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Abstract

GUM is a portable, parallel implementation
of the Haskell functional language which has
been publicly released with version 0.26 of
the Glasgow Haskell Compiler (GHC). GUM is
message-based, and portability is facilitated by
using the PVM communications-harness avail-
able on most multi-processors, including shared-
memory and distributed-memory machines. For
example GUM 1is available by FTP for a Sun
SPARCserver multiprocessor and for a networks

of Sun SPARC workstations.

High message-latency in distributed machines
is ameliorated by sending messages asyn-
chronously, and by sending large packets of re-
lated data in each message. Initial performance
figures demonstrate absolute speedups relative
to the best sequential compiler technology. To
improve the performance of a parallel Haskell
program GUM provides tools for monitoring
and visualising the behaviour of threads and of
PEs during execution.
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1 Introduction

GUM (Graph reduction for a Unified Machine
model) is a portable, parallel, publicly-released
implementation of the purely-functional pro-
gramming language Haskell. So far as we know,
it 1s the first publicly-released parallel imple-
mentation of any functional language, except
possibly MultiLisp, despite hundreds of papers,
dozens of paper designs, and a handful of real
single-site implementations. We believe that
this is partly because of the diversity of paral-
lel machine architectures, but also because the
implementation task is much more substantial
than it first appears. The goal of this paper
is to give a technical overview of GUM, high-
lighting our main design choices, and presenting
preliminary performance measurements.

GUM has the following features:

e GUM is portable. 1t 1s message based, and
uses PVM [17], a communication infras-
tructure available on almost every multi-
processor, including both shared-memory
and distributed-memory machines, as well
as networks of workstations. The basic as-
sumed architecture 1s that of a collection of
processor-memory units (hereinafter called
PEs) connected by some kind of network
that is accessed through PVM.

PVM imposes its own overheads, too, but
there are short-cuts that can be taken for
communication between homogeneous ma-
chines on a single network. In any case,
for any particular architecture any other
machine-specific communications substrate



could be readily substituted.

o G UM delivers significant absolute speedups,
relative to the best sequential compiler
technology'. It does so by using one of the
best available sequential Haskell compilers
as its basis, namely the Glasgow Haskell
Compiler (GHC). (Indeed GUM is “just”
a new runtime system for GHC.) The se-
quential parts of a program run as fast as if
they were compiled by GHC for a sequential
machine, apart from a small constant-factor
overhead (Section 4.1)

o GUM provides a suite of tools for moni-
toring and visualising the behaviour of pro-
grams. The bottom line of any parallel sys-
tem is raw performance, and a program’s
performance can only be improved if it can
be understood. In addition to conventional
sequential tools, GUM provides tools to
monitor and visualise both PE and thread
activity over time.

o GUM supports independent local garbage
collection, within a single global virtual
heap. Each PE has a local heap that im-
plements part of the global virtual heap.
A two-level addressing scheme distinguishes
local addresses, within a PE’s local heap,
from global addresses, that point between
local heaps. The management of global ad-
dresses is such that each PE can garbage-
collect 1ts local heap independently of any
other PE, a property we found to be crucial
on the GRIP multiprocessor [20].

e Thread distribution is performed lazily, but
data distribution is performed somewhat ea-
gerly. Threads are never exported to other
PE to try to “balance” the load. Instead,
work is only moved when a processor is idle
(Section 2.2.2). Moving work prematurely
can have a very bad effect on locality.

On the other hand, when replying to a re-
quest for a data value, a PE packs (a copy
of) “nearby” data into the reply, on the
grounds that the requesting PE is likely to
need it soon (Section 2.4). Since the send-
ing PE retains its copy, locality is not lost.

I Needless to say, this claim relates to programs with
lots of large-grain parallelism, and the name of the game
is seeing how far it extends to more realistic programs.
Nevertheless, such tests provide an important sanity
check: if the system does badly here then all is lost.

e All messages are asynchronous. The idea
— which 1s standard in the multithreading
community [2] — is that once a processor
has sent a message it can forget all about
it and schedule further threads or messages
without waiting for a reply (Section 2.3.2).
Notably, when a processor wishes to fetch
data from another processor it sends a mes-
sage whose reply can be arbitrarily delayed
— for example, the data might be under
evaluation at the far end. When the reply
finally does arrive, 1t is treated as an inde-
pendent work item.

Messages are sent asynchronously and contain
large amounts of graph in order to ameliorate
the effects of long-latency distributed machines.
Of course there is no free lunch. Some parallel
Haskell programs may work much less well on
long-latency machines than short-latency ones,
but nobody knows to what extent. One merit
of having a single portable framework is that we
may hope to find out.

GUM 1s freely available by FTP, as part of
the Glasgow Haskell Compiler release (0.26 on-
wards). It is currently ported to networks of Sun
SPARCs and DEC Alphas, and Sun’s symmetric

multiprocessor SPARCserver.

The remainder of this paper is structured as fol-
lows. Section 2 describes how the GUM run-
time system works. Section 3 describes the tools
available for monitoring the performance of pro-
grams running under GUM. Section 4 gives pre-
liminary performance results. Section 5 dis-
cusses related work. Section 6 outlines some
directions for its development. Section 7 con-
cludes.

2 How GUM works

This section describes GUM’s design and im-
plementation. A lot of the description centres
around the different types of message that GUM
uses; for reference, Appendix A lists the fields
of each type of message.



2.1 Initialisation and Termination

The first action of a GUM program is to create
a PVM manager task, whose job is to control
startup, termination and synchronise garbage
collection. This manager task then spawns the
required number of logical PEs as PVM tasks,
which PVM maps to the available processors.
Each PE task then initialises itself: processing
runtime arguments, allocating heap etc. Once
all PE tasks have initialised, and been informed
of each others identity, one of the PE-tasks is
nominated as the main PE. The main PE then
begins executing the main thread of the Haskell
program (the closure called Main.main).

The program terminates when either the main
thread completes, or encounters an error. In ei-
ther case a FINISH message is sent to the man-
ager task, which in turn broadcasts a FINISH
message to all of the PE tasks. The manager
waits for each PE task to respond before termi-
nating the program.

2.2 Thread Management

A thread is a virtual processor. It is repre-
sented by a (heap-allocated) Thread State Ob-
ject (TSO) containing slots for the thread’s reg-
isters. The TSO in turn points to the thread’s
(heap-allocated) Stack Object (SO). As the
thread’s stack grows, further Stack Objects are
allocated and chained on to the earlier ones.

Fach PE has a pool of runnable threads (or,
rather, TSOs), called its runnable pool. The PE
executes the following scheduling loop until it
receives a FINISH message.

Main Scheduler:

1. Perform local garbage collection, if nec-
essary.

2. Process any incoming messages from
other PEs.

3. If there are runnable threads, run one of
them.

4. Otherwise look for work, as described in
Section 2.2.2.

The thread scheduler is fair: runnable threads
are executed in following a round-robin policy.
Each thread 1s run until its time-slice expires,
it completes, space is exhausted or the thread
blocks — either on a black hole (Section 2.2.3)
or accessing remote data (Section 2.3.2). A fair
scheduler facilitates concurrent and speculative
execution, at the cost of increasing both space
usage and overall run-time [4].

