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Abstract
Servers are a key element of current IT infrastructures, and must
often deal with large numbers of concurrent requests. The program-
ming language used to construct the server has an important role
in engineering efficient server software, and must support massive
concurrency on multicore machines with low communication and
synchronisation overheads.

This paper investigates 12 highly concurrent programming lan-
guages suitable for engineering servers, and analyses three repre-
sentative languages in detail: Erlang, Go, and Scala with Akka.
We have designed three server benchmarks that analyse key per-
formance characteristics of the languages. The benchmark results
suggest that where minimising message latency is crucial, Go and
Erlang are best; that Scala with Akka is capable of supporting the
largest number of dormant processes; that for servers that frequently
spawn processes Erlang and Go minimise creation time; and that for
constantly communicating processes Go provides the best through-
put.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures

Keywords Server applications, programming languages, Erlang,
Go, Scala, Akka

1. Introduction
Modern web service applications like social networks, online games,
and chat applications get increasingly large loads to handle. Millions
of users can be simultaneously interacting with a server. When the
traffic grows significantly, new hardware may be added (increasing
operating costs), or the system may be unable to meet the demand
and must be redesigned. To minimise the hardware requirements
and hence operating costs the server programming language must
effectively utilize hardware resources.

Many early concurrency models were very low level, e.g. C with
PThreads, and challenged the developer with issues like deadlock,
livelock and race conditions. To minimise development time and
reduce software development costs many servers are now engineered
in languages that combine high level computational models, e.g.
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functional or object-oriented, with high-level coordination models,
e.g. actors as in Erlang [2] or a process algebra as in Go [6]. Indeed,
the success of some server-based companies is even attributed to
their use of specific languages. As examples WhatsApp’s success
is attributed to their use of Erlang [27]; the video streaming leader
Twitch uses Go to serve millions of users a day [13]. Research
contributions of this paper include the following:

• A survey of programming language characteristics relevant for
servers (Section 2.1).

• The design and implementation of three benchmarks to analyse
the multicore server capabilities of Erlang, Go, and Scala with
Akka (Section 3).

• An evaluation of Erlang, Go, and Scala with Akka for key
server capabilities, i.e. process communication latency, spawn
time, maximum number of supported processes, and process
communication throughput (Section 4).

2. Server Languages
2.1 Language Characteristics
Table 1 analyses the features of languages commonly used to
implement web services, like web servers or instant messaging
servers. The table covers computation, coordination, compilation,
and popularity. While assembling the table we did not aim to include
every possible server language in it, but rather to cover representative
languages that reflect important characteristics of server languages.
The languages in the table are presented in accordance with their
computation model.

Computation models are well known. Procedural languages like
C, Go, and Rust encourage programming with data structures, and
functions. Object oriented languages like Java and C# encapsulate
data structures with the methods that operate on them to facilitate
composition and re-use. Functional languages like Clojure, Elixir,
Erlang, and Haskell primarily use pure functions and immutable data
structures. Supporting multiple models, or paradigms, has recently
become popular, and some server languages follow this trend, e.g.
F# is considered both object oriented and functional.

Typing. The majority of modern languages are strongly typed,
and hence report compile or runtime errors rather than failing in
unexpected ways. Of the languages considered only C is weakly
typed. Four of the languages have significant dynamic typing:
Erlang, Elixir, Scala with Akka (Scala/Akka), and Clojure. The
remaining languages are primarily statically typed, enabling early
error detection [20] and faster runtimes as there are no dynamic type
checks.

Computation abstraction. Due to the complexity, size of web
applications, and pressure to deliver services to the market quickly,
low level languages are rarely used for engineering servers. Hence
the only low level language we consider is C.



Table 1. Server Language Characteristics
Computation Coordination Compilation Popularity

Language Model Typing Abstraction Model Abstraction Determinism Runtime
environment

Tiobe
Apr 2017

RedMonk
Jan 2017

C + OpenMP Procedural Weak
Static Low Annotations High No Native 2 9

C + PThreads Procedural Weak
Static Low Explicit Low No Native 2 9

Go Procedural Strong
Static High CSP High No Native 19 15

Rust Procedural Strong
Static High Explicit High No Native 45 ∼40

C# Object
Oriented

Strong
Static High Explicit High No Native 4 5

Java Object
Oriented

Strong
Static High Explicit High No JVM 1 2

F# Functional
Obj. Orien.

