation for Goldman-type electrodiffusion is given by

ΦG
i = PG

i zi
EF 2

RT

Cc
i − Cm

i exp
(
− ziEF

RT

)
1− exp

(
− ziEF

RT

)
 (5.21)

where ΦG
i is the electrodiffusional flux for solute i, PG

i is the membrane permeability con-
stant for solute i through electrodiffusional pathways (in m s−1). E is the transmembrane
electrical potential (in V), and F is the Faraday constant (9.64853× 104 C mol−1). Here i
= Na, K, A, H.

31

Na:K:2A cotransport

The sodium-potassium-chloride (Na+-K+-2Cl−) cotransporter is a membrane protein that
transports two Cl− ions along with one Na+ and one K+ ions into the cell.

The flux of solute Na+ or K+ via the sodium-potassium-chloride cotransporter is given by

ΦCo = −kCo
[
(Cc

A)2Cc
NaC

c
K − d (Cm

A)2Cm
NaC

m
K

]
(5.22)

where kCo is the turnover rate constant for the Na-K-2A cotransport. We have ΦCo
A =

2ΦCo
Na = 2ΦCo

K .

Na:A cotransport

The sodium-chloride Na+-Cl− cotransporter is a membrane transport protein that uses the
strong Na+ electrochemical gradient into the cell to transport a Cl− ion into the cell along
with each Na+ ion.

The Na flux for this transporter is given by:

ΦNaA
Na = −k

NaA

fpassT

(Cc
NaC

c
A − Cc

NaC
c
A) (5.23)

where kNaA is the turnover rate constant for the NaA cotransporter and fpassT is the tem-
perature dependent factor for passive transport. The latter term is given by fpassT =
exp((T o

C − TC)/10) log(Qpass
10) where TC is the temperature in Celsius, TC is the initial

temperature in Celsius, and Qpass
10 is the Q10of passive permeability pathways.

K:A cotransport

The potassium-chloride (K+-Cl−) cotransporter is a membrane transport protein that uses
the large K+ electrochemical gradient out of the cell to transport a Cl− ion out of the cell
along with each K+ ion.

The K flux for this transporter is given by:

ΦKA
K = − k

KA

fpassT

(Cc
KC

c
A − Cc

KC
c
A) (5.24)

where kKA is the turnover rate constant for the KA cotransporter.

The flux of anions, A, for the NaA and KA transporters is given by:

ΦNaAKA
A = ΦNaA

Na + ΦKA
K (5.25)

32

H:A cotransport due to the Jacobs-Stewart cycle

This is facilitated diffusion via the Jacobs-Stewart cotransporter.

The flux of solute i via the Jacobs-Stewart cotransporter is given by

ΦHA
i = −kHA (Cc

AC
c
H − Cm

A C
m
H) (5.26)

where i = H, A, and kHA is the turnover rate constant for HA cotransport. We have
ΦHA
H = ΦHA

A .

Total Fluxes

The equations for the total fluxes of Na+, K+, Ca2+, Mg2+, A−, and H+ ions across the
cell membrane are given below. In these equations the subscripts indicate the ion species
transported and the superscripts indicate the transport process. (An ionophore is a molecule
which can traverse and transport an ion across the cell membrane). In the equations given
below the superscripts indicate the following:

NaKPump the sodium-potassium pump
CaPump the calcium pump
CaPassive passive calcium transport
A23187Mg2H transport of Mg and H due to the ionophore A23187
A23187Ca2H transport of Ca and H due to the ionophore A23187
G Goldman-type electrodiffusion
NaK2A NaK2A cotransport
NaA Na:A cotransport
KA K:A cotransport
HA H:A cotransport due to the Jacobs-Stewart cycle

The total fluxes in the system are given by

ΦNa = ΦNaKPump
Na + ΦG

Na + ΦNaK2A
Na + ΦNaA

Na (5.27)

ΦK = ΦNaKPump
K + ΦG

K + ΦNaK2A
K + ΦKA

K (5.28)

ΦA = ΦHA
A + ΦG

A + ΦNaK2A
A + ΦNaA

A + ΦKA
A (5.29)

ΦH = ΦHA
H + ΦG

H + ΦCaPump
H + ΦA23187Mg2H

H + ΦA23187Ca2H
H (5.30)

ΦCa = ΦCaPump
Ca + ΦCaPassive

Ca + ΦA23187Ca2H
Ca (5.31)

ΦMg = ΦA23187Mg2H
Mg (5.32)

33

5.2 The Procedure for using the equations in the RBC Model

The code consists of these parts:

• Setting up the initial starting state, called the reference state

• The dynamic state involves

– calculating the integration interval (which is based on the current values of the
fluxes)

– using that to calculate the small changes in the fluxes and concentrations for the
next step

– calculating the new values of the fluxes and concentrations for the next step

– repeating the process until the experiment ends

– printing the results to output files

The dynamic state is the main loop of the code. It is where perturbations occur and changes
to the fluxes and concentration are calculated.

In order to develop an understanding of the variables and how they are calculated a series
of algorithms was developed.

The first algorithm was used to calculate parameters and variable for the reference state
as described in the paper. The procedure required that some equations had to change the
subject of the equations. So, explicit mention is given of every equation with the correct
subject.

The second algorithm was created based on the procedure to calculate the reference state
in the old code. This algorithm was broken up into a set of algorithms, but the steps were
essentially the same as in the old code.

Finally, a third algorithm was created based on the software design chosen for the new
computer program. From that algorithm the new computer program can be created.

5.3 The Algorithm used to calculate the Reference State of
the RBC Model in Lew and Bookchin (1986)

Here I follow the steps in the computation of the reference state given in the article Lew
and Bookchin (1986).

