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Abstract

This work presents the application of HMM adaptation techniques to the problem of Off-Line Cursive Script

Recognition. Rather than training a new model for each writer, one first creates a unique model with a mixed database

and then adapts it for each different writer using his own small dataset.

Experiments on a publicly available benchmark database show that an adapted system has an accuracy higher than

80% even when less than 30 word samples are used during adaptation, while a system trained using the data of the single

writer only needs at least 200 words in order to achieve the same performance as the adapted models. � 2002 Elsevier

Science B.V. All rights reserved.

Keywords: Off-Line Cursive Script Recognition; HMM Bayesian Adaptation; HMM Maximum Likelihood Adaptation; HMM
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1. Introduction

In the last years, several efforts were led, in the
domain of Off-Line Cursive Script Recognition
(CSR), toward the recognition of texts written by a
single person (Senior and Robinson, 1998; Marti
and Bunke, 1998, 2000, 2001; Lazzerini et al.,
1997). In this task, the best performance is
achieved using, for training, samples produced by
the writer himself. On the other hand, the training

is reliable only if there is enough data and this
might be difficult because the writer should be re-
quired to produce too many samples.

This problem can be solved by applying adap-
tation techniques. The literature presents several
techniques for HMM adaptation (Leggetter and
Woodland, 1995b; Digalakis et al., 1995; Gauvain
and Lee, 1994). Their aim is to improve the per-
formance of the models over specific subsets of the
data they are trained to recognize.

A training set is typically composed of large sets
of data produced by different sources. The HMMs
trained over such data are not optimal with respect
to any source, but they have a good performance
on the data produced by all of them. Moreover,
they have a good recognition performance also
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over data produced by sources not represented in
the training set.

In some situations, it can be desirable to have
models optimal for a certain source, but this is not
possible because not enough source dependent
data is available. When this is the case, the adap-
tation techniques can be used to fit the HMM
parameters to the distribution of the source de-
pendent data. The resulting models are closer to
the optimal solution (represented by models
trained using only source dependent data) than the
source independent models and are the best solu-
tion in absence of sufficient source dependent data.

The adaptation techniques are not influenced
by the nature of the sources, it is not necessary to
modify them depending on the specific application
they are involved in. In the case of the handwriting
recognition, the sources can correspond to the
different writers.

The models are typically trained over samples
produced by many sources, i.e. many writers. The
resulting HMMs are not optimal for any single
writer, but they are good for all of them. If the
training set is sufficiently representative of the
different handwriting styles, the models will achieve
a good performance also over data written by per-
sons that did not produce samples for the train-
ing set.

The adaptation allows to optimize the models
for a single writer given a set of its data that can
be much smaller than the amount of data actu-
ally needed for writer dependent training. For this
reason the adaptation process is referred to as, in
this case, Writer Adaptation. The models obtained
through the adaptation are called Writer Depen-
dent (WD) in opposition to the original models
said Writer Independent (WI).

This work presents experiments performed
adapting continuous density HMMs (having mix-
tures of Gaussians as emission probabilities)
trained over a WI database to WD data. Models
adapted on WD data sets of different sizes are
compared with WD HMMs trained over the same
sets. The results show that, for our database, �200
words (a considerable amount for a single writer)
are needed to obtain WD models performing better
than the adapted ones. Moreover, with less than 30
WD words it is not possible to train WD models

because not all the letters are represented in such
a small set, while the result with the adaptation
method already performs well. This shows that the
adaptation can be a good solution to obtain WD
models when it is difficult to collect WD data, while
reliably trained WI HMMs are available.

This paper is organized as follows: Section 2
presents the CSR approaches, Section 3 describes
the HMM adaptation techniques, Section 4 re-
ports experiments and results, and Section 5 pre-
sents some conclusions.