Strong
Static High Explicit High No Native 29 ∼40

Clojure Functional Strong
Dynamic High STM High No JVM 50 20

Elixir Functional Strong
Dynamic High Actors High No Erlang VM 50+ ∼40

Erlang Functional Strong
Dynamic High Actors High No Erlang VM 42 26

Scala + AKKA Functional Strong
Static High Actors High No JVM 32 14

Haskell Pure
Functional

Strong
Static High Eval Strat High Yes Native/GHCi 40 16

Coordination model. Exploiting the capabilities of multicore
architectures with massive concurrency is a key design goal for
server software engineering. The coordination model of a language
strongly influences the performance achieved. Different models
make escaping common pitfalls like deadlock and livelock easier.
Explicit concurrency is used in languages like Java, Rust, and C
with PThreads. Here the programmer works with threads and uses
mutexes to protect shared resources. This approach is relatively low
level and can lead to problems like race conditions, livelock, or
deadlock. Actor concurrency [12] is used in languages like Erlang,
Elixir, and the Akka framework. The unit of computation is the
actor, and actors communicate by passing messages. Moreover,
actors are completely isolated from each other and do not share
memory. This provides a higher level of abstraction than the explicit
model and makes creating complex systems easier. Go, on the other
hand, bases its concurrency model on the Communicating Sequential
Processes (CSP) process algebra [14]. The main building blocks in
the language are goroutines (that resemble lightweight threads) and
channels for communication between the goroutines.

Coordination abstraction. As for computation abstraction, low
level coordination abstraction makes building web applications
difficult. So, C with PThreads is the only programming language
with low level coordination abstraction considered here.

Coordination determinism. As a pure functional language, only
Haskell provides deterministic parallelism, i.e. guarantees that
the parallel program computes the same value as a sequential
counterpart.

Compilation. The type of compilation – either directly to ma-
chine code or to some intermediate language for a Virtual Machine
(VM) – impacts performance. Moreover VMs impose restrictions,
e.g. on the number of threads that can be maintained.

Popularity is a measure of how widely the selected languages are
used, and we consider two popularity rankings. The Tiobe Index [33]
measures the popularity of programming languages based on the
number of search engine results for queries containing their name.

The RedMonk [26] measures programming traction on GitHub and
Stack Overflow.

2.2 Selected Languages
For detailed investigation we select three representative languages:
Erlang (Section 2.2.1), Scala/Akka (Section 2.2.2), and Go (Sec-
tion 2.2.3). All three languages have high level computation and
coordination models with excellent support for concurrency and
are used in industry for engineering scalable and high performance
servers.

The languages selected enable us to compare the impact of differ-
ent language characteristics on server performance. We investigate
different concurrency models as Erlang and Scala use actors while
Go uses Communicating Sequential Processes (CSP). We investi-
gate the impact of the runtime environment as Scala uses the Java
Virtual Machine (JVM), Erlang the Erlang VM and Go compiles to
native code. We investigate different typing regimes as Erlang and
Akka are dynamically typed, while Go is statically typed.

2.2.1 Erlang
Erlang is a functional programming language originally developed
at the Ericsson Computer Science Laboratory in 1986 by Joe
Armstrong [2] which was then released as open source in 1998.
It was designed to meet requirements of distributed, massively
concurrent, and fault tolerant systems. The language has strong,
dynamic typing, and includes garbage collection. It compiles to byte
code that runs on the Erlang virtual machine.

Concurrency Model. From the very beginning Erlang has been
designed to be highly concurrent, and this is one of the primary
strong points of the language. Erlang adopts the actor model, where
the primitive computation unit is the actor, and actors communicate
with each other via message passing. Compared with the explicit
model, where shared mutable state has to be protected with locks
and mutexes, Erlang’s approach is less susceptible to the common
pitfalls of the prior – race conditions and deadlock, for example. This
is achieved by asynchronous massage exchanges between actors,



without the need to block until their massage has been received.
Moreover, in Erlang isolated processes do not share memory and
variables are immutable, i.e once a value is assigned, it cannot be
changed.