2.2.1 Sparks

Parallelism is initiated by the par combinator in
the source program. (At present these combina-
tors are added by the programmer, though we
would of course like this task to be automated.)
When the expression

x ‘par‘ e

is evaluated, the heap closure referred to by the
variable x is sparked, and then e is evaluated.
Quite a common idiom (though by no means
the only way of using par) is to write

let x = f a b in x ‘par‘ e

where e mentions x. Here, a thunk (aka suspen-
sion) representing the call £ a b is allocated by
the let and then sparked by the par. It may
thus be evaluated in parallel with e.

Sparking a thunk 1s a relatively cheap operation,
consisting only of adding a pointer to the thunk
to the PE’s spark pool?. A spark is an indication
that a thunk might usefully be evaluated in par-
allel, not that it must be evaluated in parallel.
Sparks may freely be discarded if they become
too numerous.

2.2.2 Finding work

If (and only if) a PE has nothing else to do, it
tries to schedule a spark from its spark pool, if
there is one. The spark may by now be useless, if
the thunk it refers to has by now been overwrit-
ten with its value, in which case 1t is discarded.

2There is a caveat here — see Section 4.1 for details



If the PE finds a useful spark, it turns it into a
thread by allocating a fresh TSO and SO3, and

starts executing it.

If there are no local sparks, then the PE seeks
work from other PEs, by launching a FISH mes-
sage that “swims” from PE to PE looking for
available work. Initially only the main PE is
busy — has a runnable thread — and all other
PEs start fishing for work as soon as they begin
execution.

When FISH messages are created, they are sent
at random to some other PE. If the recipient
has no useful spark, or potential task, it in-
creases the age of the FISH, and reissues the
FISH to another PE, again chosen at random.
There 1s a limit to the number of PEs that a
FISH visits: having exceeded this limit, the last
PE visited returns the unsuccessful FISH to the
originating PE. On receipt of its own, starved,
FISH the originating PE then delays briefly be-
fore reissuing it. The purpose of the delay is
to avoid swamping the machine with FISH mes-
sages when there are only a few busy PEs. A
PE only ever has a single FISH outstanding.

If the PE that receives a FISH has a useful
spark it 1ssues a SCHEDULE message to the
PE that originated the FISH, containing the
sparked thunk packaged with nearby graph, as
described in Section 2.4. The originating PE un-
packs the graph, and adds the newly acquired
thunk to its local spark pool. An ACK message
is then sent to record the new location of the
thunk(s) sent in the SCHEDULE. Note that the
originating PE may no longer be idle because
before the SCHEDULE arrives, another mes-
sages may have unblocked some thread. A se-
quence of messages initiated by a FISH is shown
in Figure 1.

2.2.3 Synchronisation

It is obviously desirable to prevent two threads
from evaluating the same thunk simultaneously,
lest the work of doing so be duplicated. This
synchronisation is achieved as follows:

3Since we know exactly when we discard TSOs and
SOs, and they are relatively large, we keep them on a
free list so that we can avoid chomping through heap
when executing short-lived tasks

PEA

PEB PEC

SCHEDULE <packet>

Figure 1: Fish/Schedule/Ack Sequence

1. When a thread enters (starts to evaluate) a
thunk, it overwrites the thunk with a black
hole (so called for historical reasons).

2. When a thread enters a black hole, it saves
its state in its TSO, attaches its TSO to the
queue of threads blocked on the black hole
(its blocking queue), and calls the scheduler.

3. Finally, when a thread completes the eval-
uation of a thunk, it overwrites it with
its value (the update operation). When it
does so, it moves any queued TSOs to the
runnable pool.

Notice that synchronisation costs are only in-
curred if two threads actually collide. In par-
ticular, if a thread sparks a sub-expression, and
then subsequently evaluates that sub-expression
before the spark has been turned into a thread
and scheduled, then no synchronisation cost is
incurred. In effect the putative child thread is
dynamically inlined back into the parent.

2.3 Memory Management

Parallel graph reduction proceeds on a shared
program/data graph, and a primary function of
the run-time system of a parallel functional lan-
guage is to manage the virtual shared memory
in which the graph resides.

As mentioned earlier, GUM is based on the
Glasgow Haskell Compiler, and most execution
is carried out in precisely the same way as on a
uniprocessor. In particular, new heap closures
are allocated from a contiguous chunk of free
space, and the heap-closure addresses manipu-
lated by the compiled code are simply one-word
pointers within the local heap.



Sometimes, though, the run-time system needs
to move a heap closure from one PE’s local heap
to another’s. For example, when a PE (call it A)
with plenty of sparks receives a FISH message,
it sends one of its sparked thunks to the idle
PE (call it B). When a thunk is moved in this
way, the original thunk is overwritten with a
FetchMe closure, containing the global address
of the new copy on B. Why does the thunk need
to be overwritten? It would be a mistake simply
to copy it, because then both A and B might
evaluate it separately(remember, there might be
other local pointers to it from A’s heap).

2.3.1 Global Addresses

At first one might think that a global address
(GA) should consist of the identifier of the PE
concerned, together with the local address of the
closure on that PE. Such a scheme would, how-
ever, prevent the PEs from performing compact-
ing garbage collection, since that changes the
local address of most closures, and compacting
garbage collection is a crucial component of our
efficient compilation technology.

Accordingly, we follow standard practice and
allocate each globally-visible closure an im-
mutable local identifier (typically a natural
number). A global address consists of a (PE
identifier, local identifier) pair. Each PE main-
tains a Global Indirection Table, or GIT, which
maps local identifiers to the local address of the
corresponding heap closure. The GIT is treated
as a source of roots for local garbage collec-
tion, and is adjusted to reflect the new locations
of local heap closures following local garbage
collection*. We say that a PE owns a globally-
visible closure (that is, one possessing a global
address) if the closure’s global address contains
that PE’s identifier.

A heap closure is globalised (that is, given a
global address) by allocating an unused local
identifier, and augmenting the GIT to map the
local identifier to the closure’s address. (Ap-
pendix B describes how an unused identifier is
found, and how the GIT is represented.) Of
course, it is possible that the closure already has

4The alert reader will have noticed that we will need
some mechanism for recovering and re-using local iden-
tifiers, a matter we will return to shortly.

a global address. We account for this possibility
by maintaining (separately in each PE) a map-
ping from local addresses to global addresses,
the LA — GA table, and checking it before glob-
alising a heap closure. Naturally, the LA — GA
table has to be rebuilt during garbage collection,
since closures’ local addresses may change.

A PE may also hold copies of globally-visible
heap closures owned by another PE. For exam-
ple, PE A may have a copy of a list it obtained
from PE B. Suppose the root of the list has GA
(B,34). Then it makes sense for A to remem-
ber that the root of its copy of the list also has
GA (B,34), in case it ever needs it again. If it
does, then instead of fetching the list again, it
can simply share the copy it already has.

We achieve this sharing by maintaining (in each
PE) a mapping from global addresses to local
addresses, the PE’s GA— LA table. When A
fetches the list for the first time, it enters the
mapping from (B,34) to the fetched copy in
its GA — LA table; then, when it needs (B,34)
again it checks the GA — LA table first, and
finds that it already has a local copy.

