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1 IntroductionGUM (Graph reduction for a Uni�ed Machinemodel) is a portable, parallel, publicly-releasedimplementation of the purely-functional pro-gramming language Haskell. So far as we know,it is the �rst publicly-released parallel imple-mentation of any functional language, exceptpossibly MultiLisp, despite hundreds of papers,dozens of paper designs, and a handful of realsingle-site implementations. We believe thatthis is partly because of the diversity of paral-lel machine architectures, but also because theimplementation task is much more substantialthan it �rst appears. The goal of this paperis to give a technical overview of GUM, high-lighting our main design choices, and presentingpreliminary performance measurements.GUM has the following features:� GUM is portable. It is message based, anduses PVM [17], a communication infras-tructure available on almost every multi-processor, including both shared-memoryand distributed-memory machines, as wellas networks of workstations. The basic as-sumed architecture is that of a collection ofprocessor-memory units (hereinafter calledPEs) connected by some kind of networkthat is accessed through PVM.PVM imposes its own overheads, too, butthere are short-cuts that can be taken forcommunication between homogeneous ma-chines on a single network. In any case,for any particular architecture any othermachine-speci�c communications substrate1



could be readily substituted.� GUM delivers signi�cant absolute speedups,relative to the best sequential compilertechnology1. It does so by using one of thebest available sequential Haskell compilersas its basis, namely the Glasgow HaskellCompiler (GHC). (Indeed GUM is \just"a new runtime system for GHC.) The se-quential parts of a program run as fast as ifthey were compiled by GHC for a sequentialmachine, apart from a small constant-factoroverhead (Section 4.1)� GUM provides a suite of tools for moni-toring and visualising the behaviour of pro-grams. The bottom line of any parallel sys-tem is raw performance, and a program'sperformance can only be improved if it canbe understood. In addition to conventionalsequential tools, GUM provides tools tomonitor and visualise both PE and threadactivity over time.� GUM supports independent local garbagecollection, within a single global virtualheap. Each PE has a local heap that im-plements part of the global virtual heap.A two-level addressing scheme distinguisheslocal addresses, within a PE's local heap,from global addresses, that point betweenlocal heaps. The management of global ad-dresses is such that each PE can garbage-collect its local heap independently of anyother PE, a property we found to be crucialon the GRIP multiprocessor [20].� Thread distribution is performed lazily, butdata distribution is performed somewhat ea-gerly. Threads are never exported to otherPE to try to \balance" the load. Instead,work is only moved when a processor is idle(Section 2.2.2). Moving work prematurelycan have a very bad e�ect on locality.On the other hand, when replying to a re-quest for a data value, a PE packs (a copyof) \nearby" data into the reply, on thegrounds that the requesting PE is likely toneed it soon (Section 2.4). Since the send-ing PE retains its copy, locality is not lost.1Needless to say, this claim relates to programs withlots of large-grain parallelism, and the name of the gameis seeing how far it extends to more realistic programs.Nevertheless, such tests provide an important sanitycheck: if the system does badly here then all is lost.

� All messages are asynchronous. The idea| which is standard in the multithreadingcommunity [2] | is that once a processorhas sent a message it can forget all aboutit and schedule further threads or messageswithout waiting for a reply (Section 2.3.2).Notably, when a processor wishes to fetchdata from another processor it sends a mes-sage whose reply can be arbitrarily delayed| for example, the data might be underevaluation at the far end. When the reply�nally does arrive, it is treated as an inde-pendent work item.Messages are sent asynchronously and containlarge amounts of graph in order to amelioratethe e�ects of long-latency distributed machines.Of course there is no free lunch. Some parallelHaskell programs may work much less well onlong-latency machines than short-latency ones,but nobody knows to what extent. One meritof having a single portable framework is that wemay hope to �nd out.GUM is freely available by FTP, as part ofthe Glasgow Haskell Compiler release (0.26 on-wards). It is currently ported to networks of SunSPARCs and DEC Alphas, and Sun's symmetricmultiprocessor SPARCserver.The remainder of this paper is structured as fol-lows. Section 2 describes how the GUM run-time system works. Section 3 describes the toolsavailable for monitoring the performance of pro-grams running under GUM. Section 4 gives pre-liminary performance results. Section 5 dis-cusses related work. Section 6 outlines somedirections for its development. Section 7 con-cludes.2 How GUM worksThis section describes GUM's design and im-plementation. A lot of the description centresaround the di�erent types of message that GUMuses; for reference, Appendix A lists the �eldsof each type of message.



2.1 Initialisation and TerminationThe �rst action of a GUM program is to createa PVM manager task, whose job is to controlstartup, termination and synchronise garbagecollection. This manager task then spawns therequired number of logical PEs as PVM tasks,which PVM maps to the available processors.Each PE task then initialises itself: processingruntime arguments, allocating heap etc. Onceall PE tasks have initialised, and been informedof each others identity, one of the PE-tasks isnominated as the main PE. The main PE thenbegins executing the main thread of the Haskellprogram (the closure called Main.main).The program terminates when either the mainthread completes, or encounters an error. In ei-ther case a FINISH message is sent to the man-ager task, which in turn broadcasts a FINISHmessage to all of the PE tasks. The managerwaits for each PE task to respond before termi-nating the program.2.2 Thread ManagementA thread is a virtual processor. It is repre-sented by a (heap-allocated) Thread State Ob-ject (TSO) containing slots for the thread's reg-isters. The TSO in turn points to the thread's(heap-allocated) Stack Object (SO). As thethread's stack grows, further Stack Objects areallocated and chained on to the earlier ones.Each PE has a pool of runnable threads (or,rather, TSOs), called its runnable pool. The PEexecutes the following scheduling loop until itreceives a FINISH message.Main Scheduler:1. Perform local garbage collection, if nec-essary.2. Process any incoming messages fromother PEs.3. If there are runnable threads, run one ofthem.4. Otherwise look for work, as described inSection 2.2.2.