Fault tolerance is another important part of Erlang’s design.
The language follows the "let-it-crash" principle, which is a non-
defensive way of programming. It puts the burden of error handling
to the Erlang VM, where actors can supervise other actors and take
actions in the event of a failure. This is achieved be means of the
mentioned earlier avoidance of shared memory and a well structured
process supervision model.

Use Cases. Originally developed for use in telecommunication
systems, Erlang’s key characteristics, including run-time safety,
concurrency, and distribution, are highly relevant in today’s server
environment. Erlang is considered to be behind WhatsApp’s suc-
cess [27]. Erlang’s fault tolerance and performance are some of the
reasons Bet365, a leader in online betting services, uses the lan-
guage [3]. Erlang is also the language of choice in the multiplayer
video games Call of Duty [7] and League of Legends [25], and the
NoSQL database CouchDB [1].

2.2.2 Scala and Akka
Scala is a programming language designed in 2003 by Martin Oder-
sky at EPFL and is now an open source project [22]. It combines
object-oriented and functional features, i.e. every value is an object
and every operation is a method call, while the language features
many functional tendencies like currying, first-class functions, im-
mutability, and lazy evaluation.

Scala has strong, static typing. However, when the Akka frame-
work [32] is used the messages sent between actors are type checked
during runtime, therefore resembling dynamic typing. Due to the
fact that Scala compiles to byte code that runs on the Java Virtual
Machine, Java and Scala classes can be freely mixed. This is a
huge advantage for the language because it gets exposed to a large
community.

Concurrency Model. In this project Scala is used with the Akka
framework. Akka is a toolkit for building highly concurrent, dis-
tributed, and resilient applications on the JVM based on the actor
model. Therefore, it can be expected that the features Akka pro-
vides are similar to those of Erlang. Actors are still the primitive
units of computation and they communicate through messages. Sim-
ilarly to Erlang, Akka does not support guaranteed delivery of these
messages. Moreover, the fault tolerance in Akka uses the same prin-
ciples of supervisor hierarchy and "let-it-crash" approach to failures
like Erlang. However, there are some differences between the two
technologies. Since Akka runs on top of the JVM, enforcing true
data separation between actors would hurt performance a lot (basi-
cally checking every single message) [17]. Therefore, by passing
reference of mutable data structures, it is possible to have shared
data between actors in Akka. Doing this, however, is considered a
bad practice, but is a good example of some of the limitations the
JVM puts on a toolkit like Akka [18].

Use Cases. Scala with Akka support the development of scalable
high-load services. Companies like William Hill use Scala and Akka
to build their multi million user betting applications; some financial
companies like UniCredit and Barclays use them as well [18]. The
reasons these companies choose Scala and Akka include the need
for performance, scalability, and fault tolerance. Moreover, the
familiarity with the JVM and the community behind it are also
noted as important.

2.2.3 Go
Go is an open source programming language initially designed at
Google in 2007 by Robert Griesemer, Rob Pike, and Ken Thomp-

son [6]. It was designed with the idea of combining expressiveness
like a dynamically typed interpreted language and the safety of
statically typed compiled language. Even though it has a strong,
static type system, it is designed to be simpler than comparable
typed languages. Go inherently supports garbage collection and
concurrency. The language is compiled to machine code. The way
Go supports object oriented design is through interfaces. However,
the designers of the language deliberately omitted some concepts
like inheritance or generics. The reasoning behind this is to both
reduce complexity in the type system and run-time, and to keep the
design of the language simple.

Concurrency Model. Good concurrency support in Go has been
considered since the earliest stages of its design [10]. The language
bases its concurrency model on Hoare’s Communicating Sequential
Processes [14]. The main building blocks in the language’s con-
currency are goroutines, which resemble lightweight threads, and
channels, which are used for communication between the gorou-
tines. The idea of “do not communicate by sharing memory; instead,
share memory by communicating” [9] summarizes Go’s approach
to concurrency. Instead of explicitly using locks to mediate access
to shared data, Go encourages the use of channels to pass references
to data between goroutines. This way it is ensured that at any given
time only one goroutine has access to the data.

