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ABSTRACT
The automatic analysis of social interactions is attracting
significant interest in the multimedia community. This work
addresses one of the most important aspects of the problem,
namely the recognition of roles in social exchanges. The
proposed approach is based on Social Network Analysis, for
the representation of individuals in terms of their interac-
tions with others, and probabilistic sequential models, for
the recognition of role sequences underlying the sequence of
speakers in conversations. The experiments are performed
over different kinds of data (around 90 hours of broadcast
data and meetings), and show that the performance depends
on how formal the roles are, i.e. on how much they constrain
people behavior.

Categories and Subject Descriptors: H.3.1 [Content

Analysis and Indexing]. General Terms: Experimenta-

tion. Keywords: Social Network Analysis, Role Recogni-

tion, HMMs, Statistical Language Models.

1. INTRODUCTION
The multimedia community is making significant efforts

towards the automatic analysis of social interactions in au-
dio and video recordings (see [11] for an extensive survey).
This work considers one of the key aspects of the problem,
i.e. the recognition of roles in multiparty recordings. Roles
are not only a universal aspect of social exchanges, because
people play roles each time they interact with others [10],
but they can also be useful in several applications, e.g. in
media browsers, in summarization and in Information Re-
trieval. Indeed, in media browsers, the role of the person
speaking at a given moment can help users to quickly iden-
tify segments of interest. In summarization, the role can be
used as a criterion to select representative segments of the
data. In Information Retrieval, the role can be used as an
index to enrich the content description of the data.

The core idea of the approach we propose is that the se-
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quence of speakers talking during a conversation is the ob-

servable, machine detectable, evidence of an underlying, hid-

den, sequence of roles. Correspondingly, the approach in-
cludes three main steps: the first is the Speaker Diarization

and splits the multiparty recordings into turns, i.e. single
speaker intervals (see Section 2.1). The second is the Fea-

ture Extraction and applies Social Affiliation Networks [12]
to convert the sequence of turns into a sequence of feature
vectors accounting for how each speaker interacts with oth-
ers (see Section 2.2). The third is the actual Role Recogni-

tion, where the sequence of feature vectors is aligned with a
sequence of roles using Hidden Markov Models (HMM) [8]
and Statistical Language Models (SLM) [9] (see Section 2.3).

The experiments are performed over three different cor-
pora for a total of around 90 hours of material (see Sec-
tion 3.1). The results show that the approach is particu-
larly suitable for the recognition of formal roles, i.e. those
that correspond to specific functions in a given interaction
setting (e.g. the moderator in a debate) and impose more
or less rigorous constraints on the behavior of people [5].
Informal roles, i.e. those that correspond to a position in
a specific social system (e.g., the manager in a company)
and do not impose constraints on the behavior of people [5],
are harder to model, but still recognized with a performance
singificantly higher than chance. To the best of our knowl-
edge, there is only one work reporting results over a larger
dataset [6], but it considers only formal roles, thus the re-
sults are less exhaustive than those presented here.

The main novelties and distinctive aspects of this article
with respect to the state-of-the-art are as follows:

• This is the first work, to the best of our knowledge,
that provides a quantitative measure of how formal a

role set is, i.e. of how much the roles under considera-

tion constrain the interaction behavior of people. This
is important to assess how effectively a role recognition
approach can work in different interaction settings.

• This is the first work, to the best of our knowledge,
that assesses how diverse are role recognition approaches

based on probabilistic sequential models and on Bayesian

classifiers. This is important in view of the combina-
tion of different role recognition techniques.

• To the best of our knowledge, the dataset used in this

work is the only one that includes different interaction

settings and different role sets. This is important to
assess how easily an approach can be ported from one
interaction setting to another.



x1= (1,1,1,1) x2= (0,0,1,1) x3= (1,1,1,0)

w1 w2 w3 w4

a1 2a a3

t∆ 1 t∆ 2 t∆ 3 t∆ 4 t∆ 5 t∆ 6 t∆ 7

w1 w2 w3 w4

t

s =a2 3

t

s1 s3=a1 s4=a3 s5=a2 s6=a1 s7=a2=a1

actors

events

Figure 1: Social Affiliation Network extraction. The
events correspond to the segments wj and the actors
are linked to the events when they talk during the
corresponding segments. The actors are represented
using vectors ~xi where the components account for
the links between actors and events.

The rest of this paper is organized as follows: Section 2
describes the role recognition approach, Section 3 presents
experimental results, and Section 4 draws some conclusions.