To aid my understanding and to emphasize the logical structure, I only mention variables
prior to when they are required rather than define all of them at the beginning. When
the preliminary new code is written these initially set variables are indeed all set at the
beginning. The purpose of setting out this algorithm is as the first step in defining the
algorithm as defined in the old program.

34

The steps in the algorithm consist of set commands where variables are set to values and
calculate commands where the variables are calculated from the equations in the model.
The equations are given explicitly in the algorithm.

I made some small changes. I modified the equations given in Lew and Bookchin (1986) to
explicitly mention the valences of the ions. I also used the symbol z to indicate valences,
rather than n as in the paper. Moreover, in many cases I also use an explicit superscript
c to indicate that the variable is for the cell, even when this is obvious, such as for the
various quantities, Q. This is done merely for emphasis. I also use uppercase phi Φ rather
than lowercase phi φ to represent the fluxes.

This is one algorithm but it is split into two for readability, otherwise it will would go
beyond the length of the page.

The algorithm to determine the reference state according to the paper of Lew and Bookchin
(1986) is shown below. The first part is here:

The second part to the algorithm to determine the reference state according to the paper
of Lew and Bookchin (1986) is shown below:

Algorithm 1b Compute the initial reference state from paper only (part 2 of 2)

1: procedure ReferenceState(B)
2: Set initial cell value for ΦPNa = 2.6
3: Calculate initial value for ΦPK = ΦPNa/1.5
4: Set initial values for constants k1 = 0.2, k2 = 8.3, k3 = 0.1 , k4 = 18

5: Calculate initial value for ΦmaxNa = − ΦPNa Cc
Na(

Cc
Na

+k1

[
1+

Cc
K
k2

])3 Cm
K(

Cm
K

+k3

[
1+

Cm
Na
k4

])2

6: Set initial fG = 0.1 or 0.9
7: Set initial values for ΦCo = ΦCoNa = ΦCoK = ΦCoA = 0
8: for each ion i = Na, K do
9: Set initial Φi = 0

10: Calculate initial value for ΦGi =
(Φi−ΦPi −ΦCoi)(

1+
(1−fG)
fG

)
11: Calculate initial value for PGi = −

(
ΦGi
zi
EF
RT

) (
1−exp

[
− ziEF

RT

])(
Cc
i
−Cm

i
exp
[
− ziEF

RT

])
12: Calculate initial value for ΦLi = Φi − ΦPi − ΦCoi − ΦGi

13: Calculate initial value for PLi = − ΦLi
(Cc
i
−Cm

i
)

14: end for
15: Return from loop with ΦNa, ΦGNa, PGNa, ΦLNa, PLNa, ΦK , ΦGK , PGK , ΦLK , PLK
16: Set initial kCo = 10−9 or = 10−6

17: Calculate initial value for d =

(
ΦCo

kCo
+(CcA)2CcNaC

c
K

)
(CmA)

2
Cm
Na
Cm
K

18: Set initial kHA = 1 or = 109

19: Set initial PGA to be a value in the range 0.2–200.
20: end procedure

35

Algorithm 1a Compute the initial reference state from paper only (part 1 of 2)

1: procedure ReferenceState(A)
2: Set initial experimental condition for pHm = 7.40
3: Calculate initial value for CmH = 10−pH

m

4: Set initial experimental conditions for CmBTotal = 10,KB = 10−7.55

5: Calculate initial value for CmBBound = CmBTotal

(
CmH

KB+Cm
H

)
6: Set final values for zNa = zK = +1; zA = zB = zY− = −1
7: Set initial experimental conditions for CmNa = 140, CmK = 5, CmY− = 0
8: Calculate initial value for CmA = zNaC

m
Na + zKC

m
K + zB(CmB − CmHB) + zY−C

m
Y−

9: Set initial cell value for CcA = 95

10: Calculate initial value for rA =
CmA
Cc
A

11: Set initial value for ΦHA = ΦHAA = ΦHAH = 0
12: Calculate initial value for rH . From above ΦHA = 0, this implies that initial rH = rA
13: Calculate initial value for CcH = rHC

m
H

14: Calculate initial value for pHc = − log10(CcH)
15: Define universal physical constants R = 8.314462, F = 9.64853399× 104.
16: Set initial value for temperature T
17: Calculate initial value for E = −

(
RT
F

)
log (rA)

18: Set initial cell values for QcHb = 5, V cw = 0.7

19: Calculate initial value for CcHb =
QcHb
V cw

20: Set initial cell value for b = 0.0645, c = 0.0258
21: Calculate initial value for fHb = 1 + bCcHb + c (CcHb)

2

22: Set initial cell values for CcNa = 10, CcK = 140
23: for each ion i = Na, K, A do
24: Calculate initial value for Qci = Cci V

c
w

25: end for
26: Return from loop with QcNa, QcK , and QcA
27: Set initial cell value for QcMg = 2.5
28: Calculate initial value for QcX = V cw(CmNa + CmK + CmA + CmB + CmY−) − QcNa − QcK − QcA −

QcMg − fHbQcHb
29: Set initial cell value for a = −10, pIc = 6.85
30: Calculate initial value for zHb = a(pHc − pIc)
31: Set final values for zMg = +2

32: Calculate initial value for zX = − (zAQ
c
A+zNaQ

c
Na+zKQ

c
K+zMgQ

c
Mg+zHbQ

c
Hb)

Qc
X

33: Calculate initial value for Qc(−) = zHbQ
c
Hb + zXQ

c
X + zMgQ

c
Mg

34: end procedure

5.4 The Algorithm used to calculate the Reference State of
the RBC Model in the old program

The algorithm in the old program is more complicated than that above. Consequently, for
readability and simplicity we split the algorithm up into many parts defined by different
sections of the old program. However, it should be noted that together these all are actually
one algorithm. The letters RS refer to the reference state. The algorithms range range from
algorithm 2a – algorithm 2n.