To summarise, each PE maintains three tables:

e Its GIT maps each allocated local identifier
to its local address.

e Its GA—LA table maps some foreign
global addresses (that is, ones whose PE
identifier is non-local) to their local coun-
terparts. Notice that each foreign GA maps
to precisely one LA.

e Its LA — GA table maps local addresses to
the corresponding global address (if any).

Whilst there are logically three tables, in prac-
tice we represent them by a single data struc-
ture; Appendix B elaborates.

2.3.2 Garbage collection

This scheme has the obvious problem that once
a closure has an entry in the GIT it cannot ever
be garbage collected (since the GIT is used as a
source of roots for local garbage collection), nor



can the local identifier be re-used. Again follow-
ing standard practice, [14] we use weighled ref-
erence counting to recover local identifiers, and
hence the closures they identify [3, 25].

We augment both the GIT and the GA — LA
table to deliver a weight as well as the local ad-
dress. The invariant we maintain is that for a
gwen global address, G, the sum of:

o (s weight in the GA — LA tables of all for-
eign PEs, and

o (s weight in its owner’s GIT, and

e the weight attached to any Gs inside any
n-flight messages

1s equal to MaxWeight, a fized constant. With
this invariant in mind, we can give the following
rules for garbage collection, which are followed
independently by each PE:

1. Any entries in a PE’s GIT that have weight
MazWeight can be discarded, and the local
identifier made available for re-use. (Rea-
son: because of the invariant, no other PEs
or messages refer to this global address.)
All the other entries must be treated as
roots for local garbage collection.

2. The local addresses in a PE’s GA — LA ta-
ble are treated as roots for local garbage
collection, preserving local copies of global
closures in the hope that they will prove
useful in the future. Potentially this step
could be omitted if the PE is short of space.

After local garbage collection is complete,
the GA — LA table i1s scanned. Any entries
whose local closure has been identified as
live by the garbage collector are redirected
to point to the closure’s new location.

Any entries whose closure is dead are dis-
carded, and the weight is returned to the
owning PE in a FREE message, which in
turn adds the weight in the message to its
GIT entry (thereby maintaining the invari-
ant).

If a PE sends a GA to another PE, the weight
held in the GIT or GA — LA table (depending
on whether the GA is owned by this PE or not)

is split evenly between the GA in the message
and the GA remaining in the table. The receiv-
ing PE adds the weight to its GIT or GA — LA

table, as appropriate.

If the weight in a GA to be sent i1s 1 it can
no longer be split, and instead a new GA is al-
This 1s
unfortunate because it introduces global aliases

located with the same local address.

meaning that some sharing is not preserved, but
we hope rare. To prevent every subsequent ship-
ping of the GA from allocating a new GA, we
identify the new GA, with weight to give away,
as the preferred GA. LA — GA lookup always
returns the preferred GA.

The only garbage not collected by this scheme
consists of cycles that are spread across PEs.
We plan ultimately to recover these cycles too
by halting all PEs and performing a global col-
lective garbage collection, but we have not yet
even begun its implementation. In practice, lo-
cal garbage collection plus weighted reference
counting seems to recover most garbage.

Distributing Data

Global references are handled by special Fetch-
Me closures (Figure 2 shows a typical Fetch-Me
closure). When a thread enters a Fetch-Me:

e The Fetch-Me closure is converted into a
special Fetch-Me blocking queue, and the
thread is enqueued, i.e. blocked.

e The Fetch-Me blocking queue is globalised,
l.e. given a new local GA.

o A FETCH message is sent to the PE that
owns the GA in the Fetch-Me.

e The PE then returns to the main scheduler:
i.e it may run other threads, garbage col-
lect or process messages while awaiting the
response to the FETCH. Any subsequent
thread that demands the same foreign clo-
sure will also join the queue.

On receipt of a FETCH message, the target PE
packages up the appropriate closure, together
with some “nearby” graph, and sends this in a
RESUME message to the originator. When the



PE A

FETCH (B36,A21) PEB

RESUME (A21,<packet>)

Figure 2: Fetch/Resume/Ack Sequence

RESUME arrives, the originating PE unpacks
the graph, redirects the Fetch-Me to point to the
root of this graph, and restarts any threads that
were blocked on global closures that were trans-
mitted in the packet. Having done this, an ACK
message is returned to the PE that sent the RE-
SUME (the following section explains why).

2.4 Packing/Unpacking Graph

When a closure is requested we also specula-
tively pack some “nearby” reachable graph into
the same packet, with the object of reducing
the number of explicit FETCHes that need to
be sent. This section discusses the algorithms
and heuristics that are used to pack graph into

GUM packets.

The Design of the Packing Algorithm

Packing arbitrary graph is a non-trivial prob-
lem. The basic problem of transferring arbitrary
pointer structures, while preserving any sharing
and cycles, has already received some attention
in a non-functional context [24, 16, 11]. In GUM
the problem of preserving the integrity of the
graph is exacerbated because the graph on both
the sender and the recipient may be changing
as a result of normal reduction occurring at the
same time that it is being shipped.

There are several possible choices of how much
graph to pack [10]: we can either pack a sin-
gle closure, all reachable graph, or some reach-
able sub-graph. Since shipping a single closure
is likely to be very expensive over a high-latency
network, and the graph that is reachable from a
closure may easily exceed implementation lim-
its on packet sizes or memory, we have opted to
pack only some of the reachable graph, up to a
fixed size limit. The current default size is 1K

words, other sizes can be selected at run time.

In order to maximise the likelithood that the
graph we transmit i1s actually needed, we pack
and unpack graph breadth-first. Thus closures
are normally shipped with at least the outer-
level of their arguments. Fetch-Mes are used
to refer to graph that could not be packed di-
rectly. Good strictness analysis could obviously
help improve this heuristic, by indicating the ex-
tent to which thunks were known to need their
arguments.

Packing and unpacking graph is expensive:
there are two ways in which we hope to recoup
some of this cost. Firstly, by reducing the num-
ber of packets that need to be sent, we can use
the network bandwidth to reduce the overall la-
tency cost of transmitting the data that the pro-
gram requires, at the cost of slightly increasing
the latency of the each packet. Secondly, if fewer
packets are sent, the total context-switch and
packet times will be reduced. The former effect
is likely to be most significant for medium- to
high-latency networks; while the latter applies
to all latencies. It remains to be seen whether
bulk graph packing is sensible in practice for low
latency machines, though initial simulation re-
sults do suggest that bulk packing is at least as
efficient as single closure packing, even for very
low latencies.

Shipping packets of graph introduces complexity
into the RTS. Instead of a single closure being
copied, a subgraph is being copied, and all of
the links from the subgraph back to the origi-
nal graph must be maintained. In a degenerate
case the same closures may be shipped to and fro
between PEs. When a packet of graph arrives,
the recipient interrogates the GA — LA table for
each closure to determine whether there is al-
ready a local copy of that closure. If so, care
must be taken to select the closure requiring the
least amount of communication.

Packing

Packing proceeds closure by closure, breadth-
first into a single packet. As each closure is
packed its address is recorded in a temporary
table so that sharing and cyclic structures can
be preserved. We stop packing when either all
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Figure 3: A Full Packet

reachable graph has been packed, or the packet
is full. To detect when a packet is full, the pack-
ing routine keeps track of how full the packet is,
and how many closures remain to be packed.
Once the packet is full, any outstanding clo-
sures are globalised and packed as Fetch-Mes.
Figure 3 shows an example of this.