2. THE ROLE RECOGNITION APPROACH
The next three sections describe the three main steps of

the recognition process.

2.1 Speaker Diarization
The goal of a speaker diarization process is to segment an

audio recording into turns, i.e. time intervals during which
there is only one person speaking. The experiments of this
work are performed on one hand over broadcast data and,
on the other hand, on meeting recordings. Correspondingly,
two diarization approaches have been applied to cope with
the characteristics of each type of data. The diarization
techniques applied to broadcast data and meeting recordings
are fully described in [1] and [3], respectively.

2.2 Feature Extraction
The speaker diarization process converts each recording

into a sequence of turns S = {(si, ∆ti)}, where i = 1, . . . , N ,
si is the speaker label corresponding to the voice detected
in the ith turn, and ∆ti is the duration of the ith turn. The
label si belongs to the set A = {a1, . . . , aG} of G unique
speaker labels as provided by the speaker diarization pro-
cess. The turn sequence S is used to build a Social Af-
filiation Network (SAN), a graph with two types of nodes
(actors and events) where links are not allowed between
nodes of the same type (see Figure 1) [12]. In our experi-
ments, the actors correspond to the speakers as detected in
the diarization process, and the events correspond to uni-
form non-overlapping segments spanning the whole length
of the recording (see lower part of Figure 1). The rationale
is that actors participating in the same events (i.e. partici-
pants speaking during the same time intervals) are likely to
interact with each other. Therefore, the SAN extracts the
evidence of interactions in terms of: who talks to whom and

when.
One of the main advantages of this representation is that

each actor ai can be represented with a D-dimensional vec-
tor ~xi, where the component j accounts for the participa-

tion of ai in event j. The jth component is set to 1 if the
speaker talks during the jth segment, and to 0 otherwise (see
bottom of Figure 1). A further component is added corre-
sponding to the fraction of time τi speaker i talks for during
a given recording. The resulting vector ~zi = (~xi, τi) has di-
mension D + 1. The dimensionality of the feature vectors is
reduced through Principal Component Analysis (PCA) [2].
The amount of variance to be retained after PCA is arbi-
trarily set to 70%, while D is set through crossvalidation
during the experiments. In some cases, D influences sig-
nificantly the role recognition performance as it defines the
events during which interactions are captured. This effect
can be measured by comparing the performances obtained
when D is selected through crossvalidation and when D is
selected maximizing the performance over the test set. The
latter procedure overestimates the performance, but it gives
an idea of how much D actually influences the role recogni-
tion accuracy (see Section 3).

2.3 Role Recognition
The application of PCA to the ~zi feature vectors results

into M -dimensional projections ~yi, where M < D+1. There-
fore, each recording can be represented through a sequence
Y = (~y1, . . . , ~yN ), where N is the number of turns detected
at the speaker diarization step, and ~yi is the vector repre-
senting the speaker talking at turn i.

The role recognition can be thought of as finding the role
sequence R∗ satisfying the following equation:

R∗ = arg max
R∈RN

p(Y |R)p(R), (1)

where R = (r1, . . . , rN ) is a sequence of roles of length N ,
ri ∈ R (R is a predefined set of roles), and RN is the set of
all role sequences of length N . In intuitive terms, the above
equation says that R∗ is the sequence of roles that better
explains (in terms of a-posteriori probability) the sequence
of turns actually observed during a conversation.

In our experiments, the likelihood p(Y |R) is estimated
with a fully connected, ergodic, HMM [8] where each state
corresponds to a role r ∈ R. Each state can be reached
from any other state, meaning that transitions between any
pair of roles are allowed. The emission probability function
associated to each state are Gaussians.

The a-priori probability p(R) is estimated using a n-gram
(n ≥ 1) Statistical Language Model [9]:

p(R) =
N

Y

k=1

p(rk|rk−1, rk−2, . . . , rk−n+1). (2)

HMMs and SLMs have been implemented with two publicly
available packages, the Hidden Markov Model Toolkit, and
the SRI Language Model Toolkit.

3. EXPERIMENTS AND RESULTS
This section outlines the experimental setup and the au-

tomatic role recognition results.