36

Algorithm 2a Compute RS from code & paper: (part 01 of 14)

1: procedure RS(A)
2: Set final values for unchangeable constants: valences zMgfree = zCafree = +2; zNa = zK =
zY glucamine = +1; zHB = zY sucrose = 0; zA = zBfree = zY gluconate = −1; zbenz2 = −2; ideal
gas constant R = 8.314462; Faraday constant F = 9.64853399 × 104; fraction of Na-K transfer
in Na-K pump, sNaK = 3/2.

3: end procedure

Algorithm 2b Compute RS from code & paper: (part 02 of 14)

1: procedure RS(B)
2: Set initial experimental condition for pHm = 7.40
3: Calculate initial value for CmH = 10−pH

m

4: Set initial experimental condition for temperature in Celsius TC = 37
5: Calculate initial value for temperature in Kelvin TK = TC + 273.15
6: Calculate initial value for pKHEPES

a = 7.83− 0.014TC
7: Calculate initial value for KB = 10−pK

HEPES
a

8: Set initial experimental condition for CmB = 10

9: Calculate initial value for CmHB = CmB

(
CmH

KB+Cm
H

)
10: Calculate initial value for CmBfree = CmB − CmHB
11: Set initial experimental condition for CmNa = 145
12: Set initial experimental condition for CmK = 5
13: Set initial experimental condition for CmY gluconate = 0
14: Set initial experimental condition for CmY glucamine = 0
15: Set initial experimental condition for CmY sucrose = 0
16: end procedure

5.5 The Algorithms used to calculate the RS for the new
code

Below I present the algorithms used to calculate the RS for the new computer program.
These are divided according the classes used in the software design discussed in Chapter 6.
I had hoped to detail the equations explicitly but haven’t managed to do that due to time
constraints. For those reasons the algorithms for the Membrane for the new code are not
given here although they were implemented in the new program. The new code contains
the correct equations, but these have not been written down as algorithms. The algorithms
range from algorithm 3 – algorithm 5.

5.6 The Algorithms used to calculate the Dynamic State for
the new code

The Dynamic State was implemented in the new program. The algorithms for the Dynamic
State are not listed here.

37

Algorithm 2c Compute RS from code & paper: (part 03 of 14)

1: procedure RS(C)
2: Set initial value for MCHC = 34.
3: Calculate initial value for V cw = 1−MCHC/136
4: Calculate initial value for QcHb = MCHC × 10/64.5

5: Calculate initial value for CcHb =
QcHb
V cw

6: Set initial cell value for CcNa = 10
7: Calculate initial value for QcNa = CcNaV

c
w

8: Set initial cell value for CcK = 140
9: Calculate initial value for QcK = CcKV

c
w

10: Set initial value for Q10 of pumps, Q10P = 4
11: Set initial value for Q10 of passive permeability pathways, Q10L = 2
12: Set initial fG = 0.1 or 0.9
13: Set initial value for vlysis = 1.45
14: Set initial cell value for b = 6.45× 10−2

15: Set initial cell value for c = 2.58× 10−2

16: Calculate initial value for fHb = 1 + bCcHb + c (CcHb)
2

17: end procedure

38

Algorithm 2d Compute RS from code & paper: (part 04 of 14) : Mg

1: procedure RS(D)
2: Set initial experimental value for CmMg = 0.2
3: Set initial cell value for QcMg = 2.5
4: Set initial experimental value for CmMgfree = CmMg = 0.2
5: Set initial value for high-affinity buffer for Mg, MgB0 = 0.05
6: Set initial value for ATP+P for Mg, MgB1(= atp) = 1.2
7: Set initial value for 2,3-DPG and other organic phosphates for Mg, MgB2(= dpgp) = 15
8: Set initial value for Kd1

Mg = 0.08

9: Set initial value for Kd2
Mg = 3.6

10: Set initial value for dMg = 1× 10−4

11: Set initial value for yMg = 1
12: Set initial value for CcMgfree = 2× 10−2

13: Calculate initial value for CcMgfree using this routine

14: while yMg > 1× 10−5 do
15: Set CcMgf1 = CcMgfree − dMg

16: Calculate b1 = MgB0 + (MgB1

vv)
CcMgf1

(Kd1
Mg

+Cc
Mgf1

)
+ (MgB2

vv)
CcMgf1

(Kd2
Mg

+Cc
Mgf1

)

17: Calculate y1 = QcMg − CcMgf1
V w
vv − b1

18: Set CcMgf2 = CcMgfree + dMg

19: Calculate b2 = MgB0 + (MgB1

vv)
CcMgf2

(Kd1
Mg

+Cc
Mgf2

)
+ (MgB2

vv)
CcMgf2

(Kd2
Mg

+Cc
Mgf2

)

20: Calculate y2 = QcMg − CcMgf2
V w
vv − b2

21: Calculate ss = (y2 − y1)/(CcMgf1 − CcMgf2)
22: Calculate CcMgfree = CcMgf1 − y1/ss

23: Calculate b3 = MgB0 + (MgB1

vv)
CcMgfree

(Kd1
Mg

+Cc
Mgfree

)
+ (MgB2

vv)
CcMgfree

(Kd2
Mg

+Cc
Mgfree

)

24: Calculate yMg = QcMg − CcMgfree
V w
vv − b3

25: end while
26: Return with recomputed value for CcMgfree

27: Set initial value for PMg = 1× 10−2

28: Set initial value for A23Camk = 10
29: Set initial value for A23Mgmk = 10
30: Set initial value for A23Caik = 10
31: Set initial value for A23Mgik = 10
32: Set initial value for KDa

Mg = 0.05

33: Set initial value for KDi
Mg = 4.