It has been observed that packing a pointer
structure is similar to the graph copying per-
formed by copying garbage collectors [24]. In-
deed the packing code performs many of the op-
erations undertaken by the garbage collector to
“improve” the graph. For example indirections
are short-circuited. A minor beneficial effect of
packet-based transfer is that it improves locality
by co-locating “nearby” closures.

The packet that the graph is packed into has
a short header, which indicates how much heap
will be needed to unpack the graph, followed by
the actual packed closures. Each packed closure
has exactly the same form as the corresponding
heap closure, except that it has an additional
GA /tag field that precedes the closure proper,
and any pointer fields in the closure are omitted
in the packet. The GA/tag field normally con-
tains the closure’s GA, but some special closure
types use this as a tag field, as described below.
We can omit the pointer field in packed closures,
because the graph structure is implicit in the or-
der in which closures appear in the packet.

Because the values of expressions remain con-
stant, any normal form closure can be freely
copied between processors. In contrast, thunks
must be treated carefully since each one repre-

sents a potentially unbounded amount of work,
that generally should not be performed more
than once. The packing algorithm is careful to
ensure that only one copy of a thunk ever exists.
To help avoid space leaks, the GA — LA table is
also used during unpacking to ensure that each
PE only has one copy of normal form closures.

As each closure is packed 1t is made global, if it
is not already, and the weighted reference count
is divided between the local and packed copy. A
few closure types are packed specially:

1. “Black holes”, i.e. closures under evalua-
tion, are packed as a Fetch-Me to the black
hole.

2. Permanent local closures (PLCs), i.e.

globally-shared top-level constants, reside

on each PE. The PLC address is simply en-
coded in the GA /tag.

3. Thunks are converted into revertable black
hole closures for reasons explained below.

4. If a closure occurs more than once in
the graph to be packed, then the sec-
ond and subsequent occurrences are packed
as empty closures, with a special tag in
the GA/tag representing an offset into the
packet. The offset points to the location
of the first occurrence of the closure in the
packet.

5. “Primitive arrays” (monolithic data struc-
tures) are always packed along with their
parent closures. A primitive array cannot
be replaced by a Fetch-Me because, for ef-
ficiency, some operations index directly off
the primitive array without first ensuring
that the closure actually is a primitive ar-
ray.

Unpacking

Unpacking traverses the packet, reconstructing
the graph in a breadth-first fashion. The un-
packing of the packet in Figure 3 results in the
graph depicted in Figure 4. As each closure is
unpacked the GA — LA table is interrogated to
find existing local copies of the closure. If no

copy exists, then the GA— LA and LA —GA
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Figure 4: Unpacked Packet

tables are updated appropriately. However, if
there is already a local copy of the closure, care
is taken to choose the closure requiring the least
amount of communication. For example, an in-
coming normal-form closure is preferred to an
existing Fetch-Me. The weight of the incom-
ing GA is added to the weight of the existing
reference. The duplicate is overwritten by an
indirection to the more defined closure.

Thunks

Non-normal form closures, or thunks,
treated specially to ensure that exactly one copy
of the thunk exists. When shipping a thunk be-
tween PEs we want to convert the closure on the
source PE into a Fetch-me to the new location
of the thunk on the destination PE. However,
there are two problems with this:

are

1. the new global address of each thunk in a
packet isn’t known until the packet has ar-
rived at its destination; and

2. since there is only one copy of the thunk, we
can’t destroy the local copy until we know
that the shipped copy has been successfully
unpacked. Unpacking may be impossible if
the remote PE runs out of heap, for exam-
ple.

These problems are resolved by using revertable
black holes and by sending ACK messages to
acknowledge every packet that contains one or

more thunks. A revertable black hole acts like
a normal black hole, except that it also records
the original value of the closure. Should a subse-
quent thread enter the revertable black hole, i.e.
demand the thunk that has just been shipped
away, it becomes blocked. By turning a thunk
into a revertable black hole, we can ensure that
it can be restored in the unlikely event that the
packet is rejected by the destination. One rea-
son for rejecting the packet would be the onset
of global garbage collection, which is not cur-
rently implemented. If the packet is rejected a
NACK message is sent, identifying the thunks
that couldn’t be unpacked.

For example, if a thunk with GA A42 is packed
on PE A for shipment to PE B, it is con-
verted into a revertable black hole closure on A.
When PE B unpacks the thunk, it allocates it
a new GA, e.g. B59. After unpacking the entire
packet B sends an ACK message to A contain-
ing a pair of GAs for every thunk shipped in
the packet, e.g. (A42, B59). PE A overwrites
the revertable black hole identified by A42 by
a Fetch-Me to B59: the thunk’s new location,
and reawakens any blocked threads. Typically
these threads are very short-lived: they enter
the Fetch-me, send a FETCH, and block await-
ing the response.

We have observed programs where a thunk is
repeatedly copied from PE to PE, generating a
chain of Fetch-Mes. In the worst case a FETCH
message might conceivably chase a thunk end-
lessly round a cycle of PEs. This behaviour has
not been observed.

3 Performance Monitoring

The bottom line of any parallel system is the raw
performance that can be delivered. Performance
monitoring tools can improve understanding of a
program’s behaviour, particularly if the results
can be visualised. Because each PE task ex-
ecutes an elaborated version of the sequential
Haskell RTS, some of the profiling tools that
are provided with sequential Haskell still yield
information that can be used to tune parallel
program. In addition, we have also produced
special tools that give per-PE or per-thread ac-
tivity profiles over time.



3.1 Clocks

Choosing the time base against which to
record measurements in a distributed, multi-
programmed environment is hard. Even main-
taining accurate time synchronisation between
distributed PEs is expensive and complex [13].
The time behaviour of a program running under
GUM is further complicated because of the use
of PVM. Each PE task is typically a Unix pro-
cess, and at the mercy of the Unix process sched-
uler. In some configurations, such as a network
of workstations, there is also competing network
traffic that affects overall performance.

Elapsed-time, including initialisation and termi-
nation time is the most stringent measure of
performance. For small programs, initialisation
and termination time is significant, and 1t is use-
ful to record them. A problem with elapsed-
time profiles is that they record activity even
when the program has been descheduled by the
Unix process scheduler and some other process
is running, artificially elongating the profile on
the time axis, and inflating the average paral-
lelism figure. An alternative is to use wvirtual or
user time, i.e. to record only the time when the
program is actually running. This avoids the
elongation effect but exaggerates performance
by ignoring real-time communication costs, or
the effect of executing multiple PE tasks on a
single physical processor.

Our solution is a cheap compromise. To mit-
igate the effects of the process scheduler and
competing communication traffic, we recom-
mend that performance measurement is carried
out on a machine that is running only the par-
allel Haskell program being measured. Initial-
isation time 1s reported separately and either
virtual time or real elapsed time is used for dif-
ferent profiles, as appropriate. The profiles on
different PEs are synchronised by recording the
value of the real-time clock at a known point
during initialisation, and using this time to cor-
rect the elapsed clock times reported by differ-
ent PE tasks. Many networks guarantee that
the real-time clocks on the PEs differ by only a
small amount.

