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Abstract

This paper presents a cursive character recognizer, a crucial module in any Cursive Script
Recognition system based on a segmentation and recognition approach.

The character classi2cation is achieved by combining the use of neural gas (NG) and learning
vector quantization (LVQ). NG is used to verify whether lower and upper case version of a
certain letter can be joined in a single class or not. Once this is done for every letter, it is
possible to 2nd an optimal number of classes maximizing the accuracy of the LVQ classi2er.

A database of 58000 characters was used to train and test the models. The performance
obtained is among the highest presented in the literature for the recognition of cursive characters.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Learning vector quantization; Neural gas; Self-organizing map; Crossvalidation; Cursive
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1. Introduction

O<-line cursive script recognition (CSR) has several industrial applications such as
the reading of postal addresses and the automatic processing of forms, checks and
faxes [13,15]. Among other CSR approaches [14,8] one attempts to segment words
into letters [3,5]. Since no method is available to achieve a perfect segmentation, a
word is 2rst oversegmented, i.e. fragmented into primitives that are characters or parts
of them (a perfect segmentation into letters is extremely di@cult), then neighboring
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Fig. 1. Score calculation. Di<erent combinations of primitive aggregations. Each combination gives a di<erent
score. In our case, the score is the distance between the pattern enclosed by two arrows and the closest LVQ
prototype labelled with the same character as the corresponding word letter. It is possible to have several
combinations for the same word and several transcriptions of the same combination.

primitives are joined together in all possible combinations (a limit on the number of
consecutive fragments that can form a character is usually experimentally determined).
Given a combination where n aggregations of primitives appear, a matching score

with all the n-letter long words in the lexicon is calculated. A common way to calculate
it is to average over the scores of classifying each aggregation of primitives as the
corresponding letter of the lexicon entry under examination (see Fig. 1). In our case
the score is the distance between a feature vector extracted from the aggregation of
primitives and the closest learning vector quantization (LVQ) prototype. The word
with the optimal score is found by applying Dynamic Programming techniques [2].
The role of the cursive character recognizer in the above described architecture is

crucial. It has to cope with the high variability of the cursive letters and their intrinsic
ambiguity (letters like e and l or u and n can have the same shape). In this paper we
present a cursive character recognizer combining the use of neural gas (NG) and LVQ.
The NG is used to verify when the upper and lower case versions of a letter can form
a common class. This happens when the two characters (e.g. o and O) are similar in
shape and their vectors in the feature space occupy neighboring or even overlapping
regions. By grouping the characters in this way, the number of classes is reduced and a
more suitable representation of the data is obtained. The LVQ was selected as classi2er
because, being a vector quantizer, it yields for each pattern the cost of assigning to a
given letter class (in terms of distance from the closest prototype of the class).
This paper is organized as follows: in Section 2 the method for extracting features

for character representation is presented; a review of LVQ and NG is provided in
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Sections 3 and 4, respectively; Section 5 reports some experimental results; in Section
6 some conclusions are drawn.

2. Feature extraction

Most character recognizers do not work on the raw image, but on a suitable compact
representation of the image by means of a vector of features. Since cursive characters
present high variability in shapes, a feature extractor should have negligible sensitivity
to local shifts and distortions. Therefore feature extractors that perform local averaging
are more appropriate than others that yield an exact reconstruction of the pattern (e.g.
Zernike polynomials, moments) as shown in [4]. The feature extractor, fed with the
binary image of an isolated cursive character, generates local and global features. The
local features are extracted from subimages (cells) arranged in a regular grid 1 covering
the whole image. A 2xed set of operators is applied to each cell. The 2rst operator is
a counter that computes the percentage of foreground pixels in the cell (gray feature)
with respect to the total number of foreground pixels in the character image. If ni is
the number of foreground pixels in cell i and M is the total number of foreground
pixels in the pattern, then the gray feature related to cell i is ni=M .

