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Abstract. In this paper the problem of estimating the intrinsic dimension of a data set is
investigated. An approach based on the Grassberger—Procaccia’s algorithm has been studied.
Since this algorithm does notyield accurate measures in high-dimensional data sets, an empirical
procedure has been developed. Grassberger—Procaccia’s algorithm was tested on two different
benchmarks and was compared to a TRN-based method.
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1. Introduction

The intrinsic dimension (/D) of a data set is the minimum number of free variables
needed to generate the data. More generally, a data set in d dimension is said
to have an intrinsic dimensionality equal to M (M < d) if the data lie entirely within
a M-dimensional subspace S [9]. ID estimation, giving a lower bound on the number
of variables needed to describe a data set, is very important in pattern recognition
and statistics. In particular, the knowledge of the intrinsic dimensionality is helpful
for data visualization, and for classifier and regressor design in order to limit as
much as possible the number of variables used to represent data sets. Furthermore,
ID can suggest a value to dimension the middle layer of the autoassociative neural
networks [1] often used to realize powerful feature extractors.

In spite of the importance of study of the intrinsic dimensionality of data very few
results, mostly based on projection techniques and on the estimate of topological
dimension of data [2], are reported in the literature. The projection techniques search
the best subspace to project data, by minimizing the projection error. These methods
can be divided into two families: linear and non-linear.
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Linear methods such as Principal Component Analysis (PCA) and Projection
Pursuit (PP) [7] are inadequate estimators of intrinsic dimension since they tend
to use more dimensions than necessary [1]. For example, points lying on a curve
for PCA and PP have dimension 2 instead of 1.

On the other hand, nonlinear methods such as Nonlinear PCA (NLPCA) [13]
present some drawbacks [14]. The projections onto curves and surfaces are
suboptimal; they cannot model curves or surfaces that intersect themselves (e.g.
circles). Therefore NLPCA can sometimes lead to incorrect results and does not
represent a reliable estimator of the intrinsic dimensionality.

Topological dimension estimators try to estimate the topological dimension of the
data manifold. Frisone et al. [8] proposed a method based on the Dimensionality
Estimation Conjecture (DEC). If the data manifold Q is approximated by a
Topological Representing Network (TRN) [16], the number n of cross-correlations
learnt by each neuron is an indicator of the local dimension of Q. The number n
is quite close to the number k (kissing number') of spheres which touch a given
sphere, in the Sphere Packing Problem [4]. This approach presents some drawbacks.
The DEC conjecture has not been proved yet; the number k is known exactly only for
few dimension values. Besides, k tends to grow exponentially with the space
dimension. The last peculiarity strongly limits the use of the conjecture in practical
applications where data can have high dimensionality.

In this paper, an approach to the intrinsic dimensionality estimation, alternative
to the above described methods, is presented. Such approach is based on the
Grassberger—Procaccia’s algorithm. This technique has been successfully applied
to different fields of physics, such as the study of chaotic system attractors [17]
and the dynamics reconstruction in natural time series [12]. The structure of the
paper is as follows: in Section 2 Grassberger—Procaccia’s algorithm is illustrated;
the procedure for the intrinsic dimension estimation is described in Section 3; in
Section 4 some experimental results are reported; in Section 5 some conclusions
are drawn.

2. Grassberger—Procaccia’s Algorithm

Though many definitions of the dimension of a set, based on mathematical proofs or
on empirical conjectures have been proposed, a univocal definition has not been
given yet.

Grassberger—Procaccia’s algorithm (GP algorithm) allows to estimate the
so-called correlation dimension [10]. The correlation dimension belongs to a
dimension family called fractal [15]. Among fractal dimension definitions [5], the
correlation dimension is the most popular because of its computational simplicity.
Correlation dimension is defined in the following way. Let Q be a set of points

! For space dimensions from 1 to 8, k is: 2, 6, 12, 24, 40, 72, 126, 240. Besides, the value k for a
24-dimension space, is also known and is 196560.
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X (X € R") of cardinality N. If the correlation integral C,(r) is defined as:

2
W)= lim — = 3" (X - Xl < 1
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where I is an indicator function®, then the correlation dimension D of Q is equal to:
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There are several methods [21, 20] in the literature to obtain an optimal estimation of
the correlation dimension, but all techniques are optimal only when the correlation
integral assumes a given form?, in the other cases the estimators can perform poorly
[22]. Besides, these methods generally require the use of some heuristics to fix the
radius r [23]. Therefore, in our work, we used the original procedure proposed
by Grassberger and Procaccia that consists in plotting In(C,,(r)) versus In(r) and
measuring the slope of the linear part of the curve (Figure 2).

It has been proved [6] that in order to get an accurate estimate of the dimension D,
the set cardinality N has to satisfy the following inequality:

D < 210g10N (3)

The inequality (3) implies that the number of points N, necessary to get accurate
estimate, grows exponentially when the dimension to estimate increases. According
to a calculus of L. A. Smith [19], for the estimation of a fractal dimension D to
be accurate within 5%, N should be 42°. Since, for high dimension, N becomes huge,
it is very hard to have a precise estimate of correlation dimension. In order to show
the dependence of the estimated value on the number of set points, we performed
the following experiments. We generated 10-dimension sets containing different
number of points. Then we estimated the correlation dimension of each set with
GP algorithm. The results are reported in Table 1 and show the strong dependence
of the estimated value on the number of points of the set. Therefore, in order to
cope with this bottleneck, an empirical procedure has been developed.