3.2

Sequential Tools

GC Statistics

The garbage collection statistics reported by the
sequential RTS are useful in GUM. For each PE
the residency can be plotted over time. GUM
garbage collection statistics also report both
elapsed and virtual time for initialisation, muta-
tion and garbage collection for each PE. Initial-
isation records the time between the PE task
starting and the start of Mutation. Mutation

time

1s the time from initialisation to termi-

nation. It includes the time spent performing
reduction, communicating or idle, but excludes
time spent garbage collecting.

A heap profile generated when running a linear

equat

ion solver over four SUN 4 SPARC proces-

sors connected by NFS is given below. Proces-

sor numbers (c0001, 80001 etc) refer to PVM

task-1
time

ds. The ratio between elapsed and user
shows how much of the elapsed time the

PE task was descheduled.

Proce

133,3
71 ga

INT
MUT
GC

Tot
%GC
All

Pro

Proce
58,9
31 ga
INI
MUT
GC

Tot

%GC

ssor c0001 shutting down, 260 Threads run

83,480 bytes allocated in the heap

rbage collections (0 major, 71 minor)
T time 0.05s ( 2.10s elapsed)
time 110.43s (162.46s elapsed)
time 1.78s ( 2.50s elapsed)
al time 112.26s (167.06s elapsed)
time 1.6% (1.5% elapsed)
oc rate 1,207,308 bytes per MUT second

ductivity 98.4% of total user,
66.1% of total elapsed

ssor 80001 shutting down, 2201 Threads run

68,324 bytes allocated in the heap
72,508 bytes max residency (1.7%, 1 sample(s))

rbage collections (1 major, 30 minor)

T time 0.04s ( 1.62s elapsed)
time 66.77s (162.97s elapsed)
time 1.17s  ( 2.12s elapsed)

al time 67.98s (166.71s elapsed)

time 1.7% (1.3% elapsed)



Alloc rate 882,627 bytes per MUT second

Productivity 98.2% of total user,
40.1% of total elapsed

Processor 100001 shutting down, 2989 Threads run

106,720,188 bytes allocated in the heap

57 garbage collections (0 major, 57 minor)

INIT time 0.11s ( 2.08s elapsed)

MUT time 72.71s (164.21s elapsed)

GC time 0.60s ( 0.99s elapsed)

Total time 73.42s (167.28s elapsed)

%GC time 0.8% (0.6% elapsed)

Alloc rate 1,465,534 bytes per MUT second

Productivity 99.0% of total user,
43.5% of total elapsed

Processor 40003 shutting down, 3194 Threads run

36,266,232 bytes allocated in the heap

18 garbage collections (0 major, 18 minor)

INIT time 0.12s ( 2.16s elapsed)

MUT time 45.72s (164.26s elapsed)

GC time 0.47s ( 1.00s elapsed)
Total time 46.31s (167.42s elapsed)

%GC time 1.0% (0.6% elapsed)

Alloc rate 791,148 bytes per MUT second

Productivity 98.7% of total user,
27.3% of total elapsed

Cost Centre Profiling

If the programmer 1s interested only in the ra-
tios of time spent in individual functions, and
the space consumed by those functions, then it
is easy to use sequential cost-centre based pro-
filing to provide that information [23]. More so-
phisticated profiling information, such as space
usage over time, needs to be adapted to the par-
allel environment.

[oagen.

centage time x seconds Fri Sep 114552 1995

W nsan

) [ wsomss

“ W oo

2 M ccoc

o
00 50 100 150 200 250 300 350 400 450 500 550 600 seconds

Figure 5: PE 0 (100001) Activity Profile
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Figure 6: PE 1 (c0001) Activity Profile

3.3 PE Activity Profiles

GUM uses cost-centre profiling internally to
record the activity of each PE during reduction.
PE activity profiling is performed in virtual time
because the area under a PE activity graph rep-
resents the percentage time the PE spent on
each activity. Any elongation of the time axis
caused by using elapsed-time would distort the
percentage.

PE activity profiles for two of the PEs in the
linear equation solver run described above are
given in Figures 5 and 6. Profiles are generated
for each PE, and have 4 cost-centres:

e Main — time spent performing reduction.
e Msg — time spent communicating.

e GC — time spent garbage collecting.

Idle — time spent with no reduction, mes-
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Figure 7: Thread Activity Profile
sages or garbage collection to perform.

The virtual times differ for each PE, and cur-
rently there is no way of combining the activity
graphs for all the PEs to construct a profile for
the entire machine.

3.4 Thread Activity Profiles

An alternative style of profiling available from
GUM is provided by the visualisation tools
originally produced for the GranSim simulator.
GranSim was constructed to investigate aspects
of parallel graph reduction [9], and it can be
configured to simulate the running of programs
compiled for GUM on most parallel machines.

When a program is run under GranSim, a file is
generated containing records that record signif-
icant events and when they occurred. Examples
of significant events recorded by GranSim in-
clude when messages are sent and when threads
start, block, or terminate. After a simulation
run, the event file is processed to produce var-
ious kinds of information, such as the aver-
age thread length, or profiles of thread activity
against time.

A runtime option in GUM programs permits
the generation of a subset of the GranSim event
records for each PE. The records for all PEs in-
volved in a run can be merged and then pro-
cessed by the standard GranSim tools to gener-
ate a thread activity profile. For example, the
thread activity profile for the linsolv run is given
in Figure 7. The number of running, runnable,

fetching and blocked threads is plotted against
time.

These profiles show elapsed time, and so can be
used to report actual performance of GUM pro-
grams. Elapsed times are increased if the ma-
chine is running other jobs, so for performance
evaluation it is usually best to make sure that
the GUM run 1is the sole job on the machine.

4 Preliminary Results

This section reports results of experiments per-
formed to verify that the basic mechanisms in
GUM are working properly, and also to perform
preliminary performance evaluation and tuning.
We plan to report the performance of GUM on
useful parallel programs in a future paper.

4.1 Divide-and-conquer factorial

This experiment is designed to test the ability
of GUM to cope with fine-grain tasks, and to
find the minimum acceptable grain-size for two
different architectures. It also gives some idea of
how GUM can perform with an ‘ideal’ parallel
program.

There are two kinds of parallelism overhead in-

curred in GUM:

e The parallel runtime system imposes a
more-or-less fixed percentage overhead on
every program regardless of its use of par-
allelism; and

e There are overheads introduced by every
spark site in the program.

Divide-and-conquer factorial is a good test for
the second overhead, because it can be compiled
for sequential execution so that the main loop
does not generate any closures at all. However,
when it is written and compiled for parallel ex-
ecution, the compiler is obliged to insert code
to build a closure for each spark site. If the
program is written in the usual naive way, each



thread does very little work before sparking an-
other thread, and the overheads of parallelism
will be quite high.