The thread scheduler is fair: runnable threadsare executed in following a round-robin policy.Each thread is run until its time-slice expires,it completes, space is exhausted or the threadblocks | either on a black hole (Section 2.2.3)or accessing remote data (Section 2.3.2). A fairscheduler facilitates concurrent and speculativeexecution, at the cost of increasing both spaceusage and overall run-time [4].2.2.1 SparksParallelism is initiated by the par combinator inthe source program. (At present these combina-tors are added by the programmer, though wewould of course like this task to be automated.)When the expressionx `par` eis evaluated, the heap closure referred to by thevariable x is sparked, and then e is evaluated.Quite a common idiom (though by no meansthe only way of using par) is to writelet x = f a b in x `par` ewhere e mentions x. Here, a thunk (aka suspen-sion) representing the call f a b is allocated bythe let and then sparked by the par. It maythus be evaluated in parallel with e.Sparking a thunk is a relatively cheap operation,consisting only of adding a pointer to the thunkto the PE's spark pool2. A spark is an indicationthat a thunk might usefully be evaluated in par-allel, not that it must be evaluated in parallel.Sparks may freely be discarded if they becometoo numerous.2.2.2 Finding workIf (and only if) a PE has nothing else to do, ittries to schedule a spark from its spark pool, ifthere is one. The spark may by now be useless, ifthe thunk it refers to has by now been overwrit-ten with its value, in which case it is discarded.2There is a caveat here | see Section 4.1 for details



If the PE �nds a useful spark, it turns it into athread by allocating a fresh TSO and SO3, andstarts executing it.If there are no local sparks, then the PE seekswork from other PEs, by launching a FISH mes-sage that \swims" from PE to PE looking foravailable work. Initially only the main PE isbusy | has a runnable thread | and all otherPEs start �shing for work as soon as they beginexecution.When FISH messages are created, they are sentat random to some other PE. If the recipienthas no useful spark, or potential task, it in-creases the age of the FISH, and reissues theFISH to another PE, again chosen at random.There is a limit to the number of PEs that aFISH visits: having exceeded this limit, the lastPE visited returns the unsuccessful FISH to theoriginating PE. On receipt of its own, starved,FISH the originating PE then delays brie
y be-fore reissuing it. The purpose of the delay isto avoid swamping the machine with FISH mes-sages when there are only a few busy PEs. APE only ever has a single FISH outstanding.If the PE that receives a FISH has a usefulspark it issues a SCHEDULE message to thePE that originated the FISH, containing thesparked thunk packaged with nearby graph, asdescribed in Section 2.4. The originating PE un-packs the graph, and adds the newly acquiredthunk to its local spark pool. An ACK messageis then sent to record the new location of thethunk(s) sent in the SCHEDULE. Note that theoriginating PE may no longer be idle becausebefore the SCHEDULE arrives, another mes-sages may have unblocked some thread. A se-quence of messages initiated by a FISH is shownin Figure 1.2.2.3 SynchronisationIt is obviously desirable to prevent two threadsfrom evaluating the same thunk simultaneously,lest the work of doing so be duplicated. Thissynchronisation is achieved as follows:3Since we know exactly when we discard TSOs andSOs, and they are relatively large, we keep them on afree list so that we can avoid chomping through heapwhen executing short-lived tasks
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PE CPE BPE AFigure 1: Fish/Schedule/Ack Sequence1. When a thread enters (starts to evaluate) athunk, it overwrites the thunk with a blackhole (so called for historical reasons).2. When a thread enters a black hole, it savesits state in its TSO, attaches its TSO to thequeue of threads blocked on the black hole(its blocking queue), and calls the scheduler.3. Finally, when a thread completes the eval-uation of a thunk, it overwrites it withits value (the update operation). When itdoes so, it moves any queued TSOs to therunnable pool.Notice that synchronisation costs are only in-curred if two threads actually collide. In par-ticular, if a thread sparks a sub-expression, andthen subsequently evaluates that sub-expressionbefore the spark has been turned into a threadand scheduled, then no synchronisation cost isincurred. In e�ect the putative child thread isdynamically inlined back into the parent.2.3 Memory ManagementParallel graph reduction proceeds on a sharedprogram/data graph, and a primary function ofthe run-time system of a parallel functional lan-guage is to manage the virtual shared memoryin which the graph resides.As mentioned earlier, GUM is based on theGlasgow Haskell Compiler, and most executionis carried out in precisely the same way as on auniprocessor. In particular, new heap closuresare allocated from a contiguous chunk of freespace, and the heap-closure addresses manipu-lated by the compiled code are simply one-wordpointers within the local heap.



Sometimes, though, the run-time system needsto move a heap closure from one PE's local heapto another's. For example, when a PE (call it A)with plenty of sparks receives a FISH message,it sends one of its sparked thunks to the idlePE (call it B). When a thunk is moved in thisway, the original thunk is overwritten with aFetchMe closure, containing the global addressof the new copy on B. Why does the thunk needto be overwritten? It would be a mistake simplyto copy it, because then both A and B mightevaluate it separately(remember, there might beother local pointers to it from A's heap).2.3.1 Global AddressesAt �rst one might think that a global address(GA) should consist of the identi�er of the PEconcerned, together with the local address of theclosure on that PE. Such a scheme would, how-ever, prevent the PEs from performing compact-ing garbage collection, since that changes thelocal address of most closures, and compactinggarbage collection is a crucial component of oure�cient compilation technology.Accordingly, we follow standard practice andallocate each globally-visible closure an im-mutable local identi�er (typically a naturalnumber). A global address consists of a (PEidenti�er, local identi�er) pair. Each PE main-tains a Global Indirection Table, or GIT, whichmaps local identi�ers to the local address of thecorresponding heap closure. The GIT is treatedas a source of roots for local garbage collec-tion, and is adjusted to re
ect the new locationsof local heap closures following local garbagecollection4. We say that a PE owns a globally-visible closure (that is, one possessing a globaladdress) if the closure's global address containsthat PE's identi�er.A heap closure is globalised (that is, given aglobal address) by allocating an unused localidenti�er, and augmenting the GIT to map thelocal identi�er to the closure's address. (Ap-pendix B describes how an unused identi�er isfound, and how the GIT is represented.) Ofcourse, it is possible that the closure already has4The alert reader will have noticed that we will needsome mechanism for recovering and re-using local iden-ti�ers, a matter we will return to shortly.

a global address. We account for this possibilityby maintaining (separately in each PE) a map-ping from local addresses to global addresses,the LA!GA table, and checking it before glob-alising a heap closure. Naturally, the LA!GAtable has to be rebuilt during garbage collection,since closures' local addresses may change.A PE may also hold copies of globally-visibleheap closures owned by another PE. For exam-ple, PE A may have a copy of a list it obtainedfrom PE B. Suppose the root of the list has GA(B,34). Then it makes sense for A to remem-ber that the root of its copy of the list also hasGA (B,34), in case it ever needs it again. If itdoes, then instead of fetching the list again, itcan simply share the copy it already has.We achieve this sharing by maintaining (in eachPE) a mapping from global addresses to localaddresses, the PE's GA!LA table. When Afetches the list for the �rst time, it enters themapping from (B,34) to the fetched copy inits GA!LA table; then, when it needs (B,34)again it checks the GA!LA table �rst, and�nds that it already has a local copy.To summarise, each PE maintains three tables:� Its GIT maps each allocated local identi�erto its local address.� Its GA!LA table maps some foreignglobal addresses (that is, ones whose PEidenti�er is non-local) to their local coun-terparts. Notice that each foreign GA mapsto precisely one LA.� Its LA!GA table maps local addresses tothe corresponding global address (if any).Whilst there are logically three tables, in prac-tice we represent them by a single data struc-ture; Appendix B elaborates.2.3.2 Garbage collectionThis scheme has the obvious problem that oncea closure has an entry in the GIT it cannot everbe garbage collected (since the GIT is used as asource of roots for local garbage collection), nor