2. Off-line Cursive Script Recognition

The research in CSR had its main develop-
ment in the last ten years (Steinherz et al., 1999;
Plamondon and Srihari, 2000). The process lead-
ing to the transcription of the handwritten word
can be divided into several steps: preprocessing,
normalization, segmentation, feature extraction
and recognition.

The preprocessing works on the raw data and
has as output an image (often binary) showing the
word to be recognized without any other disturb-
ing element (background textures, extraneous
strokes, etc.). The normalization reduces the vari-
ability due to acquisition and handwriting style.
This is done by removing slope (the angle between
the horizontal direction and the direction of the
line on which the word is aligned) and slant (the
angle between the vertical direction and the di-
rection of the strokes that, in an ideal model of
handwriting, would be vertical). The segmentation
extracts fragments of the word (called primitives
or graphemes) considered as the basic units of in-
formation. Depending on the approach, these can
be letters or parts of them. The feature extraction
converts the primitives into vectors that are used in
the recognition step. This is performed by using
Dynamic Programming techniques or HMMs. The
matching of the data with all the words in a list of
allowed interpretations (called lexicon) is mea-
sured. The lexicon word showing the best match-
ing score is retained as correct interpretation.

In the present paper, we will focus on the rec-
ognition step done using HMMs and adaptation
techniques that can be applied to these models
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in order to get better performance when small
amount of data is available to train such HMMs.

3. Adaptation techniques

The adaptation techniques allow to improve the
performance of WI models over WD data when
there is not enough data for a reliable training of
WD models. The process consists in adapting the
parameters h ¼ ðh1; h2; . . . ; hMÞ of the WI models
using the WD data.

The probability of having a parameter vector h
given the adaptation set of observations O can be
written (using Bayes theorem) as follows (Duda
et al., 2000):

pðhjOÞ ¼ pðOjhÞpðhÞ
pðOÞ ; ð1Þ

where pðhjOÞ and pðhÞ are, respectively, the pos-
terior and prior distribution of the parameters, and
pðOjhÞ is the likelihood of the HMM with pa-
rameter set h. The aim of the adaptation is finding
the vector had maximizing the posterior

had ¼ argmaxhpðhjOÞ: ð2Þ
This can be done in two different ways depending
on the prior distribution of h. If pðhÞ is noninfor-
mative, i.e. does not give any information about
how the h components are likely to be, then the
adapted parameters had are estimated with Maxi-
mum Likelihood (ML). Since a noninformative
prior distribution corresponds to a constant uni-
form distribution pðhÞ ¼ c, this amounts to solving
the equation

opðOjhÞ
oh

¼ 0: ð3Þ

When the prior distribution is informative, i.e.
the distribution pðhÞ is different than a constant,
then the adapted parameters are obtained by
solving the equation

o pðOjhÞpðhÞð Þ
oh

¼ 0: ð4Þ

This corresponds to a Maximum A Posteriori
(MAP) estimation of had.

When the adaptation is performed with ML,
had is estimated so that the probability of the

adapted models generating the adaptation data
is maximized. When the adaptation is performed
with MAP, had is such that the Bayes risk (Duda
et al., 2000) over the adaptation set is minimized
(hence the name Bayesian Adaptation).

In the experiments, ML will be used to estimate
the parameters of a linear regression transforming
WI parameters into WD ones (Maximum Likeli-
hood Linear Regression, MLLR). The method will
be shown effective for few adaptation data, but
quickly converging to a saturation performance
that cannot be further improved. On the other
hand, the MAP estimation needs, in order to be
effective, more adaptation data, but the perfor-
mance of the adapted models converges to that of
the WD ones. A third possibility is given by the
combination of the two approaches. A model is
first adapted with MLLR, then its parameters are
used to obtain a prior distribution information
and perform a MAP adaptation.