The version of divide-and-conquer factorial that
we use, parfact, has an explicit cut-off param-
eter: if the problem size is smaller than the cut-
off then 1t is solved using purely sequential code;
otherwise, the parallel code is used. By varying
the cut-off parameter we get some idea of how
well GUM copes with various size threads.

module Main(main) where

import Parallel

pfc :: Int -> Int -> Int -> Int
pfc x y ¢
| y - x>c=f1 ‘par’
(2 ‘seq‘ (£1+£2))
[ x == = x
| otherwise = pf x m + pf (m+1) y
where
m = (x+y) ‘div‘ 2
f1 = pfcxmc
2 = pfc (m+l) y ¢
pf :: Int -> Int -> Int
pf xy
| x <y =pf xm + pf (mt1) y
| otherwise = x
where

m = (x+y) ‘div‘ 2

parfact x ¢ = pfc 1 x ¢

main
= getArgs exit ( \[al, a2] ->
let x = fst (head (readDec al))
¢ = fst (head (readDec a2))

in
appendChan stdout
(show (parfact x c))
exit done

Note that to prevent the compiler from making
the entire program into a CAF we have arranged
to read the argument to parfact and the cut-off
parameter from the command line. In all cases,
the argument supplied on the command line was
8399608; the cut-off parameter was varied.

We report all speedups in this paper relative to
a fast sequential version of each program com-
piled using GHC with full optimisation. To ob-
tain the sequential version of parfact we simply
replaced the definition of parfact in the above
code by:

parfact x ¢ = pf 1 x

The following table compares the run time of
this program when run under different condi-
tions on three different Sparc-based platforms.

Platform seq | seq-par | par

SparcClassic | 42.7 | +47% +95%
SunMP 35.9 | +10% +70%
Sparc 10 39.7 | +11% +62%

The columns of this table are:

e seq: gives the runtime in seconds of the se-
quential version of the program when com-
piled with the full optimising sequential
compiler.

e seq-par: gives the percentage increase over
the seq runtime when the sequential ver-
sion of the program is compiled for parallel
execution but only run on a single proces-
sor.

e par: gives the percentage increase over the
seq-par runtime when the parallel version
of the program is compiled for parallel ex-
ecution and run on a single processor with
a cut-off value of 1.

The seq-par column of the table shows that the
overhead imposed by the runtime system on all
code, including sequential, varies by a surpris-
ing amount considering that all three machines
are based on the same architecture; we suspect
that this is due to the different cache sizes in
the machines. The overhead is less than about
50% in the worst-case, and is around 10% for a
typical parallel platform.

The par column figures show the cost of the
extra closure creation caused by the spark sites.
These figures are quite high, but it should be
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Figure 8: parfact speedups on Ethernetted
SparcClassics
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Figure 9: parfact speedups on SunMP

remembered that this is a limiting case; in most
programs that do real work, there will already
be closures at most of the spark sites and the
cost of the sparks will be quite low.

Figure 8 shows the speedups obtained (relative
to pure sequential compilation and execution)
for parfact with different cut-off values and
different numbers of processors. The ‘parallel
machine’ in this case was a set of SparcClas-
sic workstations (Sun 4/15), each with 24MByte
RAM, and connected to a common Ethernet
segment. Figure 9 shows results from the same
experiments run on a Sun multiprocessor with
6 Sparc CPUs connected in a shared-memory
configuration.

The speedups shown in these figures are aver-
age speedups obtained over 4 runs. There are
two factors which may cause the runtime to vary
from one run to another even with the same pa-
rameters.

e The network and the processors
lightly-loaded, but there was no way of pre-
venting other people using them while the
experiments were being run.

were

e There is a degree of chaos in the results,
since a single change in the placement of a
spark at runtime can affect the overall run-
time. This 1s most significant when there
are few threads (that is, when the cut-
off value is high) because the current sys-
tem does not permit migration of running
threads: one processor may end up with a
number of runnable threads, while another
has none. (We have already verified this
phenomenon using the GranSim simulator,
and plan to add thread migration to the
GUM system.)

Things to note about the results shown in Fig-
ures 8 and 9:

e The graph for the SunMP, with its lower
latency interconnect, is smoother than the
one for the Ethernetted system. We
have yet to satisfactorily explain this phe-
nomenon, as there are a large number of
variables involved, some of which, particu-
larly usage of the systems by other jobs, are
beyond our control.

e With one processor running the parallel
system, the speedup goes from 0.5 to 0.92
(SunMP) or 0.3 to 0.92 (Ethernetted Spar-
¢Classics) as the cut-off is varied from 2 to
infinity.

e The peak speedup achieved on the SunMP
with 6 processors was 5.1, at a cut-off value
of 128. For the Ethernetted SparcClassics,
the peak speedup with 6 processors was
4.4, at a cut-off value of 8192. (With 8
processors, the Kthernetted SparcClassics
achieved a peak speedup of 5.4 with the
same cut-off value.)

The thread size corresponding to a cut-
off value of 8192 is about 45ms for the
Ethernetted SparcClassic system. For the
SunMP;, the thread size corresponding to a
cut-off value of 128 is about 0.6ms. Since at
both these cut-off values there are still po-
tentially thousands of parallel threads, this
is a reasonable indication of the finest grain
size that can be tolerated by each platform.



e For both machines, the best value of the
cut-off parameter is independent of the
number of processors.

4.2 Investigation of load distribu-
tion

This experiment was designed to investigate
GUM’s ability to distribute threads over the ma-
chine. The following program, loadtest, cre-
ates b0 equal-sized parallel threads (the size and
number of threads are specified by command-
line arguments):

module Main(main) where

import Parallel

nfib :: Int -> Int
nfibn | n<=1=1
| otherwise = n1 + n2 + 1
where
nl = nfib (n-1)
n2 = nfib (n-2)
parmap :: (a->b) -> [a] -> [b]

parmap £ [1 = []
parmap f (x:xs)
= fxs ‘par‘ (fx ‘seq‘ (fx:fxs))

where fx = f x; fxs = parmap f xs
main
= getArgs exit (\[al,a2] ->
let

x = fst (head (readDec al))
processes = fst (head (readDec a2))
ts n = parmap

(\ten -> sum [nfib z |

z <= [(x-ten)..x]11)

(take n (repeat 10))
loadtest = sum (ts processes)
in
appendChan stdout (show loadtest)

exit done

The sequential version of this program is ob-
tained by replacing the call to parmap by a call
to map.

Speedup

3 4
Number of processors

Figure 10: loadtest speedups on Ethernetted
SparcClassics
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Figure 11: loadtest speedups on SunMP

Note that the size of the threads is exponential
in the value of the command-line argument be-
cause nfib is used as the busy-work for each
thread.

Figure 10 shows the results of running loadtest
with different size threads on different numbers
of processors of the Ethernetted SparcClassics.
Figure 11 shows the results of the same experi-
ments run on the SunMP.

Interesting points from these results:

e With one exception, speedup increases as
thread size increases.

e For the Ethernetted SparcClassics with
very small threads, adding processors re-
sults in a (further) slowdown; however, the
amount of the slowdown seems to be lim-
ited.



e Surprisingly, the SunMP system gives lower
speedups than the Ethernetted system. We
have not yet investigated why this 1s, but
it could be that our load distribution strat-
egy 1s not very well suited to machines with
such a low latency as the SunMP. It should
also be noted that the absolute times for
the SunMP runs are nevertheless almost all
better than for the Ethernetted system, due
to the higher performance of the individual
processors on the SunMP.