3.1 Data and Roles
The experiments of this work are performed over three

different corpora that will be referred to as C1, C2 and
C3 (Table 1 shows their main characteristics). The roles of
C1 are Anchorman (AM), Second Anchorman (SA), Guest

(GT), Interview Participant (IP), Headline Person (HP),



DB recs. setting tot. t avg. t avg. G

C1 96 news 18h 56m 11m 50s 12
C2 27 talk-show 27h 00m 1h 00m 30
C3 137 meeting 45h 38m 19m 50s 4

Table 1: Corpora. The table reports the main char-
acteristics of the corpora used in the experiments.
From left to right: number of recordings, interaction
setting, total time, average recording length, aver-
age number of participants. Note that the length is
the same (one hour) for all recordings in C2, and the
number of participants is constant (four) in C3. In
all other cases, the figures change from one record-
ing to the other.

and Weather Man (WM). Roles with the same name are
played in C2 (with the exception of IP that appears only
in C1), but they correspond to different functions because
the interaction setting changes singificantly between C1 and
C2 (e.g., AM are expected to inform in news and to enter-
tain in talk-shows). The roles of C3 are Project Manager

(PM), Marketing Expert (ME), User Interface Expert (UI),
and Industrial Designer (ID).

The effectiveness of the diarization processes (see Sec-
tion 2.2) is measured with the Purity π:
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where N is the total number of feature vectors extracted
from a audio recording, Ns is the number of speakers, Nc

is the number of voices detected in the diarization process,
nlk is the number of vectors belonging to speaker l that
have been attributed to voice k, nk is the number of feature
vectors in detected voice k, and nl is the number of vectors
belonging to speaker l. The purity ranges between 0 and
1, the higher the better. The average purity is 0.82 for C1,
0.78 for C2 and 0.99 for C3.

3.2 Role Recognition Results
The experiments have been performed with a leave-one-

out approach [2]: Each recording is iteratively used as test
set while all others are used as training set. This approach
ensures a rigorous separation between training and test set
while allowing one to perform tests over the whole dataset at
disposition. The experiments involve two hyperparameters,
the number D of events in the Social Affiliation Network
and the amount of variance retained after applying PCA.
D is set through crossvalidation (the value resulting into
the best performance over the training set is retained for
testing), the variance value has been set a-priori to 70%
and no crossvalidation has been performed.

Tables 2 and 3 report the recognition performance in terms
of accuracy, i.e. percentage of time correctly labeled in terms
of role. For each corpus, the first row (HMM) shows the
results when using only HMMs, the others show the ac-
curacy achieved with language models of increasing order
(HMM+n-gram). For each corpus, the last row reports,
for comparison purposes, the performance achieved with an
approach (Bayes) previously proposed by the authors and
based on a Bayesian classifier [4].

all (σ) AM SA GT IP HP WM
Results over C1

HMM 74.2 (8.8) 97.8 9.5 65.9 38.0 61.1 63.0
HMM + 1-gram 77.7 (11.6) 93.0 9.6 83.4 7.9 59.1 80.5
HMM + 2-gram 79.7 (12.6) 95.5 12.2 82.6 25.7 63.5 80.4
HMM + 3-gram 79.7 (9.3) 97.8 10.3 81.4 25.7 59.5 78.0

Bayes 82.5 (6.9) 98.0 3.6 91.8 8.0 64.6 79.9
Results over C2

HMM 71.7 (7.2) 74.4 91.9 69.8 N/A 62.1 74.6
HMM + 1-gram 83.7 (6.7) 74.5 92.0 90.3 N/A 58.4 19.0
HMM + 2-gram 82.4 (7.4) 74.7 91.3 88.0 N/A 51.1 24.5
HMM + 3-gram 86.1 (6.8) 74.4 91.9 92.0 N/A 72.8 30.5

Bayes 82.6 (6.9) 75.0 88.3 91.6 N/A 18.3 6.7

Table 2: Role recognition performance on C1 and
C2. The table reports both the overall accuracy
and the accuracy for each role. The overall accuracy
is accompanied by the standard deviation σ of the
performance achieved over the single recordings.

all (σ) PM ID ME UI
HMM 44.4 (26.8) 63.4 22.6 28.4 40.1

HMM + 1-gram 40.7 (24.4) 70.6 12.4 16.1 32.0
HMM + 2-gram 48.0 (25.9) 63.3 28.3 35.8 34.6
HMM + 3-gram 46.9 (24.9) 61.8 25.0 39.4 33.8

Bayes 43.5 (23.9) 75.3 15.1 15.1 40.0

Table 3: Role recognition on C3. The table reports
both the overall accuracy and the accuracy for each
role. The overall accuracy is accompanied by the
standard deviation σ of the performance achieved
over the single recordings.