3. Intrinsic Dimension Estimation Procedure

Consider the set Q, whose intrinsic dimension has to be estimated. The procedure
consists of the following steps:

2 I(%)is 1iff condition 4 holds, 0 otherwise.

3 For example, Takens’ method is optimal only iff C,,(r) = arP[1 + br* + o(r*)] where a, b
are constants.
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Table 1. Dependence of the estimated correlation
dimension on the number of data points used (the actual
dimension of data is 10)

Points number Estimated dimension
1000 7.83
2000 7.94
5000 8.30
10000 8.56
30000 9.11
100000 9.73

1. Another set Q' ,with the same cardinality N is generated. Q' is formed by points
uniformly distributed in a d-dimensional hypercube. We assumed that the
intrinsic dimensionality of Q' is d.

2. The correlation dimension (D) of Q' is measured by the GP algorithm.

3. Previous steps are repeated for 7 different values of d, obtaining a collection of
measures C ={(d;, D;):i=1...T}.

4. A best-fitting of the points of C by means of a nonlinear function is performed. A
plot T" of (D) versus (d) is generated (see Figure 1).

5. Finally the correlation dimension of Q is computed and, by using the best-fit, the
intrinsic dimension of Q is estimated.

The method previously described is based on the following assumptions:

1. T" depends on N.

2. Since GP algorithm gives close estimates on sets of the same dimensionality and
cardinality, the dependence of I' on the different Q' sets, used for the setup of
I, is negligible.

In comparison with the DEC-based method, our approach presents the following
advantages. First of all, the approach allows to get ID estimation of
high-dimensional space, unlike the DEC-based method that estimates ID dimension
up to 8. Moreover the approach proposed, since it is based on the estimation of a
fractal dimension, allows to obtain non-integer values. This is preferable since,
because of the noise, real data can sometimes lie within a fractal-like submanifold,
whose dimension is usually non-integer.

4. Experimental Results

GP algorithm was applied to estimate the intrinsic dimension on two different
benchmarks.
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Corrglation vs. Intrinsic Dimension
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Figure 1. Correlation versus Intrinsic Dimension.
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Figure 2. Plot of In(C,,(r)) versus In(r) in the benchmark 2.
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4.1. THE FIRST BENCHMARK

The first benchmark is a set formed by 30,000 points uniformly distributed in a
8-dimensional hypercube.

First of all, the plot Correlation versus Intrinsic Dimension was generated. For the
setup of T, the 8-dimensional Q' set has not been used. The nonlinear function used
for the best-fitting was a linear combination of two logistic functions, generated
by means of a MLP [1] with | input, 2 hidden and 1 output neurons. MLP structure
was set up by means of the bayesian information criterion (BIC) [18]. The plot Cor-
relation versus Intrinsic Dimension is shown in Figure 1.

Then GP algorithm was applied to the data set. The Correlation Dimension was
set up to 7.16 and using the MLP that best-fits curve I in Figure 1, the intrinsic
dimension was fixed to 7.90. In comparison with the fractal dimension technique,
on the same data set, the DEC-based method was tested. Many TRN maps were
tried, selecting the one that minimizes the quantization error. The maximum
cross-correlation neuron number in the map is 66. Since the number obtained is
closer to 72 than 40, that are respectively the kissing number k for the dimension
6 and 5, the intrinsic dimension, estimated by TRN, is ~ 6.

4.2. THE SECOND BENCHMARK

The second benchmark is a data set constituted by 30,000 feature vectors extracted
by isolated cursive handwritten characters*. Each feature vector has 34 components
[3]. ID of the second benchmark is unknown. GP algorithm was applied and
Figure 2 shows the log-log plot obtained. The Correlation Dimension was set up
to 7.76 and using I', the intrinsic dimension was fixed to 8.62. TRN was also tried
on the data set. The maximum cross-correlation neuron number in the case was
90. Since the number is between 72 and 126, the intrinsics dimension, estimated
by TRN, is between 6 and 7. As in the first benchmark, ID estimated by TRN-based
method is lower than the one computed by GP.

5. Conclusions

We presented an empirical approach based on Grassberger—Procaccia’s algorithm in
order to estimate the intrinsic dimensionality of data. The approach was applied to
two different benchmarks and the results obtained were compared to those given
by a TRN-based method. In the benchmark, with known ID, GP algorithm
performed better than TRN-based method. Besides, differently to TRN method
our approach allows to obtain intrinsic dimension estimate also when the dimension
is high. In our opinion, the method can be applied to set up the structure of a
Nonlinear PCA network. In fact the middle layer of the autoassociative

4 Characters were selected by words belonging to CEDAR database [11].
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five-layer-bottleneck network, used to realize Nonlinear PCA, should have a neuron
number quite close to the intrinsic dimensionality of data. Therefore, the intrinsic
dimension estimate could be used to get the structure of a NLPCA network avoiding
heavy experimental trials.
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