34: Calculate initial value for factor Mgfactor =
(

CcMgfree
KDa

Mg
+Cc

Mgfree

)(
KDiMg

KDi
Mg

+Cc
Mgfree

)
35: end procedure

39

Algorithm 2e Compute RS from code & paper: (part 05 of 14) : Ca

1: procedure RS(E)
2: Set initial experimental value for CmCa = 1
3: Set initial cell value for QcCa = 5.8× 10−4

4: Set initial experimental value for CmCafree = CmCa = 1
5: Calculate initial value for CcCa = QcCa/V

c
w

6: Set initial value for α (= sort of inverse part of CaB0) = 0.30
7: Set initial value for CaB1(= B1Ca) = 0.026
8: Set initial value for CaB2(= benz2) = 0
9: Set initial value for Kd1

Ca(= KdB1
Ca) = 0.014

10: Set initial value for Kd2
Ca(= Kdbenz2Ca) = 5× 10−5

11: Set initial value for dCa = 1× 10−6

12: Set initial value for yCa = 1
13: Set initial value for CcCafree = 1.12× 10−4

14: Calculate initial value for CcCafree using this routine
15: Calculate CcCafree = 1000× CcCafree
16: Calculate QcCa = 1000×QcCa
17: Calculate CaB1 = 1000× CaB1

18: Calculate CaB2 = 1000× CaB2

19: Calculate Kd1
Ca = 1000×Kd1

Ca

20: Calculate Kd2
Ca = 1000×Kd2

Ca

21: while yCa > 1× 10−6 do
22: Set CcCaf1 = CcCafree − dCa
23: Calculate b1 =

CcCaf1

α + (CaB1

vv)
CcCaf1

(Kd1
Ca

+Cc
Caf1

)
+ (CaB2

vv)
CcCaf1

(Kd2
Ca

+Cc
Caf1

)

24: Calculate y1 = QcCa − b1
25: Set CcCaf2 = CcCafree + dCa

26: Calculate b2 =
CcCaf2

α + (CaB1

vv)
CcCaf2

(Kd1
Ca

+Cc
Caf2

)
+ (CaB2

vv)
CcCaf2

(Kd2
Ca

+Cc
Caf2

)

27: Calculate y2 = QcCa − b2
28: Calculate ss = (y2 − y1)/(CcCaf1 − CcCaf2)
29: Calculate CcCafree = CcCaf1 − y1/ss

30: Calculate b3 =
CcCafree1

α + (CaB1

vv)
CcCafree

(Kd1
Ca

+Cc
Cafree

)
+ (CaB2

vv)
CcCafree

(Kd2
Ca

+Cc
Cafree

)

31: Calculate yCa = QcCa − b3
32: end while
33: Calculate CcCafree = CcCafree/1000
34: Calculate QcCa = QcCa/1000
35: Calculate CaB1 = CaB1/1000
36: Calculate CaB2 = CaB2/1000
37: Calculate Kd1

Ca = Kd1
Ca/1000

38: Calculate Kd2
Ca = Kd2

Ca/1000
39: Return with recomputed value for CcCafree

where vv = V cw + MCHC
136

40: Set initial value for fcapm = 12
41: Set initial value for capk = 2× 10−4

42: Set initial value for h1 = 4
43: Set initial value for cah = 0or1or2
44: Set initial value for hik = 4× 10−7

45: Set initial value for capmgk = 0.1
46: Set initial value for fcalm = 0.05
47: Set initial value for pkcak = 1× 10−2

48: end procedure

40

Algorithm 2f Compute RS from code & paper: (part 06 of 14) : Anion

1: procedure RS(F)
2: Calculate initial value for CmA = (zNaC

m
Na + zKC

m
K + zMgfreeC

m
Mgfree + zCafreeC

m
Cafree +

+zY glucamineC
m
Y glucamine − zBfreeCmBfree − zY gluconateCmY gluconate)/(−za)

3: Set initial cell value for CcA = 95
4: Calculate initial value for QcA = CcAV

c
w

5: Calculate initial value for rA =
CmA
Cc
A

6: end procedure

Algorithm 2g Compute RS from code & paper: (part 07 of 14) : Hydrogen

1: procedure RS(G)
2: Calculate initial value for rH . From above ΦHA = 0, this implies that initial rH = rA
3: Calculate initial value for CcH = rHC

m
H

4: Calculate initial value for pHc = − log10(CcH)
5: Set initial cell value for pIc at temperature T = 0◦C, call this pIcT0 = 7.2
6: Calculate initial cell value for pIc at temperature TC , pIc = pIcT0 − 0.016TC
7: Set initial cell value for a = −10
8: Calculate initial value for zHb = a(pHc − pIc)
9: Set initial value for I77 = 7.216

10: Set initial value for I78 = 0.4
11: Calculate initial value for factor pHfact = ex

2

where x = pHc−I77
I78

12: end procedure

Algorithm 2h Compute RS from code & paper: (part 08 of 14) : membrane0

1: procedure RS(H)
2: [[Set initial value for ΦHA = 0]]
3: Calculate initial value for temp dependence factor on pump fluxes τPFlux =

exp
(
TC0−TC

10

)
log
(
Q10P

)
4: Calculate initial value for temp dependence factor on passive fluxes τLFlux =

exp
(
TC0−TC

10

)
log
(
Q10L

)
5: Calculate initial value for E = −

(
RTK
F

)
log (rA)