can the local identi�er be re-used. Again follow-ing standard practice, [14] we use weighted ref-erence counting to recover local identi�ers, andhence the closures they identify [3, 25].We augment both the GIT and the GA!LAtable to deliver a weight as well as the local ad-dress. The invariant we maintain is that for agiven global address, G, the sum of:� G's weight in the GA!LA tables of all for-eign PEs, and� G's weight in its owner's GIT, and� the weight attached to any Gs inside anyin-
ight messagesis equal to MaxWeight, a �xed constant. Withthis invariant in mind, we can give the followingrules for garbage collection, which are followedindependently by each PE:1. Any entries in a PE's GIT that have weightMaxWeight can be discarded, and the localidenti�er made available for re-use. (Rea-son: because of the invariant, no other PEsor messages refer to this global address.)All the other entries must be treated asroots for local garbage collection.2. The local addresses in a PE's GA!LA ta-ble are treated as roots for local garbagecollection, preserving local copies of globalclosures in the hope that they will proveuseful in the future. Potentially this stepcould be omitted if the PE is short of space.After local garbage collection is complete,the GA!LA table is scanned. Any entrieswhose local closure has been identi�ed aslive by the garbage collector are redirectedto point to the closure's new location.Any entries whose closure is dead are dis-carded, and the weight is returned to theowning PE in a FREE message, which inturn adds the weight in the message to itsGIT entry (thereby maintaining the invari-ant).If a PE sends a GA to another PE, the weightheld in the GIT or GA!LA table (dependingon whether the GA is owned by this PE or not)

is split evenly between the GA in the messageand the GA remaining in the table. The receiv-ing PE adds the weight to its GIT or GA!LAtable, as appropriate.If the weight in a GA to be sent is 1 it canno longer be split, and instead a new GA is al-located with the same local address. This isunfortunate because it introduces global aliasesmeaning that some sharing is not preserved, butwe hope rare. To prevent every subsequent ship-ping of the GA from allocating a new GA, weidentify the new GA, with weight to give away,as the preferred GA. LA!GA lookup alwaysreturns the preferred GA.The only garbage not collected by this schemeconsists of cycles that are spread across PEs.We plan ultimately to recover these cycles tooby halting all PEs and performing a global col-lective garbage collection, but we have not yeteven begun its implementation. In practice, lo-cal garbage collection plus weighted referencecounting seems to recover most garbage.Distributing DataGlobal references are handled by special Fetch-Me closures (Figure 2 shows a typical Fetch-Meclosure). When a thread enters a Fetch-Me:� The Fetch-Me closure is converted into aspecial Fetch-Me blocking queue, and thethread is enqueued, i.e. blocked.� The Fetch-Me blocking queue is globalised,i.e. given a new local GA.� A FETCH message is sent to the PE thatowns the GA in the Fetch-Me.� The PE then returns to the main scheduler:i.e it may run other threads, garbage col-lect or process messages while awaiting theresponse to the FETCH. Any subsequentthread that demands the same foreign clo-sure will also join the queue.On receipt of a FETCH message, the target PEpackages up the appropriate closure, togetherwith some \nearby" graph, and sends this in aRESUME message to the originator. When the
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PE A PE BFigure 2: Fetch/Resume/Ack SequenceRESUME arrives, the originating PE unpacksthe graph, redirects the Fetch-Me to point to theroot of this graph, and restarts any threads thatwere blocked on global closures that were trans-mitted in the packet. Having done this, an ACKmessage is returned to the PE that sent the RE-SUME (the following section explains why).2.4 Packing/Unpacking GraphWhen a closure is requested we also specula-tively pack some \nearby" reachable graph intothe same packet, with the object of reducingthe number of explicit FETCHes that need tobe sent. This section discusses the algorithmsand heuristics that are used to pack graph intoGUM packets.The Design of the Packing AlgorithmPacking arbitrary graph is a non-trivial prob-lem. The basic problem of transferring arbitrarypointer structures, while preserving any sharingand cycles, has already received some attentionin a non-functional context [24, 16, 11]. In GUMthe problem of preserving the integrity of thegraph is exacerbated because the graph on boththe sender and the recipient may be changingas a result of normal reduction occurring at thesame time that it is being shipped.There are several possible choices of how muchgraph to pack [10]: we can either pack a sin-gle closure, all reachable graph, or some reach-able sub-graph. Since shipping a single closureis likely to be very expensive over a high-latencynetwork, and the graph that is reachable from aclosure may easily exceed implementation lim-its on packet sizes or memory, we have opted topack only some of the reachable graph, up to a�xed size limit. The current default size is 1K

words, other sizes can be selected at run time.In order to maximise the likelihood that thegraph we transmit is actually needed, we packand unpack graph breadth-�rst. Thus closuresare normally shipped with at least the outer-level of their arguments. Fetch-Mes are usedto refer to graph that could not be packed di-rectly. Good strictness analysis could obviouslyhelp improve this heuristic, by indicating the ex-tent to which thunks were known to need theirarguments.Packing and unpacking graph is expensive:there are two ways in which we hope to recoupsome of this cost. Firstly, by reducing the num-ber of packets that need to be sent, we can usethe network bandwidth to reduce the overall la-tency cost of transmitting the data that the pro-gram requires, at the cost of slightly increasingthe latency of the each packet. Secondly, if fewerpackets are sent, the total context-switch andpacket times will be reduced. The former e�ectis likely to be most signi�cant for medium- tohigh-latency networks; while the latter appliesto all latencies. It remains to be seen whetherbulk graph packing is sensible in practice for lowlatency machines, though initial simulation re-sults do suggest that bulk packing is at least ase�cient as single closure packing, even for verylow latencies.Shipping packets of graph introduces complexityinto the RTS. Instead of a single closure beingcopied, a subgraph is being copied, and all ofthe links from the subgraph back to the origi-nal graph must be maintained. In a degeneratecase the same closures may be shipped to and frobetween PEs. When a packet of graph arrives,the recipient interrogates the GA!LA table foreach closure to determine whether there is al-ready a local copy of that closure. If so, caremust be taken to select the closure requiring theleast amount of communication.PackingPacking proceeds closure by closure, breadth-�rst into a single packet. As each closure ispacked its address is recorded in a temporarytable so that sharing and cyclic structures canbe preserved. We stop packing when either all
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PacketFigure 3: A Full Packetreachable graph has been packed, or the packetis full. To detect when a packet is full, the pack-ing routine keeps track of how full the packet is,and how many closures remain to be packed.Once the packet is full, any outstanding clo-sures are globalised and packed as Fetch-Mes.Figure 3 shows an example of this.It has been observed that packing a pointerstructure is similar to the graph copying per-formed by copying garbage collectors [24]. In-deed the packing code performs many of the op-erations undertaken by the garbage collector to\improve" the graph. For example indirectionsare short-circuited. A minor bene�cial e�ect ofpacket-based transfer is that it improves localityby co-locating \nearby" closures.The packet that the graph is packed into hasa short header, which indicates how much heapwill be needed to unpack the graph, followed bythe actual packed closures. Each packed closurehas exactly the same form as the correspondingheap closure, except that it has an additionalGA/tag �eld that precedes the closure proper,and any pointer �elds in the closure are omittedin the packet. The GA/tag �eld normally con-tains the closure's GA, but some special closuretypes use this as a tag �eld, as described below.We can omit the pointer �eld in packed closures,because the graph structure is implicit in the or-der in which closures appear in the packet.Because the values of expressions remain con-stant, any normal form closure can be freelycopied between processors. In contrast, thunksmust be treated carefully since each one repre-