Even if the training material at disposition is sufficient to
train models of order up to 6, no performance improvements
are observed for n > 3. This seems to suggest that higher
order dependences do not bring any information and the role
observed at turn k depends at most on the last two preceding
roles.

The performance tends to be higher for those corpora
where the Perplexity PP of the language models is lower:

PP = [
N

Y

k=1

p(rk|rk−1, rk−2, . . . , rk−n+1)]
−

1

N , (4)

where N is the length of role sequence R = {r1, . . . , rN}.
The PP values are reported in Table 4, together with the
ratio PP/|R| of the PP to the number of roles of each cor-
pus.

The PP is the inverse of the geometric mean of p(rk|rk−1,
. . . , rk−n+1) along a sequence R. Thus, when PP is low, this
probability is, on average, high and roles from rk−n+1 to
rk−1 influence significantly role rk. The consequence is that
only few roles can have probability significantly higher than
0 of appearing immediately after rk−1. This corresponds to
say that the roles are formal, that is the direct interaction
(i.e., adjacency in R) between roles is more constrained.

Following the Kolmogorov-Smirnov Test [7], the difference
between the performances achieved with HMMs and those
achieved with the Bayesian classifier described in [4] are not



C1 C2 C3
PP PP/|R| PP PP/|R| PP PP/|R|

1-gram 5.5 0.9 3.3 0.7 4.0 1.0
2-gram 2.1 0.4 2.5 0.5 3.0 0.8
3-gram 1.9 0.3 2.0 0.4 2.9 0.7

Table 4: PP stands for the perplexity measure of
the different n-gram and PP/|R| is the proportion of
the dictionary that has a probability higher than 0
to produce the n-gram sequence.

C1 HMM C HMM W
Bayes C 77.1 2.7
Bayes W 5.4 14.8

C2 HMM C HMM W
Bayes C 81.1 5.0
Bayes W 1.5 12.4

C3 HMM C HMM W
Bayes C 27.1 14.0
Bayes W 11.1 47.7

Table 5: Diversity assessment. The table reports the
percentage of data time where the two approaches
are both correct (C), both wrong (W), or one wrong
and the other correct.

statistically significant (see first columns of Table 2 and Ta-
ble 3). However, the two classifiers show a significant degree
of diversity, i.e. they make different decisions over the same
sample in a relatively high percentage of cases (see Table 5).
In particular, probabilistic sequential approaches tend to im-
prove the recognition of less frequent roles that are typically
penalized by Bayesian classifiers because of their low a-priori

probability. This suggests that the combination of the two

approaches is likely to lead to significant performance im-

provements. The highest possible performance deriving from
a combination corresponds to the sum of the cases where at
least one of the two approaches is right. This corresponds
to 85.2% for C1, 87.6% for C2, and 52.2% for C3. In all of
the cases, this would represent a statistically significant im-
provement with respect to the best of the approaches. The
actual combination of the two approaches will be subject of
future work.

4. CONCLUSIONS
This paper has presented an approach based on probabilis-

tic sequential models (HMMs and n-gram language models)
for the recognition of roles in different interaction settings.
Two main findings result from the experiments: the first is
that the Perplexity appears to be a good measure of how
formal are the roles of a given setting, i.e. of how much
they influence the interaction patterns of the people that
play them. The second is that the comparison with the per-
formance of a Bayesian classifier using the same features as
this work shows that the two approaches are diverse, i.e.
they make different decisions about the same sample in a
significant fraction of cases.

The first finding is important because automatic recogni-
tion of roles is easier when these are formal [5], i.e. they

are characterized by predictable, and machine detectable,
behavioral patterns. To the best of our knowldge, this is
the first work that proposes a quantitative measure of how
formal roles are. The perplexity can be applied each time
roles underly a sequence of events (speaker turns in the case
of this work).

The second finding is important because it shows that the
combination of two role recognition approaches promises to
result into a signifcant improvement. This appears to be the
case in particular for the meeting data (corpus C3), where
the roles are informal (highest possible ratio PP/|R|) and
the two role recognizers have lower performance compared
to the broadcast data (corpora C1 and C2).

The main open problem is the tuning of the D parameter
(the number of events in the Social Affiliation Networks).
In the case of meetings, fitting the D parameter to each
recording (an approach that is not correct from a statistical
point of view, but helps to understand the influence of the
parameter) brings the accuracy to more than 65%. Thus,
finding a better method to identify the best value for the D
parameter will be the main subject of future work.
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