6: end procedure

Algorithm 2i Compute the initial RS from code and paper: (part 09 of 14) : cell0

1: procedure RS(I)
2: Calculate initial value for QX = V cw(CmNa+CmK +CmA +CmB +CmY +CmMg +CmCa)−QcNa−
QcK −QcA − fHbQcHb −QcMgfree −QcCafree −Qcbenz2

3: Calculate initial value for zX = − (zAQ
c
A+zNaQ

c
Na+zKQ

c
K+zMgQ

c
Mg+zHbQ

c
Hb)

Qc
X

4: Calculate initial value for Qc(−) = zHbQ
c
Hb + zXQ

c
X + zMgQ

c
Mg

5: end procedure

41

Algorithm 2j Compute RS from code & paper: (part 10 of 14) : tracers

1: procedure RS(J)
2: Set initial cell value for I71 = 1
3: Set initial cell value for QcNaTracer = 0
4: Set initial cell value for QcKTracer = 0
5: Set initial cell value for QcATracer = 0
6: Set initial cell value for CcNaTracer = 0
7: Set initial cell value for CcKTracer = 0
8: Set initial cell value for CcATracer = 0
9: Set initial cell value for CmNaTracer = 1000

10: Set initial cell value for CmKTracer = 1000
11: Set initial cell value for CmATracer = 1000
12: end procedure

Algorithm 2k Compute RS from code & paper: (part 11 of 14) : NaK Pump

1: procedure RS(K)
2: Set value for constants in ΦmaxNa equation, Kc

m,Na = 0.2
3: Set value for constants in ΦmaxNa equation, Kc

I,K = 8.3
4: Set value for constants in ΦmaxNa equation, Km

m,K = 0.1
5: Set value for constants in ΦmaxNa equation, Km

I,Na = 18.

6: Set initial cell value for ΦPFNa = −2.61
7: Set initial cell value for ΦPRNa = 0.0015
8: Calculate initial cell value for ΦPNa = ΦPFNa + ΦPRNa
9: Calculate initial value for ΦPK = ΦPNa/1.5

10: Calculate initial value for factor f1 =

 CcNa

Cc
Na

+Kc
m,Na

(
1+

Cc
K

Kc
I,K

)3

11: Calculate initial value for factor f2 =

 CmK

Cm
K

+Km
m,K

(
1+

Cm
Na

Km
I,Na

)2

12: Calculate initial value for factor r1 =

 CcK

Cc
K

+Kc
I,K

(
1+

Cc
Na

Kc
m,Na

)2

13: Calculate initial value for factor r2 =

 CmNa

Cm
Na

+Km
I,Na

(
1+

Cm
K

Km
m,K

)3

14: Calculate initial value for ΦFmaxNa = − ΦPFNa
f1×f2×mgfact×pHfact

15: Calculate initial value for ΦRmaxNa = − ΦPRNa
r1×r2×mgfact×pHfact

16: end procedure

42

Algorithm 2l Compute RS from code & paper: (part 12 of 14) : NaK2A Cotransport

1: procedure RS(L)
2: Set initial values for temp dep factor for Co flux ...
3: Set initial κCo = 10−9 [or = 10−6]

4: Set initial values for ΦCo = 0

5: Calculate initial value for dCo =

(
ΦCo

κCo
+(CcA)2CcNaC

c
K

)
(CmA)

2
Cm
Na
Cm
K

6: Calculate ΦCo = −κCo
[
CcNaC

c
K (CcA)

2 − dCoCmNaCmK (CmA)
2
]

7: for each ion i = Na, K do
8: Calculate initial values for ΦCoi = ΦCo

9: end for
10: Calculate initial values for ΦCoA = 2× ΦCo

11: end procedure

Algorithm 2m Compute RS from code & paper: (part 13 of 14) : Electrodiffusion

1: procedure RS(M)
2: for each ion i = Na, K do
3: Set initial Φi = 0
4: Calculate initial value for ΦGi = fG

(
Φi − ΦPi − ΦCoi

)
5: Calculate initial value for κGi = −

(
ΦGi
zi
EF
RT

) (
1−exp

[
− ziEF

RT

])(
Cc
i
−Cm

i
exp
[
− ziEF

RT

])
6: end for
7: Set initial κGH = 2× 10−10

8: Calculate initial value for ΦGH = −κGH
zHEF
RT

(
CcH−CmH exp

[
− zHEF

RT

])(
1−exp

[
− zHEF

RT

])
9: [[Incidently φ = (c−me−k)

(1−e−k)
= paper = (m−cek)

(1−ek)
= his code]]

10: Set initial value for κGA = 1.2
11: See below where calculate initial value for ΦGA in passive CA fluxes section
12: end procedure

Algorithm 2n Compute RS from code & paper: (part 14 of 14) : Na:A, K:A Cotransport

1: procedure RS(N)
2: for each ion i = Na, K do
3: Calculate initial value for ΦCAi = Φi − ΦPi − ΦCoi − ΦGi

4: Calculate initial value for κCAi = − ΦCAi
(Cc
i
Cc
A
−Cm

i
Cm
A

)

5: end for
6: Calculate initial value for ΦCAA = ΦCANa + ΦCAK
7: Calculate initial value for ΦGA = −ΦCAA
8: [[Note ΦHA = ΦHAH = ΦHAA = 0 – to start - in hscreen or membrane]]
9: Set initial κHA = 2.58× 108