4.3 The effect of packet size

The following program, bulktest, was designed
to verify that the bulk fetching mechanism is
operating correctly. It can also be used to de-
termine the optimal value for the packet size for
programs which use all of the reachable data. It
simply generates a list of Ints (length set by a
command-line argument) on one processor, and
consumes the list (summing it) on another pro-
Ccessor.

module Main(main) where

import Parallel

bulktest x
= sxs ‘par‘ ((force xs) ‘seq‘ sxs)
where
xs = take x (repeat (1::Int))
SXS = sum Xs

-- force returns only when the argument
-- list has been completely evaluated.

force :: [Int] -> ()
force [1 = O
force (x:xs) = x ‘seq‘ (force xs)

main
= gethrgs exit ( \[al]l ->
let x = fst (head (readDec al)) in
appendChan stdout
(show (bulktest x))
exit done

Figure 12 shows the absolute runtimes for
bulktest when run on a pair of SparcClas-
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Figure 12: bulktest runtimes on Ethernetted
SparcClassics

sic workstations connected to the same segment
of Ethernet. The x-axis shows varying packet
sizes, while the multiple plots are for different
list lengths, as set by the command-line argu-
ment. Both the x and y axes have log scales.

Interesting points from Figure 12:

e The time required to communicate very
long lists (in excess of 8000 elements) is pre-
dictable, and reduces as the packet size in-
creases.

e The time required to communicate short
lists (less than 8000 elements) is chaotic,
but nevertheless quite small; this is proba-
bly due to the random nature of the Ether-
net.

e Most of the benefit of bulk fetching is
achieved with packet sizes of about 4K
words. Larger packet sizes improve per-
formance slightly for this experiment, but
for more realistic programs they may prove
detrimental. This result is in close agree-
ment with the PVM example program
timing, which shows that for the machine
configuration we used, most of the benefit
of increasing message size is gained when
messages are around 13KByte.



5 Related Work

5.1 GRIP

As will be obvious to those familiar with our
previous work, GUM is a lineal descendent of
the GRIP runtime system [7], though several
simplifications have been made. While we no
longer have two kinds of memory, we have re-
tained the 2-level separation of local and global
heap that permits independent garbage collec-
tion. In addition to the advantages for garbage
collection, this has the secondary benefit of iden-
tifying heap that is purely local, and can thus
be held in faster unshared memory on a shared-
memory machine. We have also retained a simi-
lar message-passing structure, though the num-
ber of messages has been significantly reduced
from about 20 in GRIP, to about 6 for GUM.
The load distribution mechanism is also similar
to, but simpler than, the most refined versions
used on GRIP, which used distributed load in-
formation to maintain an even load distribution.

The GRIP (Graph Reduction in Parallel) ar-
chitecture supported a virtual shared memory
model for graph reduction, using two levels
of physical memory: PE memory and Intelli-
gent Memory Units (IMUs) [7]. Every closure
had a global address field, but only closures in
the IMUs had a Global Address, and could be
shared between PEs. A GA comprised an (IMU,
index) pair. Most closures were local, i.e. never
referenced globally, in which case the GA field
was empty. Because closures typically occupy
only 4 or 5 words, global address information
incurred a space overhead of between 20% and

25%.

In order to support locally independent garbage
collection, GRIP required that there were no
pointers from global heap closures to those held
in local memory. As described earlier, GUM in-
stead uses tables of “in-pointers” that each rep-
resent a global reference to a local heap closure.
A similar scheme is used in other systems for dis-
tributed machines such as Concurrent Clean [5].

On GRIP, unlike GUM, the spark pool was also
divided in two. Each PE maintained a pool of
local sparks, and the intelligent memory units
(IMUs) each maintained separate pools of global

sparks. Idle PEs obtained work from the IMU
pools. If the system became underloaded the
IMUs then refilled their pools by demanding
sparks from PEs. While this scheme prevented
PEs from processing FISH messages unnecessar-
ily, because of the restriction that there could
be no pointers from global to local heap, when
a closure was moved from a local spark pool to a
global spark pool, all of its reachable graph was
also exported. This could lead to significant per-
formance losses, particularly on machines with
a high-latency network. We avoid the problem
using GUM’s on-demand scheme.

On GRIP, we used a synchronous fetch strategy,
where PEs simply entered a busy-waiting loop
rather than context-switching while fetching a
node. While this simplified the run-time sys-
tem by preventing collisions between threads on
the same PE and eliminating awkward context-
switches, simulation results show that this strat-
egy generally has a negative impact on perfor-
mance even at the low latencies of the GRIP
communication system.

Finally, on GRIP each closure was fetched as
it was needed rather than a group of related
closures being fetched eagerly, as in GUM.
Kesseler has described a similar scheme that is
used for Concurrent Clean [12]. While we ex-
pected GUM-style “bulk fetching” to reduce de-
lays when using machines with high-latency net-
works, initial simulation results using GranSim
appear to show that the greatest benefits are
actually achieved for low- and medium latency
networks. While this may be an artefact of the
programs studied (simple parallel divide-and-
conquer programs), it may also be that at very
high latencies, it 1s simply not worth attempting
to parallelise most programs.

6 Further Work

6.1 Performance Tuning

The GUM implementation has been debugged
functionally, but its performance has not yet
been tuned. Some obvious areas to investigate
are:



e What are the optimal packet sizes for our
initial target machines? The GranSim sim-
ulator [9] might be a quick way to determine
these.

e How good is the load management strat-
egy? There are several issues that need to
be explored here. Firstly, we need to ensure
that not too much time is spent processing
FISH messages.

Secondly, FISH messages currently follow
an entirely random path when searching for
work. While some randomness is necessary
to avoid successive FISH messages following
the same path, and therefore never finding
the work that is available, it might be more
efficient for each PE to record where it last
found work, and to send FISH messages
alternately randomly and to this work-
source. Finally, the FISH message could
also record information about the PEs vis-
ited, e.g. their load, to provide global in-
formation about the system. For example,
load information could be used to decide
whether a failed FISH message should de-
lay before being reissued.

e When it receives a FETCH from a heavily
loaded PE; a lightly loaded PE could first
evaluate any thunks that were demanded
before shipping the packet.

e Currently all closures are globalised during
the packing process, which involves adding
them to the GA table on the packing PE. It
would be possible to avoid globalising some
closures, and so both speed packing and re-
duce the size of the GA tables, at the cost
of losing some sharing.

e Currently local addresses in a PE’s
GA — LA table are treated as roots for lo-
cal garbage collection. The GA — LA scan
could be made optional, depending on how
much space the PE has available. Effec-
tively local copies of global closures could
be sacrificed to retrieve more space.