Use Cases. Born out of frustration with several software systems
in Google that were suffering from high complexity, Go has now
been used by many different companies outside its birthplace.
Web services are one of the big use cases of the language. The
video streaming leader Twitch mainly uses Go for many of their
busiest systems including the streaming and chat services [13]. The
deployment tool Docker is also almost entirely written in Go [23].
Netflix is another example of a big company that has adopted
Go [19].

3. Benchmarks for Server Languages
3.1 Server Architecture Patterns
To evaluate server languages realistically we must understand
common server architectural patterns. These include listener/worker,
leader/followers, workpool, and forking server [11, 29]. Figure 1
shows a simplified architecture of a server containing entities similar
to most patterns. The Clients send simultaneous requests to the
server. A Dispatcher handles the requests, forwarding them to
workers. A Worker processes requests and returns the results to
the clients.

Server architecture patterns share a number of similarities: a
worker processes a single request at a time; at least one message is
sent between processes in the server for every request (Dispatcher to
Worker). Therefore, to maintain low latency and high throughput a
server language must provide fast communication between processes
and support a sufficiently large number of worker processes.

Figure 1. A Typical Web Application Architecture



Figure 2. Design of the Concurrent Process Throughput Benchmark

3.2 Programming Language Benchmarks
Many studies compare programming languages using sets of bench-
marks, e.g. [16] analyses performance, scalability, ease of imple-
mentation, and maintainability of Erlang, Go, and F# using matrix
multiplication and finding prime numbers. In [34] authors also use
matrix multiplication to benchmark concurrency of Go and Java.
The reason for the wide use of matrix multiplication is due to the
operations of the algorithm being independent from each other. This
means that matrix multiplication is easy to parallelize making it
appealing for benchmarking concurrent technologies.

Other algorithms used to compare programming language perfor-
mance include graph traversal, MapReduce, and spectral methods to
compare Erlang and C++ [21] and a parallel version of the optimal
binary search to compare Go and C++ [30].

The benchmarks above compare the performance of program-
ming languages for completing some computational task. While
computation is a factor for modern server applications, the primary
performance bottlenecks centre around concurrency, i.e. the sheer
number of requests they need to handle [15]. Therefore, bench-
marks measuring language support of massive concurrency in terms
of communication cost and the number of processes that can be
spawned are most relevant for server applications.

Such concurrency oriented benchmark suites are less common
that computation oriented benchmarks. One such set of benchmarks
is the Intel MPI Benchmarks [31] that evaluate the efficiency of
the most important functionalities of the Message Passing Interface
(MPI) library, as well as the performance of a set of processors run-
ning algorithms concurrently. In [5] MPI Benchmarks’ implementa-
tions in Java, Erlang and Scala are used to compare the languages in
the context of Web 2.0 applications. The limitation of using these
’microbenchmarks’ is the fact that they focus only on one aspect of
a server at a time. An alternative approach is to use a generic server
to measure multiple aspects; for example, the genstress BenchErl
benchmark [28] analyses latency, throughput, and the number of
concurrent connections.

3.3 Server Benchmark Designs and Implementations
We present the design and motivation of three benchmarks designed
to evaluate the key performance aspects of server languages for the
study in Section 4.

Process Communication Latency. Although simplified, Fig-
ure 1 enables us to visualise the impact of significant loads on a
server. When clients flood the server with requests, the Dispatcher
must be able to quickly distribute the workload to Workers. Hence
fast inter-processes communication is vital. The microbenchmark
design is based on Intel’s MPI PingPing benchmark [31], that mea-
sures message latency in languages. In the microbenchmark Pro-
cessA sends a message of arbitrary size to ProcessB; and ProcessB
asynchronously sends the same message back to ProcessA. The time

to send and receive the message back is collected after an arbitrary
number of repetitions.