10: end procedure

43

Algorithm 3 Compute RS for the Medium: (part 1 of 1)

1: procedure RS(A)
2: Set values for the constants zMgF = 2
3: Set initial values for the variables TC = 37, buffer = HEPES, pHm = 7.40,
4: Set initial values for the variables CmN a = 145, CmK = 5, CmY−

= CmY+
= CmY0

= 0, CmBTotal = 10
5: Set initial values for the variables CmMgTotal = 0.2, CmCaTotal = 1
6: Set initial values for the variables CmNaTracer = CmKTracer = CmATracer = 1000
7: Calculate initial value for TK = TC + 273.15
8: Calculate initial value for pKa = 7.83− 1.4× 10−2 × TC
9: Calculate initial value for CmH = 10−pH

m

10: Calculate initial value for KB = 10−pKa

11: Calculate initial value for CmBBound =
12: Calculate initial value for CmBFree = CmBTotal − CmBBound
13: Calculate initial value for CmMgFree = [[An iteration is used here]]
14: Calculate initial value for CmMgBound = CmMgTotal − CmMgFree

15: Calculate initial value for CmCaFree = [[An iteration is used here]]
16: Calculate initial value for CmCaBound = CmCaTotal − CmCaFree
17: Calculate initial value for CmA = not he set it in his code
18: Calculate initial value for CmSum+ =
19: Calculate initial value for CmSum− =
20: Calculate initial value for CmSum =
21: Calculate initial value for CmENOut =
22: end procedure

44

Algorithm 4a Compute RS for the Cell: (part 1 of 2)

1: procedure RS(A)
2: Set values for the constants zMgF = 2
3: Set initial values for the variables Ht = 1 × 10−6, MCHC = 34, vlysis = 1.45, b =, c =,
CcNa = 10

4: Set initial values for the variables CcK = 140, CcA = 95, QcMgT
= 2.5, CcMgF

initial = 0.02
5: Set initial values for the variables MgB0

=, MgB1
=, MgB2

=, KDMgB1
=, KDMgB2

=
6: Set initial values for the variables dMg =, yMg =, QcCaT =, CcCaF =, CaB0 =, CaB1 =,
Qcbenz =

7: Set initial values for the variables KDCaB1
=, KDCaB2

=, dCa =, yCA =,
8: Set initial values for the variables a =, pIcT0 =, pIc =,
9: Set initial values for the variables CcNaTracer = CcKTracer = CcATracer = 0

10: Calculate initial value for HTrel
11: Calculate initial value for V cw
12: Calculate initial value for V cwprior
13: Calculate initial value for V cwrelative
14: Calculate initial value for MCHCrelative
15: Calculate initial value for densityrelative
16: Calculate initial value for QcHb
17: Calculate initial value for CcHb
18: Calculate initial value for fHb
19: Calculate initial value for CcOsm
20: Calculate initial value for QcNa
21: Calculate initial value for QcK
22: Calculate initial value for QcA
23: Calculate initial value for CcMgT
24: Calculate initial value for CcCaT
25: Calculate initial value for Ccbenz
26: Calculate initial value for CcMgF
27: Calculate initial value for CcMgB
28: Calculate initial value for QcMgF
29: Calculate initial value for QcMgB
30: Calculate initial value for MgBT Term
31: Calculate initial value for MgATPPT Term
32: Calculate initial value for MgDPGPT Term
33: Set initial values for CcCaF initial =
34: Calculate initial value for CcCaF
35: Calculate initial value for CcCaB
36: Calculate initial value for QcCaF
37: Calculate initial value for QcCaB
38: Calculate initial value for AlphaCaTerm Term
39: Calculate initial value for CaB0 Term
40: Calculate initial value for CaB1 Term
41: Calculate initial value for CaB2 Term
42: Calculate initial MEMBRANE value for rA
43: Calculate initial MEMBRANE value for rH
44: end procedure

45

Algorithm 4b Compute RS for the Cell: (part 2 of 2)

1: procedure RS(B)
2: Calculate initial value for CcH
3: Calculate initial value for QcH
4: Calculate initial value for pIc =
5: Calculate initial value for pHc =
6: Calculate initial value for zHb
7: Calculate initial value for QcHbcharge
8: Calculate initial value for CcHbcharge
9: Calculate initial value for CcX

10: Calculate initial value for zX
11: Calculate initial value for Qc(−)

12: Calculate initial value for Cc(−)

13: Calculate initial value for Ccsum
14: Calculate initial value for Qcsum
15: Calculate initial value for CcENin
16: Calculate initial value for QcNaTracer
17: Calculate initial value for QcKTracer
18: Calculate initial value for QcATracer
19: end procedure

Algorithm 5 Compute RS for the Membrane: (part 1 of 1)

1: procedure RS(A)
2: Set values for the constants . . .
3: Set initial values for the variables. . .
4: Calculate initial value for . . .
5: end procedure

46

Chapter 6

Software Design and
Implementation

The design decisions made for the software product are described in this chapter.

From the requirements engineering process the software product was decided to be written
in the Java programming language for the reasons already mentioned. Some aspects of the
Java programming language will be mentioned in the subsequent sections.

6.1 Software Architectural Pattern

Since the system requires the functionality of both user input and the display of recalculated
variables, a graphical user interface (GUI) was an obvious choice to effect this. And, more-
over, since it was decided to use a GUI with the system the model-view-controller (MVC)
system architecture was an obvious choice for the system architectural design pattern. An
MVC software architectural pattern was chosen to model the software system.

Following the desired requirement of user input a graphical user interface was chosen as an
appropriate means to effect this. Consequently The software architectural pattern adopted
for the product was the Model-View Controller pattern.