The other operators try to estimate to which extent the black pixels in the cell are
aligned along some directions. For each direction of interest, a set of N , equally spaced,
straight lines are de2ned, that span the whole cell and that are parallel to the chosen
direction. Along each line j∈ [1; N ] the number nj of black pixels is computed and
the sum

∑N
i n

2
j is then obtained for each direction. The di<erence between the sums

related to orthogonal directions is used as feature. In our case the directions of interest
were 0◦ and 90◦.
We enriched the local feature set with two global features giving information about

the overall shape of the cursive character and about its position with respect to the
baseline of the cursive word. As shown in Fig. 2, the baseline is the line on which a
writer implicitly aligns the word in the absence of rulers. The 2rst global feature mea-
sures the fraction of the character below the baseline and detects eventual descenders.
The second feature is the width=height ratio.
The number of local features can be arbitrarily determined by changing the number

of cells or directions examined in each cell. Since classi2er reliability can be hard
when the number of features is high (curse of dimensionality, [1]), we use simple
techniques for feature selection in order to keep the feature number as low as possible.
Directional features corresponding to di<erent directions were applied and the one
having the maximal variance was retained. Therefore the feature set was tested changing
the number of cells and the grid giving the best results (4× 4) was selected.
In the reported experiments we used a feature vector of 34 elements. Two features

are global (baseline and width=height ratio) while the remaining 32 are generated

1 Small translations of the input patterns can signi2cantly change the distribution of the pixels across the
cells. In order to smooth this e<ect, the cells are partially overlapped.
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Fig. 2. Global features. The dashed line is the baseline, the fraction of h below is used as 2rst global feature.
The second global feature is the ratio w=h.

from 16 cells, placed on a regular 4× 4 grid; from each cell, the gray feature and one
directional feature are extracted.

3. Learning vector quantization

LVQ is a supervised version of vector quantization and generates codevectors to
produce “near-optimal decision boundaries” [9].
LVQ consists of the application of three consecutive di<erent learning techniques,

i.e. LVQ1, LVQ2, LVQ3.2 LVQ1 uses for classi2cation the nearest-neighbour decision
rule; it chooses the class of the nearest codebook vector.
LVQ1 learning is performed in the following way: if Lmct

3 is the nearest codevector
to the input vector Lx, then

Lmct+1 = Lmct + �t[ Lx − Lmct ] if Lx is classi2ed correctly;

Lmct+1 = Lmct − �t[ Lx − Lmct ] if Lx is classi2ed incorrectly;

Lmit+1 = Lmit i �= c;
(1)

where �t is the learning rate at time t.
Since LVQ1 tends to push codevectors away from the decision surfaces of the Bayes

rule, it is necessary to apply to the codebook generated a successive learning technique
called LVQ2.
LVQ2 tries harder to approximate the Bayes rule by pairwise adjustments of code-

vectors belonging to adjacent classes. If Lms and Lmp are nearest neighbours of di<erent
classes and the input vector Lx, belonging to the Lms class, is closer to Lmp and falls into
a zone of values called window, 4 the following rule is applied:

Lmst+1 = Lmst + �t[ Lx − Lmst ]; Lm
p
t+1 = Lmpt − �t[ Lx − Lmpt ]: (2)

Since the application of LVQ2 tends to overcorrect the class boundaries, it is necessary
to include additional corrections that ensure that the codebook continues approximating
the class distributions. In order to assure that, it is necessary to apply a further algorithm
(LVQ3).

2 LVQ2 and LVQ3 were proposed, on empirical basis, in order to improve LVQ1 algorithm.
3 Lmct stands for the value of Lmc at time t.
4 The window is de2ned around the midplane of Lms and Lmp.