sents a potentially unbounded amount of work,that generally should not be performed morethan once. The packing algorithm is careful toensure that only one copy of a thunk ever exists.To help avoid space leaks, the GA!LA table isalso used during unpacking to ensure that eachPE only has one copy of normal form closures.As each closure is packed it is made global, if itis not already, and the weighted reference countis divided between the local and packed copy. Afew closure types are packed specially:1. \Black holes", i.e. closures under evalua-tion, are packed as a Fetch-Me to the blackhole.2. Permanent local closures (PLCs), i.e.globally-shared top-level constants, resideon each PE. The PLC address is simply en-coded in the GA/tag.3. Thunks are converted into revertable blackhole closures for reasons explained below.4. If a closure occurs more than once inthe graph to be packed, then the sec-ond and subsequent occurrences are packedas empty closures, with a special tag inthe GA/tag representing an o�set into thepacket. The o�set points to the locationof the �rst occurrence of the closure in thepacket.5. \Primitive arrays" (monolithic data struc-tures) are always packed along with theirparent closures. A primitive array cannotbe replaced by a Fetch-Me because, for ef-�ciency, some operations index directly o�the primitive array without �rst ensuringthat the closure actually is a primitive ar-ray.UnpackingUnpacking traverses the packet, reconstructingthe graph in a breadth-�rst fashion. The un-packing of the packet in Figure 3 results in thegraph depicted in Figure 4. As each closure isunpacked the GA!LA table is interrogated to�nd existing local copies of the closure. If nocopy exists, then the GA!LA and LA!GA
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FM A21 FM A22Figure 4: Unpacked Packettables are updated appropriately. However, ifthere is already a local copy of the closure, careis taken to choose the closure requiring the leastamount of communication. For example, an in-coming normal-form closure is preferred to anexisting Fetch-Me. The weight of the incom-ing GA is added to the weight of the existingreference. The duplicate is overwritten by anindirection to the more de�ned closure.ThunksNon-normal form closures, or thunks, aretreated specially to ensure that exactly one copyof the thunk exists. When shipping a thunk be-tween PEs we want to convert the closure on thesource PE into a Fetch-me to the new locationof the thunk on the destination PE. However,there are two problems with this:1. the new global address of each thunk in apacket isn't known until the packet has ar-rived at its destination; and2. since there is only one copy of the thunk, wecan't destroy the local copy until we knowthat the shipped copy has been successfullyunpacked. Unpacking may be impossible ifthe remote PE runs out of heap, for exam-ple.These problems are resolved by using revertableblack holes and by sending ACK messages toacknowledge every packet that contains one or

more thunks. A revertable black hole acts likea normal black hole, except that it also recordsthe original value of the closure. Should a subse-quent thread enter the revertable black hole, i.e.demand the thunk that has just been shippedaway, it becomes blocked. By turning a thunkinto a revertable black hole, we can ensure thatit can be restored in the unlikely event that thepacket is rejected by the destination. One rea-son for rejecting the packet would be the onsetof global garbage collection, which is not cur-rently implemented. If the packet is rejected aNACK message is sent, identifying the thunksthat couldn't be unpacked.For example, if a thunk with GA A42 is packedon PE A for shipment to PE B, it is con-verted into a revertable black hole closure on A.When PE B unpacks the thunk, it allocates ita new GA, e.g. B59. After unpacking the entirepacket B sends an ACK message to A contain-ing a pair of GAs for every thunk shipped inthe packet, e.g. (A42, B59). PE A overwritesthe revertable black hole identi�ed by A42 bya Fetch-Me to B59: the thunk's new location,and reawakens any blocked threads. Typicallythese threads are very short-lived: they enterthe Fetch-me, send a FETCH, and block await-ing the response.We have observed programs where a thunk isrepeatedly copied from PE to PE, generating achain of Fetch-Mes. In the worst case a FETCHmessage might conceivably chase a thunk end-lessly round a cycle of PEs. This behaviour hasnot been observed.3 Performance MonitoringThe bottom line of any parallel system is the rawperformance that can be delivered. Performancemonitoring tools can improve understanding of aprogram's behaviour, particularly if the resultscan be visualised. Because each PE task ex-ecutes an elaborated version of the sequentialHaskell RTS, some of the pro�ling tools thatare provided with sequential Haskell still yieldinformation that can be used to tune parallelprogram. In addition, we have also producedspecial tools that give per-PE or per-thread ac-tivity pro�les over time.



3.1 ClocksChoosing the time base against which torecord measurements in a distributed, multi-programmed environment is hard. Even main-taining accurate time synchronisation betweendistributed PEs is expensive and complex [13].The time behaviour of a program running underGUM is further complicated because of the useof PVM. Each PE task is typically a Unix pro-cess, and at the mercy of the Unix process sched-uler. In some con�gurations, such as a networkof workstations, there is also competing networktra�c that a�ects overall performance.Elapsed-time, including initialisation and termi-nation time is the most stringent measure ofperformance. For small programs, initialisationand termination time is signi�cant, and it is use-ful to record them. A problem with elapsed-time pro�les is that they record activity evenwhen the program has been descheduled by theUnix process scheduler and some other processis running, arti�cially elongating the pro�le onthe time axis, and in
ating the average paral-lelism �gure. An alternative is to use virtual oruser time, i.e. to record only the time when theprogram is actually running. This avoids theelongation e�ect but exaggerates performanceby ignoring real-time communication costs, orthe e�ect of executing multiple PE tasks on asingle physical processor.Our solution is a cheap compromise. To mit-igate the e�ects of the process scheduler andcompeting communication tra�c, we recom-mend that performance measurement is carriedout on a machine that is running only the par-allel Haskell program being measured. Initial-isation time is reported separately and eithervirtual time or real elapsed time is used for dif-ferent pro�les, as appropriate. The pro�les ondi�erent PEs are synchronised by recording thevalue of the real-time clock at a known pointduring initialisation, and using this time to cor-rect the elapsed clock times reported by di�er-ent PE tasks. Many networks guarantee thatthe real-time clocks on the PEs di�er by only asmall amount.