In this work, the adaptation is applied to con-
tinuous density HMMs: the probability of emit-
ting an observation o when being in a given state
of the HMM is modeled by a mixture of Gaus-
sians (Rabiner, 1989). The parameters to adapt
are thus the means, variances and weights of these
mixtures of Gaussians. We can furthermore sim-
plify the adaptation techniques by making the
hypothesis that the WD information is carried
essentially by the means of the Gaussians. Hence
only such parameters will be adapted. The pa-
rameter vector h corresponds to the vector l ¼
ðl1; l2; . . . ; lGÞ, where G is the total number of
Gaussians.

The MLLR technique is conceived to be effec-
tive with few adaptation data. Because of this,
most Gaussians might be poorly or not at all
affected by the adaptation process. This can be
overcome by clustering the Gaussians, i.e. by
grouping them so that, during the adaptation
process, most of them can be updated (Gales,
1996).

The MAP technique adapts each Gaussian
separately. This makes necessary more adaptation
material, but gives better results as the adaptation
set size increases.

Section 3.1 explains how the Gaussians are
clustered for the MLLR technique. Sections 3.2

A. Vinciarelli, S. Bengio / Pattern Recognition Letters 23 (2002) 905–916 907



and 3.3 give respectively more details about ML
and MAP techniques.

3.1. Gaussian clustering

The first step in MLLR adaptation is the
Gaussian clustering performed by grouping the
Gaussians into regression classes. All the Gaus-
sians of a cluster share the parameters of a linear
transform leading from the WI means to the WD
ones (see Section 3.2). This allows to adapt also the
Gaussians for which there is not enough data in
the adaptation set.

The regression classes are determined dynami-
cally according to the amount of data available (in
the WI data set) using a binary regression class tree
(Gales, 1996). This is grown using a centroid
splitting algorithm based on a Euclidean distance
measure. Given a node to be split, mean and
variance from the Gaussians clustered at this node
are calculated. Two children are created and their
means are initialized to the mean of the parent
perturbed in opposite directions by a fraction
of the variance. Each Gaussian clustered at the
parent node is assigned to one of the children
nodes (depending on the distance) and, when all
the Gaussians are assigned, the mean and variance
for the children nodes are calculated. The process
is repeated until the predetermined number of leaf
nodes is reached.

Once the tree is grown, the regression classes
can be determined following the scheme illustrated
in Fig. 1. A solid arrow means that the child node
contains a number of observations (each one being
attributed to the most likely Gaussian) above an
experimentally determined threshold, and can thus
form a regression class. In the other cases the data
is insufficient and its Gaussians belong to the re-
gression class of the parent node.

Since the tree is grown using the WI data, it is
itself independent of the writer and can be used to
perform the adaptation to any writer.

3.2. Maximum Likelihood Linear Regression

At the beginning of the adaptation process, the
Gaussians are grouped into clusters. When a
Gaussian of the cluster is hit by an observation of

the adaptation set, all the Gaussians of the same
cluster are updated.

Consider a Gaussian

Nðo; lig ;RigÞ ¼
1

ð2pÞd=2jRig j
1=2

� expf1=2ðo� ligÞ
0R�1

ig
ðo� ligÞg;

ð5Þ

where R is the covariance matrix, l the mean and
d the dimension of the observation space. The
index ig states that this is Gaussian i in cluster g.

Following the hypothesis proposed in (Leggetter
and Woodland, 1995a, 1995b; Digalakis et al.,
1995), we adapt only the WI means l using the
linear transform

l̂lig ¼ Wgnig ; ð6Þ

where Wg is a d � ðd þ 1Þ matrix, and nig ¼
ðxg; lig1; . . . ; ligdÞ, where xg is an offset. Since ML
is used to estimate the parameters of a linear
transform, the method is called MLLR.