The Model component consists of several objects (defined by classes) which detail the
mathematical model of the system. The model component stores the values of the variables
used in the mathematical model. It also provides the methods to calculate the values of the
variables using the equations of the mathematical model. In addition it provides methods
to retrieve or set the values of all of the variables in the mathematical model.

The View component consists of objects (defined by classes) which display the values of
variables in the mathematical model. The display will be by means of a GUI. Some variables
are set to initial default values, but their values can be modified by user input, if desired.
Such variables will have their values placed in editable JTextFields to facilitate possible user
modification. Other variables are calculated using the equations of the mathematical model.
They are placed in non-editable JTextFields. These two types of variables are referred to

47

here as set variables and calculated variables. Set variables are altered by changing the
value in an editable JTextField.

The Controller component consists of parts of the same objects as the View objects. Thus
the Controller components are contained with the related View component class. A con-
troller event is triggered when a JButton that is listened to by the ActionEvent Listener
is pressed. One type of button is to recalculate the values of the calculated variables using
the equations of the mathematical model and redisplay the new values in the GUI. Another
types of button is to accept the values of all of the set and calculated variables and move
on to the next stage. Moreover the Controller component also prints the results of the
calculations to output files.

To reiterate the view and controller components were contained in a combined View-
Controller objects/class.

6.2 General Considerations

To clarify the later discussion some aspects of object and classes are now discussed.

A software object characterises the state and behaviour of a distinct aspect of the system.
The state is described by values in variables. Note that variables in the computer science
sense are used for symbolic labels used to describe variables, parameters, and constants in
the scientific sense. The behaviour of the object is characterised by its methods which can
alter the state, i.e., the variables in the object.

An important principle of object-oriented programming is that the details of the variables
and the methods should, in general be hidden from a user of the software. This is referred
to as data encapsulation. However, variables can be retrieved and modified if the software
is created to use safe get/set methods.

Objects are defined by a class. Specifically, an object is created as an instance of a class.
The class enables different versions, or instances, of the object to be created, in principle.
The class describes all of the details needed to create an object.

Using objects is helpful because: it forces the code to be written in a modular manner. This
means different logical parts can be written and maintained independently, in principle. The
object with its state and behaviour can be created and passed around inside the ”system”.

Thus to create the software we will start be describing the classes that were used to define
the system.

6.3 Classes Design

Before discusses class design some mention should also be made about the states of the
system. The software was to be designed to follow some aspects of the general software
design of the current old program. Specifically, the new code followed the design structure

48

of different states of the system. That is, there was an initial state, called the reference
state. When an simulated experiment was run this state was succeeded by the dynamic
state. During the dynamic state, a step is taken where a small perturbation is made to
some variables. Then these in turn change other variables. The new values for variables
are determined at each step. Then the system goes on to the next step, and so on, until
the experiment finishes.

I follow the separation of concerns concept where I divide the system into logical functionally
separate parts. In this model the parts are not functionally independent but are coupled,
since changes in the values of variable in one part affect variables in another part.

The manner in which the old code is written is that some calculations are handled with
subroutines, some are carried out in sequence. The variables and equations are not organised
clearly separated areas. However, the code is arranged partly into related sections where
user input is requested. The sections are arranged according the physical processes, type
of ion etc.

In designing the software it is important to organise it in a logical manner. After reflection
it was decided that a logical organisation was to store variables and the methods to set, get
and calculate them according to the physical region in which they occurred.

That is, the system was envisaged to consist of a single red-blood cell used to model red-
blood cells collectively, the extra-cellular fluid which is referred to as the medium. These
regions are represented by a Cell class and a Medium class, Since these regions/classes will
share some characteristics, for example, both will have their own concentrations of Na+

ions, it seemed sensible to define a Region superclass which defined most characteristics of
both regions. These characteristics include the variables in those regions and the methods
to set, get, and calculate them. The Cell and Medium classes extend the Region class.
That is, the Cell and Medium classes are subclasses of the Region superclass.

Since in the real world the transportation of substances between the cell and the medium
occur across the membrane due to a number of different processes, it seemed sensible
to model cell transport processes via a Membrane class. This class contains the models
describing transportation processes and the variables affected by those processes.

The above classes are Model classes which store variables with methods to calculate them
defined according to the mathematical model of RBCs, as well as get and set methods.

The View-Controller classes handle the state of the system at different stages. For example,
the initial state of the system, called the reference state, is set up with the ReferenceState
class. This calls the Model classes and displays the values of variables on a GUI. It also
facilitates user input and the recalculation of some variables. This class calls the Refer-
enceReport class to print the values of all variables to an output file.

After the Reference State, the View-Controller classes DynamicState takes over. It facil-
itates user input regarding the condition of the proposed simulated experiment and runs
the experiment based on the input or default experimental conditions and recalculates the
variables calling methods in the model classes.

49

6.4 Model Classes/Objects.

The Model classes which are used to create model objects are the following. I describe
each.

Region class This class defines a superclass for the two classes defined by physical regions,
namely the Cell and Medium classes. The Region class is used to store the variables
and methods relevant to those regions. Apart from various parameters, the main
variables are the concentration of substances.

Cell class This class extends the Region class to store variables and methods relevant
to the red-blood cell.

Medium class This class extends the Region class to store variables and methods
relevant to the extra-cellular fluid, or medium.

Membrane This class is used to store the values of (principally) the fluxes of substances
into and out of the cell and the models used to calculate, set and get those variables.
It also stores variables dependent on both Cell and Medium variables.

Experiment This class is used to store the variables to define the simulated experimental
conditions. This class calls all of the above methods to determine values during the
experiment.