3.2 Sequential ToolsGC StatisticsThe garbage collection statistics reported by thesequential RTS are useful in GUM. For each PEthe residency can be plotted over time. GUMgarbage collection statistics also report bothelapsed and virtual time for initialisation, muta-tion and garbage collection for each PE. Initial-isation records the time between the PE taskstarting and the start of Mutation. Mutationtime is the time from initialisation to termi-nation. It includes the time spent performingreduction, communicating or idle, but excludestime spent garbage collecting.A heap pro�le generated when running a linearequation solver over four SUN 4 SPARC proces-sors connected by NFS is given below. Proces-sor numbers (c0001, 80001 etc) refer to PVMtask-ids. The ratio between elapsed and usertime shows how much of the elapsed time thePE task was descheduled.Processor c0001 shutting down, 260 Threads run133,383,480 bytes allocated in the heap71 garbage collections (0 major, 71 minor)INIT time 0.05s ( 2.10s elapsed)MUT time 110.43s (162.46s elapsed)GC time 1.78s ( 2.50s elapsed)Total time 112.26s (167.06s elapsed)%GC time 1.6% (1.5% elapsed)Alloc rate 1,207,308 bytes per MUT secondProductivity 98.4% of total user,66.1% of total elapsedProcessor 80001 shutting down, 2201 Threads run58,968,324 bytes allocated in the heap72,508 bytes max residency (1.7%, 1 sample(s))31 garbage collections (1 major, 30 minor)INIT time 0.04s ( 1.62s elapsed)MUT time 66.77s (162.97s elapsed)GC time 1.17s ( 2.12s elapsed)Total time 67.98s (166.71s elapsed)%GC time 1.7% (1.3% elapsed)



Alloc rate 882,627 bytes per MUT secondProductivity 98.2% of total user,40.1% of total elapsedProcessor 100001 shutting down, 2989 Threads run106,720,188 bytes allocated in the heap57 garbage collections (0 major, 57 minor)INIT time 0.11s ( 2.08s elapsed)MUT time 72.71s (164.21s elapsed)GC time 0.60s ( 0.99s elapsed)Total time 73.42s (167.28s elapsed)%GC time 0.8% (0.6% elapsed)Alloc rate 1,465,534 bytes per MUT secondProductivity 99.0% of total user,43.5% of total elapsedProcessor 40003 shutting down, 3194 Threads run36,266,232 bytes allocated in the heap18 garbage collections (0 major, 18 minor)INIT time 0.12s ( 2.16s elapsed)MUT time 45.72s (164.26s elapsed)GC time 0.47s ( 1.00s elapsed)Total time 46.31s (167.42s elapsed)%GC time 1.0% (0.6% elapsed)Alloc rate 791,148 bytes per MUT secondProductivity 98.7% of total user,27.3% of total elapsedCost Centre Pro�lingIf the programmer is interested only in the ra-tios of time spent in individual functions, andthe space consumed by those functions, then itis easy to use sequential cost-centre based pro-�ling to provide that information [23]. More so-phisticated pro�ling information, such as spaceusage over time, needs to be adapted to the par-allel environment.
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Figure 7: Thread Activity Pro�lesages or garbage collection to perform.The virtual times di�er for each PE, and cur-rently there is no way of combining the activitygraphs for all the PEs to construct a pro�le forthe entire machine.3.4 Thread Activity Pro�lesAn alternative style of pro�ling available fromGUM is provided by the visualisation toolsoriginally produced for the GranSim simulator.GranSim was constructed to investigate aspectsof parallel graph reduction [9], and it can becon�gured to simulate the running of programscompiled for GUM on most parallel machines.When a program is run under GranSim, a �le isgenerated containing records that record signif-icant events and when they occurred. Examplesof signi�cant events recorded by GranSim in-clude when messages are sent and when threadsstart, block, or terminate. After a simulationrun, the event �le is processed to produce var-ious kinds of information, such as the aver-age thread length, or pro�les of thread activityagainst time.A runtime option in GUM programs permitsthe generation of a subset of the GranSim eventrecords for each PE. The records for all PEs in-volved in a run can be merged and then pro-cessed by the standard GranSim tools to gener-ate a thread activity pro�le. For example, thethread activity pro�le for the linsolv run is givenin Figure 7. The number of running, runnable,

fetching and blocked threads is plotted againsttime.These pro�les show elapsed time, and so can beused to report actual performance of GUM pro-grams. Elapsed times are increased if the ma-chine is running other jobs, so for performanceevaluation it is usually best to make sure thatthe GUM run is the sole job on the machine.4 Preliminary ResultsThis section reports results of experiments per-formed to verify that the basic mechanisms inGUM are working properly, and also to performpreliminary performance evaluation and tuning.We plan to report the performance of GUM onuseful parallel programs in a future paper.4.1 Divide-and-conquer factorialThis experiment is designed to test the abilityof GUM to cope with �ne-grain tasks, and to�nd the minimum acceptable grain-size for twodi�erent architectures. It also gives some idea ofhow GUM can perform with an `ideal' parallelprogram.There are two kinds of parallelism overhead in-curred in GUM:� The parallel runtime system imposes amore-or-less �xed percentage overhead onevery program regardless of its use of par-allelism; and� There are overheads introduced by everyspark site in the program.Divide-and-conquer factorial is a good test forthe second overhead, because it can be compiledfor sequential execution so that the main loopdoes not generate any closures at all. However,when it is written and compiled for parallel ex-ecution, the compiler is obliged to insert codeto build a closure for each spark site. If theprogram is written in the usual naive way, each



thread does very little work before sparking an-other thread, and the overheads of parallelismwill be quite high.The version of divide-and-conquer factorial thatwe use, parfact, has an explicit cut-o� param-eter: if the problem size is smaller than the cut-o� then it is solved using purely sequential code;otherwise, the parallel code is used. By varyingthe cut-o� parameter we get some idea of howwell GUM copes with various size threads.module Main(main) whereimport Parallelpfc :: Int -> Int -> Int -> Intpfc x y c| y - x > c = f1 `par`(f2 `seq` (f1+f2))| x == y = x| otherwise = pf x m + pf (m+1) ywherem = (x+y) `div` 2f1 = pfc x m cf2 = pfc (m+1) y cpf :: Int -> Int -> Intpf x y| x < y = pf x m + pf (m+1) y| otherwise = xwherem = (x+y) `div` 2parfact x c = pfc 1 x cmain= getArgs exit ( \[a1, a2] ->let x = fst (head (readDec a1))c = fst (head (readDec a2))in appendChan stdout(show (parfact x c))exit done)Note that to prevent the compiler from makingthe entire program into a CAF we have arrangedto read the argument to parfact and the cut-o�parameter from the command line. In all cases,the argument supplied on the command line was8399608; the cut-o� parameter was varied.