Fig. 1. Regression tree with four base classes. The dashed line

means that the child node does not contain sufficient data. In

the case of the figure, there are three regression classes. The first

one is composed of data clustered at node 4. They are trans-

formed by a matrix estimated with the data themselves. The

second one is composed of data clustered at node 5. Their

transform matrix is estimated using data clustered at node 2

because the data belonging to node 5 are not enough. The last

class is composed of data clustered at nodes 6 and 7. Since the

data are insufficient for both nodes, they share a common

transform matrix estimated with the data clustered at node 3

and then form a single class.
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After the transform, the Gaussians become

N̂Nðo; lig ;RigÞ

¼ 1

ð2pÞd=2jRig j
1=2

� expf1=2ðo� WgnigÞ
0R�1

ig
ðo� WgnigÞg: ð7Þ

The Wg (the index is g because all of the Gaussians
in the cluster share the same matrix transform)
elements are selected to maximize the likelihood of
the adapted models generating the adaptation
data. The ML estimation is performed with the
Expectation–Maximization algorithm (Dempster
et al., 1977). By formulating the standard auxiliary
function, and then maximizing it with respect to
the transformed mean the following equation is
obtained:

XT
t¼1

XRg

rg¼1

crgðtÞR
�1
rg
otn

0
rg
¼

XT
t¼1

XRg

rg¼1

crgðtÞR
�1
rg

�WWgnrgn
0
rg
;

ð8Þ
where �WWg indicates the estimated parameters at a
certain iteration, and crgðtÞ the probability of being
in state rg at sample t of the adaptation set. The
sum over t involves all the observations ot be-
longing to the adaptation set O, the sum over rg
involves all the Gaussians belonging to the cluster
g. Once the elements of �WWg are estimated at a
certain iteration n, they are used to modify the
means lrg and, correspondingly, the probabilities
crg . These can be used again in Eq. (8) to obtain the
estimation at iteration nþ 1 of Wg.

The matrices Wg are randomly initialized, then
by repeating the process (until the change in like-
lihood of the data between two iterations falls
below a predefinite threshold), they are iteratively
optimized to approximate ML estimations.

Note that the l adapted by ML will always stay
a linear function of the WI l, which explains why
it adapts quickly, but cannot profit from a lot of
adaptation material.

3.3. Bayesian adaptation

In the Bayesian framework, the first problem to
be solved is finding an appropriate prior distribu-
tion pðhÞ.

Following (Gauvain and Lee, 1992, 1994; Lee
and Gauvain, 1993), we consider a mixture of
Gaussians as the marginal pdf of pðhÞ

pðojhÞ ¼
Z

H
pðo; hÞpðhÞdh: ð9Þ

This leads to expressing pðhÞ as a product of a
Dirichlet density (Johnson and Kotz, 1972), ac-
counting for the mixture weights xi, and a normal-
Wishart density (De Groot, 1970), accounting for
the other parameters.

Such a prior distribution has the important
property of belonging to the conjugate family of
the complete data density in the HMM case. This
allows to apply the Expectation–Maximization
technique to obtain a MAP estimate of the adap-
ted parameters. We make the same assumption as
in Section 3.2 and we thus adapt only the means.
The use of EM then leads to the following equa-
tion for the adaptation of the means:

l̂ljm ¼ Njm

Njm þ s
�lljm þ s

Njm þ s
ljm; ð10Þ

where Njm is the occupation likelihood of the ad-
aptation data, i.e. the sum of the probabilities of
each observation in the adaptation set being
emitted by the Gaussian m in state j (the index of
the model is omitted for simplicity), s is a pa-
rameter related to the prior distribution (the value
is set empirically), �lljm is the mean of observed
adaptation data and ljm is the WI data mean.
When Njm is small, the adapted mean is close to the
WI mean, otherwise the adapted values shift to-
ward the mean of the adaptation data. At each
iteration of the EM, the l̂ljm estimated at the pre-
vious iteration are used in the Gaussians of the
cluster g. This leads to new values of Njm and �lljm,
then, through Eq. (10), of l̂ljm. This iterative pro-
cedure is repeated until the change in the para-
meters between two following iterations falls below
a predefinite threshold.