6.5 View-Controller Classes

ReferenceState class This class is used to set up the initial experimental conditions
called the reference state. It calls the Cell, Medium, and Membrane classes. It
enables the initial state to be modified via user input and recalculation using the
aforementioned model classes.

ReferenceReport class This class prints out the values of all variables for the ref-
erence state.

DynamicState class This class is used to run the simulated experiment to determine
the values of variable at each step in the experiment. It calls the Cell, Medium,
Membrane, and Experiment classes. It enables additional options to be included in
th experiment before running the experiment.

DynamicReport class This prints out the values of all variables for the during each
step during the dynamic state of the running experiment.

6.6 The Algorithms used to calculate the Reference State

Here I will include the algorithms actually implemented in the new program. The order
and structure will differ because of my different classes.

50

6.7 The Algorithms used to calculate the Dynamic State

Here I will include the algorithms actually implemented in the new program. The order
and structure will differ because of my different classes.

6.8 Creation of the Code

The algorithms mentioned previously were used to write the new code.

Note I did not incorporate the EDTA option. Nonetheless the software can be tested for
the stage it is at to see if what is written so far works as expected,

51

Chapter 7

Software Evaluation

As mentioned earlier, the software product has not yet incorporated the EDGTA options
(i.e., the screen 2 options in the old code). I believe other options are incorporated in the
code, beven if they are not yet at a stage where they can easily changed by user input.

Nonetheless other functionality of the program can be tested. It should be noted that the
only tests performed were to do with correctness testing. That is, the testing was performed
to verify validate the correctness of the implementation in regards to the calculations and
algorithms. To do this testing the results of running the old code for a set of preliminary
test cases were carried out and compared with the results running the new code.

Since the GUI is not wholly functional preliminary tests were carried out running the
default values. In these series of test, the original old code was run on an older laptop
computer running Windows XP and the new code was run on a more modern computer
using Windows 7. The values of the variables produced by the new code were compared
with that for the old code.

A test was carried out to confirm the values of variables in the reference state. This test
was passed.

A test was carried out to determine the values of variables after the smallest possible initial
integration step. The duration of the experiment in that case was 0.0336 minutes. This
test was passed.

A test was carried out running the experiment for a longer duration and printing out the
results at the end of each integration. This test was done for 5 minutes. There were several
steps performed during that experiment. The values of the variables at each step were
checked.

The checking in all of these cases was done by eye, comparing the numbers in printed output
files.

52

Chapter 8

Conclusions

The main aims of this project were to create software which would act as a replacement
for the old code and to document the revised RBC model. Each of these was only achieved
partially.

The major difficulty with this work was to decipher the old code and convert it into the
Java programming language, but organised in an appropriate object-oriented manner. Con-
siderable time and effort was spent doing this. It took much longer than anticipated.

Furthermore, the software/model was created in stages. The first stage imitated the steps
to create the reference state in the original paper by Lew and Bookchin (1986). The second
stage tried to imitate the steps in the old code to create the reference state. This was
created using a GUI interface which functioned well. The third stage was to create the new
code using the object-oriented design mentioned in Chapter 6. This was done but the a
fully functioning GUI was not achieved due to the added complexity of the code compared
to the simpler stages considered earlier.

Nonetheless the code could be run with default values and the variables relating to the
duration of the experiment and the number of integration before printing could be editted
in the code. This was how the preliminary tests were carried out. These seem to show that
the code is working as expected. Otherwise small changes would be amplified and become
very obvious. This indeed happened during the debugging stage. To sort such problems
the original source code was edited with PRINT statements and numerous variables were
checked.

53

Chapter 9

Future Work

The code could be improved by fully incorporating the GUI interface with action listeners
for the setting of the reference state. A functioning GUI is also required for the Dynamic
State to enable user input and modifications of the simulated experiments.

The documentation of the revised RBC model could be completed. Ideally a glossary should
be created to make modifications of the code easier for a programmer. In addition a user
manual should be created for the software to make the software easier to use.

Once these are working a GUI could possibly be created to including the plotting of the
results onto a GUI display as the experiment runs or after the experiment finishes.

54

Bibliography

J. C. Freedman and J. F. Hoffman. Ionic and osmotic equilibria of red blood cells traced
with nystatin. J. Gen. (Physiol., 74:157–185, 1979.

V. L. Lew. Concise guide to the red cell model programme. Draft manuscript, 2000. 18
pages.

V. L. Lew. Mg-dependence of the ca pump: Extension to include passive & active ca2+ &
mg2+ transport and cytoplasmic ca2+ & mg2+ buffering. Draft manuscript, 2014a. 10
pages.

V. L. Lew. M1.bas. Draft copy of BASIC programme, 2014b. 62 pages.

V. L. Lew. Modelling cellular homeostasis: General principles and practical rules for con-
structing useful models. Draft manuscript, 2014c. 10 pages.

V. L. Lew and R. M. Bookchin. Ion transport pathology in the mechanism of sickle cell
dehydration. J. Membrane Biol., 92:57–74, January 1986.

V. L. Lew, C. J. Freeman, O. E. Ortiz, and R. M. Bookchin. A mathematical model of the
volume, ph, and ion content regulation in recticulocytes: Application to the pathophysi-
ology of sickle cell dehydration. Jl. Clin. Invest., 87:100–112, January 1991.

P. D. McConaghy and M. Maizels. The osmotic coefficients of haemoglobin in red cells
under varying conditions. J. Physiol. (London), 155:28–45, 1961.

T. F. Weiss and V. L. Lew. Cellular homeostasis simulator. Draft manuscript, 2014. 126
pages.

55