We report all speedups in this paper relative toa fast sequential version of each program com-piled using GHC with full optimisation. To ob-tain the sequential version of parfactwe simplyreplaced the de�nition of parfact in the abovecode by:parfact x c = pf 1 xThe following table compares the run time ofthis program when run under di�erent condi-tions on three di�erent Sparc-based platforms.Platform seq seq-par parSparcClassic 42.7 +47% +95%SunMP 35.9 +10% +70%Sparc 10 39.7 +11% +62%The columns of this table are:� seq: gives the runtime in seconds of the se-quential version of the program when com-piled with the full optimising sequentialcompiler.� seq-par: gives the percentage increase overthe seq runtime when the sequential ver-sion of the program is compiled for parallelexecution but only run on a single proces-sor.� par: gives the percentage increase over theseq-par runtime when the parallel versionof the program is compiled for parallel ex-ecution and run on a single processor witha cut-o� value of 1.The seq-par column of the table shows that theoverhead imposed by the runtime system on allcode, including sequential, varies by a surpris-ing amount considering that all three machinesare based on the same architecture; we suspectthat this is due to the di�erent cache sizes inthe machines. The overhead is less than about50% in the worst-case, and is around 10% for atypical parallel platform.The par column �gures show the cost of theextra closure creation caused by the spark sites.These �gures are quite high, but it should be
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Figure 8: parfact speedups on EthernettedSparcClassics
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Figure 9: parfact speedups on SunMPremembered that this is a limiting case; in mostprograms that do real work, there will alreadybe closures at most of the spark sites and thecost of the sparks will be quite low.Figure 8 shows the speedups obtained (relativeto pure sequential compilation and execution)for parfact with di�erent cut-o� values anddi�erent numbers of processors. The `parallelmachine' in this case was a set of SparcClas-sic workstations (Sun 4/15), each with 24MByteRAM, and connected to a common Ethernetsegment. Figure 9 shows results from the sameexperiments run on a Sun multiprocessor with6 Sparc CPUs connected in a shared-memorycon�guration.The speedups shown in these �gures are aver-age speedups obtained over 4 runs. There aretwo factors which may cause the runtime to varyfrom one run to another even with the same pa-rameters.

� The network and the processors werelightly-loaded, but there was no way of pre-venting other people using them while theexperiments were being run.� There is a degree of chaos in the results,since a single change in the placement of aspark at runtime can a�ect the overall run-time. This is most signi�cant when thereare few threads (that is, when the cut-o� value is high) because the current sys-tem does not permit migration of runningthreads: one processor may end up with anumber of runnable threads, while anotherhas none. (We have already veri�ed thisphenomenon using the GranSim simulator,and plan to add thread migration to theGUM system.)Things to note about the results shown in Fig-ures 8 and 9:� The graph for the SunMP, with its lowerlatency interconnect, is smoother than theone for the Ethernetted system. Wehave yet to satisfactorily explain this phe-nomenon, as there are a large number ofvariables involved, some of which, particu-larly usage of the systems by other jobs, arebeyond our control.� With one processor running the parallelsystem, the speedup goes from 0.5 to 0.92(SunMP) or 0.3 to 0.92 (Ethernetted Spar-cClassics) as the cut-o� is varied from 2 toin�nity.� The peak speedup achieved on the SunMPwith 6 processors was 5.1, at a cut-o� valueof 128. For the Ethernetted SparcClassics,the peak speedup with 6 processors was4.4, at a cut-o� value of 8192. (With 8processors, the Ethernetted SparcClassicsachieved a peak speedup of 5.4 with thesame cut-o� value.)The thread size corresponding to a cut-o� value of 8192 is about 45ms for theEthernetted SparcClassic system. For theSunMP, the thread size corresponding to acut-o� value of 128 is about 0.6ms. Since atboth these cut-o� values there are still po-tentially thousands of parallel threads, thisis a reasonable indication of the �nest grainsize that can be tolerated by each platform.



� For both machines, the best value of thecut-o� parameter is independent of thenumber of processors.4.2 Investigation of load distribu-tionThis experiment was designed to investigateGUM's ability to distribute threads over the ma-chine. The following program, loadtest, cre-ates 50 equal-sized parallel threads (the size andnumber of threads are speci�ed by command-line arguments):module Main(main) whereimport Parallelnfib :: Int -> Intnfib n | n <= 1 = 1| otherwise = n1 + n2 + 1wheren1 = nfib (n-1)n2 = nfib (n-2)parmap :: (a->b) -> [a] -> [b]parmap f [] = []parmap f (x:xs)= fxs `par` (fx `seq` (fx:fxs))where fx = f x; fxs = parmap f xsmain= getArgs exit (\[a1,a2] ->letx = fst (head (readDec a1))processes = fst (head (readDec a2))ts n = parmap(\ten -> sum [nfib z |z <- [(x-ten)..x]])(take n (repeat 10))loadtest = sum (ts processes)inappendChan stdout (show loadtest)exit done)The sequential version of this program is ob-tained by replacing the call to parmap by a callto map.
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Figure 10: loadtest speedups on EthernettedSparcClassics
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Figure 11: loadtest speedups on SunMPNote that the size of the threads is exponentialin the value of the command-line argument be-cause nfib is used as the busy-work for eachthread.Figure 10 shows the results of running loadtestwith di�erent size threads on di�erent numbersof processors of the Ethernetted SparcClassics.Figure 11 shows the results of the same experi-ments run on the SunMP.Interesting points from these results:� With one exception, speedup increases asthread size increases.� For the Ethernetted SparcClassics withvery small threads, adding processors re-sults in a (further) slowdown; however, theamount of the slowdown seems to be lim-ited.