Process Creation Time & Maximum Processes Supported.
As depicted in Figure 1, many servers spawn worker processes to
deal with client requests, and hence fast process creation time and
the ability to support high numbers of concurrent processes are
crucial. Moreover, many server processes are idle, awaiting client
interaction. To test these properties this microbenchmark spawns
N dormant processes, measures the spawn time, increases N and
repeats. Dormant processes are inactive once spawned.

Concurrent Process Throughput. The two previous microbench-
marks examine key server characteristics: communication and
process spawning. This more realistic benchmark measures the
throughput of a system consisting of a number of worker-client
process pairs constantly exchanging messages. Various examples of
such application can be seen in industry, e.g. online games, video
chats, and streaming applications [8]. In online games, for example,
clients constantly send information about their positions, status, and
actions of players, and then the server responds with data about the
environment and any events happening around the players. Usually
for each client connection there is a process on the server responsible
for it, requiring high throughput.

The benchmark design is presented in Figure 2. The Thread pool
contains initialized Worker processes that wait for a start message
from the Main process. The Aggregator collects the number of
messages passed in the system over time. Each Worker-Worker pair
periodically reports to the Aggregator the time taken to exchange a
certain number of messages. This number of messages is chosen to
be small enough to provide accurate information, but large enough
to ensure that the system does not spend much of time on the
aggregation. Experiments with different values showed that 10,000
messages work the best.

4. Evaluation
This section evaluates the performance of Go, Erlang, and Scala/Akka
on multicore machines using the benchmarks from Section 3.3. In
the experiments we use the following versions of the languages:
Erlang/OTP 19.0, Go 1.7.1, Scala 2.12.0 with Akka 2.4.12. The
benchmarks are measured on two machines:

• (mini-server) Intel Core i5-3230Mv2, 2.60GHz, 8GB RAM,
Windows 10 (Sections 4.1 and 4.2);

• (medium-server) Intel Xeon E5-2640v2 16 Cores, 2GHz, 64GB
RAM, 4GB RAM/core, Scientific Linux 6 (Section 4.3).

Unless otherwise stated the message size is selected to be 500
bytes, which is close to real life use cases [8]. All experiments
are repeated seven times and the median values are reported. The
experiment data, additional figures and analysis are at https:
//github.com/bbstk/server-languages-benchmarks.

https://github.com/bbstk/server-languages-benchmarks
https://github.com/bbstk/server-languages-benchmarks
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(a) 5kB Message Size [5]
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(b) 5kB Message Size
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(c) 10kB Message Size
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(d) 50kB Message Size

Figure 3. PingPing Benchmark
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(a) Max Number of Supported Processes
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(b) Up to 100,000 Processes

Figure 4. Spawn Time

4.1 Process Communication Latency
We replicate the methodology from [5]: for each of the languages
we run the benchmark with three message sizes: 5kB, 10kB, and 50
kB. The time for each message size is recorded after 1,000, 10,000,

100,000, 500,000, and 1,000,000 repetitions of pairs of processes
exchanging messages.
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(b) 2 cores
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(c) 4 cores
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(d) 8 cores
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(e) 16 cores
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Figure 5. Concurrent Process Throughput

The primary observations from Figures 3(b), 3(c) and 3(d) are
that Scala/Akka has higher communication latency than Erlang and
Go, and the latter have very similar latencies, at all message sizes.

The results in Figure 3(b) concur with Erlang performance results
in [5] and reproduced in Figure 3(a). Figures 3(a) and 3(b) show
that Akka significantly reduces communication latency in Scala (3
times). We believe this is due to the event-based execution model in
Akka being more efficient than the combination of thread-based and
event-based execution in Scala [24].

4.2 Process Creation Time & Maximum Processes Supported
Recall that this microbenchmark spawns a defined number of
dormant processes and returns the time taken to perform the task.
Figure 4(a) shows that Scala/Akka can support the largest number
of processes: ∼11M, which we believe is due to more efficient
memory management in the JVM than in Erlang and Go. Erlang
has the fastest spawn time, e.g. it takes Erlang 12s to spawn 3M
processes, while Scala/Akka and Go need 26s and 114s respectively.