6.2 Shortcomings

There are currently a number of shortcomings in
the GUM system which may occasionally cause
performance problems or even outright inability

to cope with some programs. None of these are
fundamental problems; we have just left them
as the last few things to tidy up:

e At present it 1s impossible to transmit clo-
sures that don’t fit into a single packet.
This can be a problem if the program con-
tains large data structures, such as packed
strings. One solution would be to split large
closures into multiple packets, as on GRIP.

e GUM does not currently support task mi-
gration: consequently, once a spark is
converted into a thread on a PE, it is
only ever evaluated on that PE. There is
good evidence that task migration is some-
times needed to obtain good overall perfor-
mance [4, 9]. Since some internal thread
objects, such as the thread stack, may not
fit into a single packet, this may also require
the use of a multi-packet protocol.

o Currently, each top-level constant (or PLC)
is evaluated on every PE that needs its
value. This is an exception to our rule
that thunks are never duplicated. For small
PLCs, this may not matter, since it is prob-
ably cheaper to re-evaluate the PLC than
to send a FETCH/RESUME message pair
to obtain its value. Larger PLCs are more
problematic, since re-evaluation can reduce
parallelism, and cause space leaks. Paral-
lel Haskell programmers must therefore be
careful when generating large PLCs. If sup-
port for speculation was added to GUM,
then a scheme like Aharoni’s [1] might be
incorporated. The scheme speculatively re-
duces the PLC, and if the reduction has not
terminated in a short interval the PE com-
municates to obtain the value.

e Garbage collection could be developed in
several ways. For example, some of the
desperation measures used to reclaim space
on GRIP, such as reverting foreign closures
into Fetch-Mes [7], could also be beneficial
in GUM. At present, it is also not possi-
ble to reclaim graph that forms a cycle be-
tween 2 or more PEs. Circumventing this
would involve implementing some kind of
global stop-and-copy garbage collection: a
third level of garbage collection. Full global
garbage collection might even balance the
weights held by each PE.



e More sophisticated statistics-gathering and
visualisation tools might be developed. For
example to profile heap usage on each PE
over time.

e Support might be provided for the more
sophisticated parallel annotations we have
proposed elsewhere [9], e.g. parLocal to gen-
erate local sparks or parAt to generate a
spark on a remote PE.

6.3 Extensions

There are two obvious extensions that could be
made to parallel Haskell.

Firstly, there is a concurrent variant of Haskell,
which is typically used to implement user inter-
faces as a network of communicating sequential
processes [6]. An obvious extension is to inte-
grate concurrent and parallel Haskell, creating
networks of communicating parallel processes.

Secondly, speculative evaluation [15] might also
be supported. Some interesting programs rely
on speculation to achieve performance, so this
could open up some new applications. Care
must be taken, however, to avoid the high over-
heads that are often associated with speculative
techniques.

Concurrency

In Concurrent Haskell, threads are created by
fork e; es, analogous to par es es. The se-
mantic difference 1s that, while the first argu-
ment of par, i.e. ez, may be ignored, the first
argument of a fork, i.e. ey, must be evaluated.
Concurrent threads communicate and synchro-
nise via special variables, MVars [6].

In terms of the run-time system, the threads
executing es, es and ey are mandatory, but
the thread executing ey is advisory. Currently
GUM has only one mandatory thread: the main
thread. A fair scheduler is required to ensure
that all mandatory threads are evaluated.

Some changes to GUM that would be necessary
to support concurrent and parallel Haskell si-
multaneously are:

e A more sophisticated termination algo-
rithm: e/l mandatory threads must com-
plete before the program can terminate,
rather than just the main thread.

e New message types would be required to
read and write M Vars.

Speculation

GUM already supports rudimentary specula-
tive evaluation. In par e; ep, if ey is not
strict in e;, then its evaluation is speculative.
Such speculation is unwise under GUM if e
consumes many resources, or sparks additional
tasks. A speculative RTS may terminate spec-
ulative tasks if they are discovered to be un-
necessary, and may revert the graph into the
state prior to the execution of the speculative

task [15, 18].

Some of the machinery required to support spec-
ulation is already in place in GUM. For ex-
ample, speculative threads could generate re-
vertable black-holes rather than normal black-
holes. These can then be reverted to their origi-
nal state if the thread which is evaluating them
is found to be unnecessary.

7  Summary

This paper has described a highly portable par-
allel 1implementation of Haskell, built on the
PVM communications harness. It is quite am-
bitious to target such a variety of architectures,
and it is not obvious that a single architec-
tural model will suffice for all machines, even
if we start from such a high-level basis as par-
allel Haskell. We do however believe that it
is easier and more efficient to map a message-
based protocol onto a shared-memory machine
than to map a shared-memory protocol onto a
distributed-memory machine.

While we have initially targeted PVM because
of 1ts wide availability this is not a fixed deci-
sion and our implementation could be easily re-
targeted to other message-passing libraries such
as MPI, or even GRIP’s own operating system

(GLOS).



We also expect to need to tune our system, es-
pecially for shared-memory systems, and per-
haps introduce new parallel hints that can be
exploited by some classes of architecture.
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Appendix A Table of Mes-
sage Type in GUM

The messages required to support parallel graph
reduction under GUM are enumerated below.

FETCH a remote closure

RemoteGA: global address of closure being
fetched.

LocalGA: global address (on this PE) of
closure where the fetched graph is to be un-
packed

Load: of requesting PE. Currently unused.

RESUME the thread waiting on the ‘fetched’
closure.

o RemoteGA: global

e Size:

address where the

packet 1s to be unpacked.

size in bytes of the following data
packet.

e Data: Packet of graph, format described in

Section 2.4.

ACK that a RESUME or SCHEDULE has
been processed successfully. Also overwrite any
thunks shipped.

e Task: (pvm) task identifier of PE.

e NGAs: number of global addresses pairs in

the following table.

e GAGAMap: a sequence of global address

pairs, use is described in Section 2.4

FISH for work.

DestPE: current target PE of this FISH
message.

OrigPE: originating PE of the FISH.

Age: of the fish. Old fish die, as explained
in Section 2.2.2.

History: to record ‘global’ load informa-
tion. Currently unused.

Hunger: to record how desperate the
PE/FISH is for work. Currently unused.

SCHEDULE a netted spark.

o OrigPE: the target of the SCHEDULE.
e Size: the size in bytes of the following data

packet.

e Data: Packet of graph, format described in

Section 2.4.

FREE some global addresses.

e PE: the target of the FREE.

e Size: number of pairs of GAs in the follow-

ing field.

e Data: a sequence of weight, local-identifier

pairs.
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Appendix B Physical Data
Structures

Although logically the GIT, GA— LA, and
LA — GA tables are separate entities, they are
implemented by a single data structure, the
GALA-pair table. The GALA-pair table is a
collection of GALA-pairs, with hashed access
from both LA and GA. A GALA pair comprises
a GA including a weight, a LA, and a boolean
indicating whether the GA is the preferred GA.

The GALA-pair table has the following proper-
ties.

e All GAs are unique in the GALA-pair ta-
ble: i.e. a GA can only have a single LA.
Conversely a LA can have many GAs, this
copes with the situation when weight has
been exhausted. At least one GA will be
preferred, i.e. the GA with the most weight.

e The GA returned by a LAGA lookup is a
preferred GA.

e It is not true that only one GALA-pair is
the preferred GA, because an indirection
with a preferred GA may be shorted to a
closure with a preferred GA.

The data structure is depicted in Figure 13.
Fetch-Me closures point directly to the GALA-
pair that identifies the remote closure. Lookup
in the LA — GA table is implemented by hash-
ing the LA. Similarly lookup in the GA — LA
table is implemented by hashing the GA. The
GA — LA table can be enumerated by following

the chain of Live Remote GAs. GA — LA en-
tries are allocated from, and deallocated to, the
chain of FreeRemoteGAs.

GIT lookup is implemented by hashing the GA.
The GIT can be enumerated by following the
chain of Liwe Indirections. Local identifiers are
allocated from, and deallocated to, the chain of
Free Indirections.