4. Experiments and results

The experiments are performed using a CSR
system based on a sliding window approach
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(Vinciarelli and Luettin, 2000). The system con-
verts the handwritten data into a sequence of
vectors with a window shifting column by col-
umn from left to right (this approach allows to
avoid the segmentation). At each window posi-
tion, a frame is isolated and a feature vector is
extracted. The feature extraction consists of par-
titioning the window into 16 cells regularly ar-
ranged in a 4 � 4 grid and of counting the
number of foreground pixels in each cell. This
leads to a 16-dimensional feature vector ac-
counting, in component i, for the percentage of
foreground pixels (with respect to the total
number of foreground pixels in the window) in
cell i. The recognition is performed using con-
tinuous density Hidden Markov Models to cal-
culate the likelihood of the observation sequence
given an HMM corresponding to each word in a
lexicon. The most likely word is selected as the
interpretation of the handwritten data. Words are
modeled as concatenations of single letter
HMMs. This makes the system flexible with re-
spect to changes in the lexicon. Given the letter
models, any word can be modeled, independently
of the presence of its examples in the training set.
Training is based on ML estimation (Baum–
Welch algorithm), while recognition is based on
the estimation of MAP Probability (using the
Viterbi algorithm).

The number of states and Gaussians per mix-
ture (S and G, respectively) is the same for every
letter model. Their value is set through cross vali-
dation (Stone, 1974). All the systems corre-
sponding to couples ðS;GÞ falling in a range
determined by the amount of training data are
trained and tested. The system giving the highest
estimated generalization performance is retained
as optimal.

Two data sets are used. The first is a collection
of samples produced by many writers and is used
to obtain a WI system (see Section 4.1). The sec-
ond is composed of a text written by a single
person and is used to train a WD system (see
Section 4.2). The WI independent system is adap-
ted to this last database and its performance is
compared to that of the WD system for different
sizes of the training/adaptation set (see Section
4.3).

4.1. Writer independent model training

The WI system is obtained by training the
above described system over a database of words
produced by �200 writers. The data set is com-
posed of 12 178 words extracted from a hand-
written page database collected at the University
of Bern (Marti and Bunke, 1999). The database
was divided into two parts, a training set (8160
words) and a test set (4018 words).

The models are first initialized as follows:
they start with 1 Gaussian per state. The training
samples are uniformly segmented and mean and
variance of the observations attributed to each
state of each model are used to initialize mean
and variance of its Gaussian. After this step, an
embedded training is performed, i.e. the Baum–
Welch algorithm is not applied directly to letter
models, but to word models obtained by con-
catenating them. The single letter models are
so trained when they are part of a word and
not when they are isolated. All the systems
corresponding to different values of S in a
suitable range (determined experimentally) are
trained and tested, and a curve showing the
performance in function of S is obtained for
G ¼ 1.

At this point it is possible to increase G: the
most probable Gaussian of each mixture is split by
perturbing in opposite directions its mean by a
value equal to its variance. This allows to add one
Gaussian to each mixture. An embedded training
is performed on the so modified models for S
ranging in the same interval as the previous step.
The parameter G is increased as long as it is pos-
sible to improve the performance of the system
(see Fig. 2).

Systems with 106 S6 20 and 16G6 7
were trained and tested. The best performance
(with lexicon size 100) was achieved using models
with 14 states per letter and 7 Gaussians per
mixture.

4.2. Writer dependent model training

The WD system is obtained using a database
of 4053 words produced by a single writer and
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described in (Senior and Robinson, 1998). 1 The
data set was split into two parts, a training set
(2700 words) and a test set (1353 words). The
partition is not performed, as usual, with a ran-
dom process. The words are stored in the same
order as they were written and the training set is
composed of the first 2700 words. The reason is
that the same data set will be used for the adap-
tation of the WI system and, in a realistic situa-
tion, such process is performed over the first n
samples to improve the performance over the fol-
lowing ones.