We attribute this to processes (actors) being central to Erlang and
Scala/Akka, while goroutines are less central to Go.

In the second part of the experiment we analyse spawn time of
up to 100,000 processes – a more realistic number of processes.
Specifically we measure spawn time for 1,000, 10,000, 20,000,
25,000, 50,000, 75,000, and 100,000 processes. Figure 4(b) shows
that Erlang and Go scale similarly with steady increases in spawn
time. In Scala/Akka not only is spawn time greater than for Erlang
and Go, it scales unpredictably with a sudden increase from 10,000
to 20,000 processes. This could be due to a number of reasons, e.g.
the JVM garbage collection, or Akka actors implementation, or
some internal Akka data structures.

We conclude that Scala/Akka enables the maximum number of
dormant processes; Erlang minimises spawn time; and Erlang and
Go process creation time scales smoothly to 100,000 processes.

4.3 Concurrent Process Throughput
Recall that this benchmark spawns pairs of communicating pro-
cesses and measures their throughput. The experiments are run on
the Beowulf cluster (Section 4) with 16 physical (32 virtual) cores.
We run the benchmark for 60s with different numbers of paired pro-
cesses (1, 2, 4, 6, 8, 16, 32, 64, and 128 pairs) varying the number of
cores. The measurements reported are for cold starts, i.e. we restart
the Erlang and Scala VMs for each measurement.

Figure 5 compares the throughput of Erlang, Go, and Scala/Akka
varying the number of cores. Go consistently demonstrates higher
throughput (2–5 times) than Erlang and Scala/Akka. This is probably
because Go passes messages over statically typed channels, and does
not require the pattern matching on messages used in Erlang and
Akka. While Erlang outperforms Scala/Akka at small scales (up to 8
cores and 20 process pairs), the situation is reversed at larger scales.

An analysis of the impact of the number of cores on the through-
put in each language individually shows that Erlang and Go reach
their peak when the number of process pairs in the system is equal to
the number of cores. In contrast Scala/Akka does not exhibit a fast
start, its throughput increases slowly until approximately 62 process
pairs regardless of the number of cores. Other observations that we
may investigate in the future include the following: (a) after the peak
Erlang demonstrates significant drops in performance; (b) Go does
not scale beyond 4 cores, i.e. on 32 cores Go has approximately
the same throughput as on 4 cores. We conclude that Go provides
highest throughput for servers with constant communication.

5. Conclusion
We have investigated programming language characteristics that
support the engineering of multicore web servers. Crucially these
languages must be able to support massive concurrency on multi-
core machines with low communication and synchronisation over-
heads. We have analysed 12 languages considering computation,
coordination, compilation, and popularity, and selected three rep-
resentative high-level languages for detailed analysis: Erlang, Go,
and Scala/Akka (Section 2). We have designed three server bench-
marks that analyse key performance characteristics of the languages,
i.e. inter-process communication latency, process creation time, the
maximum number of supported processes, and throughput (Sec-
tion 3).

A summary of the recommendations based on this small set of
benchmarks is as follows. For a server where minimising message
latency is crucial, Go and Erlang are the best choice (Figure 3).
Interestingly Akka significantly reduces communication latency in
Scala (Figures 3(a) and 3(b)). Scala/Akka are capable of maintaining
the largest number of dormant processes (∼11M processes in
Figure 4(a)), while Erlang performs the best when processes are
short lived and the goal is to ensure minimal spawn time, e.g. Erlang
takes 58s to spawn 9M processes (Section 4.2). In server applications

where up to 100,000 processes are frequently spawned, Erlang and
Go minimise process creation time and scale smoothly (Figure 4(b)).
Experiments with communicating pairs of processes show that Go
provides the highest throughput independent of the number of cores
and the number of process pairs (Figure 5).

Comparing the performance of complete case study servers im-
plemented in each language would significantly reinforce these
results, and one possibility is an Instant Messaging (IM) bench-
mark [4]. It would also be interesting to study the performance
overheads of providing fault tolerance and of recovering from faults,
another key server capability. Finally we could compare the perfor-
mance of server languages on distributed memory architectures, e.g.
a cluster of multicores.
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