� Surprisingly, the SunMP system gives lowerspeedups than the Ethernetted system. Wehave not yet investigated why this is, butit could be that our load distribution strat-egy is not very well suited to machines withsuch a low latency as the SunMP. It shouldalso be noted that the absolute times forthe SunMP runs are nevertheless almost allbetter than for the Ethernetted system, dueto the higher performance of the individualprocessors on the SunMP.4.3 The e�ect of packet sizeThe following program, bulktest, was designedto verify that the bulk fetching mechanism isoperating correctly. It can also be used to de-termine the optimal value for the packet size forprograms which use all of the reachable data. Itsimply generates a list of Ints (length set by acommand-line argument) on one processor, andconsumes the list (summing it) on another pro-cessor.module Main(main) whereimport Parallelbulktest x= sxs `par` ((force xs) `seq` sxs)wherexs = take x (repeat (1::Int))sxs = sum xs-- force returns only when the argument-- list has been completely evaluated.force :: [Int] -> ()force [] = ()force (x:xs) = x `seq` (force xs)main= getArgs exit ( \[a1] ->let x = fst (head (readDec a1)) inappendChan stdout(show (bulktest x))exit done)Figure 12 shows the absolute runtimes forbulktest when run on a pair of SparcClas-
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5 Related Work5.1 GRIPAs will be obvious to those familiar with ourprevious work, GUM is a lineal descendent ofthe GRIP runtime system [7], though severalsimpli�cations have been made. While we nolonger have two kinds of memory, we have re-tained the 2-level separation of local and globalheap that permits independent garbage collec-tion. In addition to the advantages for garbagecollection, this has the secondary bene�t of iden-tifying heap that is purely local, and can thusbe held in faster unshared memory on a shared-memory machine. We have also retained a simi-lar message-passing structure, though the num-ber of messages has been signi�cantly reducedfrom about 20 in GRIP, to about 6 for GUM.The load distribution mechanism is also similarto, but simpler than, the most re�ned versionsused on GRIP, which used distributed load in-formation to maintain an even load distribution.The GRIP (Graph Reduction in Parallel) ar-chitecture supported a virtual shared memorymodel for graph reduction, using two levelsof physical memory: PE memory and Intelli-gent Memory Units (IMUs) [7]. Every closurehad a global address �eld, but only closures inthe IMUs had a Global Address, and could beshared between PEs. A GA comprised an (IMU,index) pair. Most closures were local, i.e. neverreferenced globally, in which case the GA �eldwas empty. Because closures typically occupyonly 4 or 5 words, global address informationincurred a space overhead of between 20% and25%.In order to support locally independent garbagecollection, GRIP required that there were nopointers from global heap closures to those heldin local memory. As described earlier, GUM in-stead uses tables of \in-pointers" that each rep-resent a global reference to a local heap closure.A similar scheme is used in other systems for dis-tributed machines such as Concurrent Clean [5].On GRIP, unlike GUM, the spark pool was alsodivided in two. Each PE maintained a pool oflocal sparks, and the intelligent memory units(IMUs) each maintained separate pools of global

sparks. Idle PEs obtained work from the IMUpools. If the system became underloaded theIMUs then re�lled their pools by demandingsparks from PEs. While this scheme preventedPEs from processing FISH messages unnecessar-ily, because of the restriction that there couldbe no pointers from global to local heap, whena closure was moved from a local spark pool to aglobal spark pool, all of its reachable graph wasalso exported. This could lead to signi�cant per-formance losses, particularly on machines witha high-latency network. We avoid the problemusing GUM's on-demand scheme.On GRIP, we used a synchronous fetch strategy,where PEs simply entered a busy-waiting looprather than context-switching while fetching anode. While this simpli�ed the run-time sys-tem by preventing collisions between threads onthe same PE and eliminating awkward context-switches, simulation results show that this strat-egy generally has a negative impact on perfor-mance even at the low latencies of the GRIPcommunication system.Finally, on GRIP each closure was fetched asit was needed rather than a group of relatedclosures being fetched eagerly, as in GUM.Kesseler has described a similar scheme that isused for Concurrent Clean [12]. While we ex-pected GUM-style \bulk fetching" to reduce de-lays when using machines with high-latency net-works, initial simulation results using GranSimappear to show that the greatest bene�ts areactually achieved for low- and medium latencynetworks. While this may be an artefact of theprograms studied (simple parallel divide-and-conquer programs), it may also be that at veryhigh latencies, it is simply not worth attemptingto parallelise most programs.6 Further Work6.1 Performance TuningThe GUM implementation has been debuggedfunctionally, but its performance has not yetbeen tuned. Some obvious areas to investigateare:



� What are the optimal packet sizes for ourinitial target machines? The GranSim sim-ulator [9] might be a quick way to determinethese.� How good is the load management strat-egy? There are several issues that need tobe explored here. Firstly, we need to ensurethat not too much time is spent processingFISH messages.Secondly, FISH messages currently followan entirely random path when searching forwork. While some randomness is necessaryto avoid successive FISH messages followingthe same path, and therefore never �ndingthe work that is available, it might be moree�cient for each PE to record where it lastfound work, and to send FISH messagesalternately randomly and to this work-source. Finally, the FISH message couldalso record information about the PEs vis-ited, e.g. their load, to provide global in-formation about the system. For example,load information could be used to decidewhether a failed FISH message should de-lay before being reissued.� When it receives a FETCH from a heavilyloaded PE, a lightly loaded PE could �rstevaluate any thunks that were demandedbefore shipping the packet.� Currently all closures are globalised duringthe packing process, which involves addingthem to the GA table on the packing PE. Itwould be possible to avoid globalising someclosures, and so both speed packing and re-duce the size of the GA tables, at the costof losing some sharing.� Currently local addresses in a PE'sGA!LA table are treated as roots for lo-cal garbage collection. The GA!LA scancould be made optional, depending on howmuch space the PE has available. E�ec-tively local copies of global closures couldbe sacri�ced to retrieve more space.6.2 ShortcomingsThere are currently a number of shortcomings inthe GUM system which may occasionally causeperformance problems or even outright inability

to cope with some programs. None of these arefundamental problems; we have just left themas the last few things to tidy up:� At present it is impossible to transmit clo-sures that don't �t into a single packet.This can be a problem if the program con-tains large data structures, such as packedstrings. One solution would be to split largeclosures into multiple packets, as on GRIP.� GUM does not currently support task mi-gration: consequently, once a spark isconverted into a thread on a PE, it isonly ever evaluated on that PE. There isgood evidence that task migration is some-times needed to obtain good overall perfor-mance [4, 9]. Since some internal threadobjects, such as the thread stack, may not�t into a single packet, this may also requirethe use of a multi-packet protocol.� Currently, each top-level constant (or PLC)is evaluated on every PE that needs itsvalue. This is an exception to our rulethat thunks are never duplicated. For smallPLCs, this may not matter, since it is prob-ably cheaper to re-evaluate the PLC thanto send a FETCH/RESUME message pairto obtain its value. Larger PLCs are moreproblematic, since re-evaluation can reduceparallelism, and cause space leaks. Paral-lel Haskell programmers must therefore becareful when generating large PLCs. If sup-port for speculation was added to GUM,then a scheme like Aharoni's [1] might beincorporated. The scheme speculatively re-duces the PLC, and if the reduction has notterminated in a short interval the PE com-municates to obtain the value.� Garbage collection could be developed inseveral ways. For example, some of thedesperation measures used to reclaim spaceon GRIP, such as reverting foreign closuresinto Fetch-Mes [7], could also be bene�cialin GUM. At present, it is also not possi-ble to reclaim graph that forms a cycle be-tween 2 or more PEs. Circumventing thiswould involve implementing some kind ofglobal stop-and-copy garbage collection: athird level of garbage collection. Full globalgarbage collection might even balance theweights held by each PE.