The size of the training set is progressively in-
creased (while keeping unchanged the test set) in
order to show the dependence of the system per-
formance on the number of samples used to train
(adapt) the WD (WI) models. Until 200 words, the
training (adaptation) set size increasing step is 10,
above 200 words it becomes 100.

A WD (WI) system is then obtained by training
(adapting) the WD (WI) models over the first
10; 20; 30; . . . ; 200 and over the first 300; 400; . . . ;
2700 words of the WD database.

The training technique used for the WD models
is the same as the one described in Section 4.1 for the
WI models. Models with 66 S6 16 and 16G6 5
were trained and tested. The effect of the G increase
is shown in Fig. 3 (for training set size 2700).

4.3. Adaptation results

The results obtained with training/adaptation
set size between 10 and 200 (some samples be-
longing to such set can be seen in Fig. 4) are shown
in Fig. 5. The performance is measured in terms
of recognition rate with a lexicon of 100 words. 2

Fig. 2. Best performance of the WI systems as a function of G. For each value of G, the best performance obtained among the systems

with 106 S6 20 is plotted. G is increased until it is not possible to obtain any more improvement of the performance.

1 The database is publicly available on the web and can be

downloaded at the following ftp address: ftp.eng.cam.ac.uk/

pub/data.

2 The lexicon of the WD database is composed of 1370

words. In order to perform the recognition against 100 words,

each sample uses a specific lexicon composed by the correct

transcription and 99 words selected randomly from the original

1370 word lexicon.
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The upper plot shows that, in this range of train-
ing/adaptation set size, the adapted models per-
form significantly better than the WD ones. The

lower plot shows the performance of the adapted
models more clearly. The models adapted with ML
increase their performance slowly with respect to
the others and their accuracy falls below that of
the WD models before the models adapted with
other techniques. The MAP method produces
models slightly more accurate than the combina-
tion of ML and MAP.

The results obtained with training (adaptation)
set size between 300 and 2700 are shown in Fig. 6.
When more than 200 words are available in the
training set, the WD models become better than
the adapted ones. This limit must be considered a
lower bound because in our experiments the WD
system was trained using the test set for cross
validation, then its performance is biased towards
it. This leads to an overestimation of the recogni-
tion rate of the WD models and it is more correct
to say that they need then at least 200 words in
order to perform better than the adapted models.

The models adapted with ML do not take any
advantage of the increase of the adaptation set,
while the models adapted with other techniques

Fig. 3. Performance of the WD systems as a function of G. For each value of G, the best performance obtained among the systems with

66 S6 16 is plotted. G is increased until it is not possible to obtain any more improvement of the performance.

Fig. 4. Some samples used for the adaptation. The words be-

long to the transcription of a text extracted from the LOB

Corpus.
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Fig. 5. The upper figure reports the accuracy vs. the training/adaptation set size for the WD models and the WI models adapted with

ML, MAP and ML + MAP techniques. In the lower plot, the curves of the adapted models are shown in more detail. The values are

reported for training/adaptation set sizes less than or equal to 200. When the training/adaptation set size is less than 30, no WD system

can be trained.
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show some improvements of the accuracy. The
models adapted combining ML and MAP become
more accurate than those adapted with MAP.

The main source of errors are the short words
(less than three letters). This happens because,
being composed of few characters, a bad align-
ment of a single letter model with the observations
of the related character is enough to cause errors.
Moreover, the normalization scheme applied to
the samples before the recognition is conceived
for longer words and, sometimes, produces bad
results over the shortest samples. Another source
of errors comes from the ambiguity of certain
word couples like been and beer or year and years.
A possible solution to the last problem can be the
application of a language model. This allows to
select the correct classification using the word
context. The accuracies reported are obtained with
a 100 word lexicon. The use of bigger lexica would
result in a lower performance. In any case, in the
limits of the statistical fluctuations, the difference
in performance would remain unchanged. The
important aspect of the HMM adaptation tech-
niques is not in the performance, but in the fact

that, with few WD samples, it is possible to im-
prove considerably the performance of WI models.
Once enough data is available for WD training,
the adaptation cannot improve the performance of
WD models, but the collection of WD data can be
sometimes difficult.

As mentioned above, the adaptation set is
composed by the first n samples produced by the
writer. This corresponds to a realistic condition
where the WD samples available at a certain mo-
ment are used to improve the performance over
the data written in the following.

If the experimental conditions allow to select
arbitrarily the samples (e.g. by asking the writer to
write some predetermined words), the system can
be made effective with fewer data by using words
containing all the characters. In this way, all the
letter models are affected by the adaptation pro-
cess and the system is adapted more quickly.

The selection of the samples can have influence
on the speedness of the adaptation, but cannot in
any case improve the performance of the adapted
models. The HMMs adapted with MLLR are
limited by the fact that the new parameters are a

Fig. 6. The figure shows the accuracy of WD and adapted models for sizes of training/adaptation set ranging from 300 to 2700.
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linear function of the old ones. The models adap-
ted through the Bayesian approach cannot in any
case perform better than models trained directly
(once enough training data are available) over WD
data.

A different technique to adapt a CSR system
to a single writer is presented by Lazzerini et al.
(1997). In this work, the CSR system segments
the words into letters and then recognizes them
separately with a Neural Network. A contextual
analysis of the character recognizer results allows
to correct eventual misclassifications.

The adaptation consists of retraining the neural
network using only characters of the specific writer
extracted from the WD samples using a WI sys-
tem. From this point of view, the system adapted
with this technique corresponds to what we call a
WD system, i.e. a system trained directly over the
samples of the specific writer.

To train over WD data is the optimal solution,
but requires, to be effective, a sufficient amount of
data. The aim of the HMM adaptation is not the
improvement of the system performance (the best
accuracy can be achieved in any case only by
training directly over WD data), but the possibility
of having an effective system when the available
WD data is not sufficient for reliable training.

Moreover, in order to retrain the network it is
necessary to have samples of all the characters,
while in adapting the letter models, it is possible to
adapt selectively only the models related to letters
presented in the adaptation set (leaving the others
unchanged). This allows the adapted system being
effective for very small amounts of adaptation
data.

5. Conclusions

We have presented in this paper an application
of HMM adaptation techniques to the problem of
Off-Line Cursive Script Recognition. A CSR sys-
tem trained over a database of samples produced
by many writers was adapted to the words of a
single writer data set.

The experiments showed that, for our database,
the models trained over sets containing less than
�200 words have an accuracy inferior to that of

models obtained adapting WI models to the same
data. This estimated amount must be considered a
lower bound since the WD models are trained
using the test set for crossvalidation and this re-
sults in an overestimation of their performance.

For very small training sets (less than 30 words)
it was not even possible to train WD models, while
there was no problem in adapting WI models. For
a 30 words set, the WD system had an accuracy of
34.6% while a WI system adapted with the com-
bination of ML and MAP techniques had an ac-
curacy of 87.3%.

Both adaptation techniques and training meth-
ods for continuous density HMMs have been
described in detail. The effect of increasing the
number of Gaussians in the mixtures has also been
shown.

Some improvements can be obtained by using
more advanced adaptation techniques and better
WI models. Moreover, by studying an optimal
composition of the adaptation set, it will be pos-
sible minimize the number of necessary samples
for an effective adaptation. The absence of some
letters in the first words is determined by the fact
that our database is a transcription of a text, but
it is possible to create smaller sets of words con-
taining all the letters by asking the writer to pro-
duce them.

The adaptation techniques are a natural solu-
tion for all the applications where it is necessary to
recognize samples produced by a single writer
without having enough samples for a reliable
training.
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