� More sophisticated statistics-gathering andvisualisation tools might be developed. Forexample to pro�le heap usage on each PEover time.� Support might be provided for the moresophisticated parallel annotations we haveproposed elsewhere [9], e.g. parLocal to gen-erate local sparks or parAt to generate aspark on a remote PE.6.3 ExtensionsThere are two obvious extensions that could bemade to parallel Haskell.Firstly, there is a concurrent variant of Haskell,which is typically used to implement user inter-faces as a network of communicating sequentialprocesses [6]. An obvious extension is to inte-grate concurrent and parallel Haskell, creatingnetworks of communicating parallel processes.Secondly, speculative evaluation [15] might alsobe supported. Some interesting programs relyon speculation to achieve performance, so thiscould open up some new applications. Caremust be taken, however, to avoid the high over-heads that are often associated with speculativetechniques.ConcurrencyIn Concurrent Haskell, threads are created byfork e1 e2, analogous to par e3 e4. The se-mantic di�erence is that, while the �rst argu-ment of par, i.e. e3, may be ignored, the �rstargument of a fork, i.e. e1, must be evaluated.Concurrent threads communicate and synchro-nise via special variables, MVars [6].In terms of the run-time system, the threadsexecuting e2, e3 and e4 are mandatory, butthe thread executing e1 is advisory. CurrentlyGUM has only one mandatory thread: the mainthread. A fair scheduler is required to ensurethat all mandatory threads are evaluated.Some changes to GUM that would be necessaryto support concurrent and parallel Haskell si-multaneously are:

� A more sophisticated termination algo-rithm: all mandatory threads must com-plete before the program can terminate,rather than just the main thread.� New message types would be required toread and write MVars.SpeculationGUM already supports rudimentary specula-tive evaluation. In par e1 e2, if e2 is notstrict in e1, then its evaluation is speculative.Such speculation is unwise under GUM if e1consumes many resources, or sparks additionaltasks. A speculative RTS may terminate spec-ulative tasks if they are discovered to be un-necessary, and may revert the graph into thestate prior to the execution of the speculativetask [15, 18].Some of the machinery required to support spec-ulation is already in place in GUM. For ex-ample, speculative threads could generate re-vertable black-holes rather than normal black-holes. These can then be reverted to their origi-nal state if the thread which is evaluating themis found to be unnecessary.7 SummaryThis paper has described a highly portable par-allel implementation of Haskell, built on thePVM communications harness. It is quite am-bitious to target such a variety of architectures,and it is not obvious that a single architec-tural model will su�ce for all machines, evenif we start from such a high-level basis as par-allel Haskell. We do however believe that itis easier and more e�cient to map a message-based protocol onto a shared-memory machinethan to map a shared-memory protocol onto adistributed-memory machine.While we have initially targeted PVM becauseof its wide availability this is not a �xed deci-sion and our implementation could be easily re-targeted to other message-passing libraries suchas MPI, or even GRIP's own operating system(GLOS).



We also expect to need to tune our system, es-pecially for shared-memory systems, and per-haps introduce new parallel hints that can beexploited by some classes of architecture.References[1] Aharoni G, Barak A and Ronen A, \ACompetitive Algorithm for Managing Shar-ing in the Distributed Execution of Func-tional Programs ", Submitted to Journal ofFunctional Programming (1995).[2] Arvind and Iannucci RA, \Two Funda-mental Issues in Multiprocessing", ProcDFVLR Conference on Parallel Process-ing in Science and Engineering, Bonn-BadGodesberg (June 1987).[3] Bevan DI, \Distributed Garbage Collectionusing Reference Counting", Proc PARLE,deBakker JW, Nijman L and Treleaven PC(eds), Eindhoven, Netherlands (June 1987).[4] Burton FW, and Rayward-Smith VJ,\Worst Case Scheduling for Parallel Func-tional Programming", Journal of Func-tional Programming, 4(1), (January 1994),pp. 65{75.[5] van Eekelen MCJD, N�ocker EGJMH, Plas-meijer MJ, and Smetsers JEW, \Concur-rent Clean", Technical Report 89{18, Uni-versity of Nijmegen, (October 1989).[6] Finne SO, and Peyton Jones, SL, \Concur-rent Haskell", (1995).[7] Hammond K, and Peyton Jones SL, \Pro-�ling Scheduling Strategies on the GRIPMultiprocessor", Proc 4th. Intl. Workshopon Parallel Implementation of FunctionalLanguages, Kuchen H (ed.), Aachen Uni-versity, (September 1992).[8] Hammond K, Mattson JS, and Pey-ton Jones SL, \Automatic Spark Strategiesand Granularity for a Parallel FunctionalLanguage Reducer", Proc. CONPAR '94,Linz, Austria, Springer-Verlag LNCS 854,(September 1994), pp. 521{532.[9] Hammond K, Loidl H-W, and PartridgeAS, \Visualising Granularity in Parallel
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� RemoteGA: global address where thepacket is to be unpacked.� Size: size in bytes of the following datapacket.� Data: Packet of graph, format described inSection 2.4.ACK that a RESUME or SCHEDULE hasbeen processed successfully. Also overwrite anythunks shipped.� Task: (pvm) task identi�er of PE.� NGAs: number of global addresses pairs inthe following table.� GAGAMap: a sequence of global addresspairs, use is described in Section 2.4FISH for work.� DestPE: current target PE of this FISHmessage.� OrigPE: originating PE of the FISH.� Age: of the �sh. Old �sh die, as explainedin Section 2.2.2.� History: to record `global' load informa-tion. Currently unused.� Hunger: to record how desperate thePE/FISH is for work. Currently unused.SCHEDULE a netted spark.� OrigPE: the target of the SCHEDULE.� Size: the size in bytes of the following datapacket.� Data: Packet of graph, format described inSection 2.4.FREE some global addresses.� PE: the target of the FREE.� Size: number of pairs of GAs in the follow-ing �eld.� Data: a sequence of weight, local-identi�erpairs.
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FMFigure 13: GALA-pair TableAppendix B Physical DataStructuresAlthough logically the GIT, GA!LA, andLA!GA tables are separate entities, they areimplemented by a single data structure, theGALA-pair table. The GALA-pair table is acollection of GALA-pairs, with hashed accessfrom both LA and GA. A GALA pair comprisesa GA, including a weight, a LA, and a booleanindicating whether the GA is the preferred GA.The GALA-pair table has the following proper-ties.� All GAs are unique in the GALA-pair ta-ble: i.e. a GA can only have a single LA.Conversely a LA can have many GAs, thiscopes with the situation when weight hasbeen exhausted. At least one GA will bepreferred, i.e. the GA with the most weight.� The GA returned by a LAGA lookup is apreferred GA.� It is not true that only one GALA-pair isthe preferred GA, because an indirectionwith a preferred GA may be shorted to aclosure with a preferred GA.The data structure is depicted in Figure 13.Fetch-Me closures point directly to the GALA-pair that identi�es the remote closure. Lookupin the LA!GA table is implemented by hash-ing the LA. Similarly lookup in the GA!LAtable is implemented by hashing the GA. TheGA!LA table can be enumerated by following

the chain of Live Remote GAs. GA!LA en-tries are allocated from, and deallocated to, thechain of FreeRemoteGAs.GIT lookup is implemented by hashing the GA.The GIT can be enumerated by following thechain of Live Indirections. Local identi�ers areallocated from, and deallocated to, the chain ofFree Indirections.