F. Camastra, A. Vinciarelli / Neurocomputing 51 (2003) 147–159 151

If Lmi and Lmj are the two closest codevectors to input Lx and Lx falls in the window,
the following rule is applied: 5

Lmit+1 = Lmit if C( Lmi) �=C( Lx) ∧ C( Lmj) �=C( Lx);
Lmjt+1 = Lmjt if C( Lmi) �=C( Lx) ∧ C( Lmj) �=C( Lx);
Lmit+1 = Lmit − �t[ Lxt − Lmit] if C( Lmi) �=C( Lx) ∧ C( Lmj) = C( Lx);
Lmjt+1 = Lmjt + �t[ Lxt − Lmjt ] if C( Lmi) �=C( Lx) ∧ C( Lmj) = C( Lx);
Lmit+1 = Lmit + �t[ Lxt − Lmit] if C( Lmi) = C( Lx) ∧ C( Lmj) �=C( Lx);
Lmjt+1 = Lmjt − �t[ Lxt − Lmjt ] if C( Lmi) = C( Lx) ∧ C( Lmj) �=C( Lx);
Lmit+1 = Lmit + ��t[ Lxt − Lmit] if C( Lmi) = C( Lmj) = C( Lx);

Lmjt+1 = Lmjt + ��t[ Lxt − Lmjt ] if C( Lmi) = C( Lmj) = C( Lx);

(3)

where �∈ [0; 1] is a 2xed parameter.
LVQ3 is self-stabilizing, i.e. the optimal placement of the codebook does not change

while continuing learning.

4. Neural gas

NG in Martinetz et al. [10] is an unsupervised version of vector quantization. In
neural gas model, in contrast to SOM, no topology of a 2xed dimensionality is imposed
on the network. Neural Gas consists of a set of M units: A=(c1; c2; : : : ; cM ). Each unit
ci has an associated reference vector wci(wci ∈Rn) indicating its position or receptive
$eld center in input space. The learning algorithm of the neural gas is the following:

(1) Initialize the set A to contain units ci, with wci ∈Rn, chosen randomly according
to input distribution p(�). Besides, initialize the time parameter t, to 0.

(2) Generate at random an input � according to p(�).
(3) Order all elements of A according to the distance of their reference vectors to �,

e.g., 2nd the sequence of indices S=(i0; i1; : : : ; iM−1) such that wi0 is the reference
vector closest to �, wi1 is the second vector closest to � etc. Let ki(�; A) the rank
associated with wi. 6

(4) Adapt the reference vectors according to

Owi = �(t)h�(ki(�; A))(�− wi);
where

h�(ki(�; A)) = exp
(
− ki
�(t)

)

5 C( Lq) stands for the class of Lq.
6 wi stands for wci . This convention is also adopted in the following formulae.
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�(t) = �i

(
�f
�i

)t=tf

�(t) = �i

(
�f
�i

)t=tf

(5) Increase the time parameter t: t = t + 1
(6) If t ¡ tf continue with step 2.

For the time dependent parameters suitable initial values �i; �i and 2nal values �f ; �f
have to be chosen. For the above-mentioned parameter in our work, we adopted the
values suggested in [6,10,11].

5. Experiments and results

A combination of NG and LVQ is shown to improve the performance of a cursive
character recognizer.
The letters of the database are both upper and lower case and this suggests that

the number of classes could be 52. On the other hand, not all the characters have
a di<erent shape in the two versions. In some cases (e.g. o and O) the two letters
di<er only for their size. When the feature extraction process is (as in our system) not
sensitive to the size, such letters could be joined in a single class. Their vectors are in
fact expected to be distributed in the same region of the feature space.
Since trying to separate overlapped classes can determine over2tting, 2nding a suit-

able class representation is helpful to achieve good performances.
In our experiments, we tried two clustering algorithms (NG and SOM) to 2nd the

classes that could be joined. The clustering tries to model the data distribution and it
is a suitable technique for 2nding the classes sharing the same region of the feature
space.
More details about the steps of the above described process are given in the following

three subsections. Section 5.1 describes the database used in the experiments, Sections
5.2 and 5.3 show how the optimal class representation was found and the recognition
experiments, respectively.

5.1. The character database

The cursive characters used to train and test the recognizer were extracted from the
handwritten words belonging to two di<erent data sets. The 2rst one is the CEDAR 7

database [7]. The second one is a database of handwritten samples collected by the
United States Postal Service. In both cases the data were collected in a postal plant
by digitizing handwritten addresses. The character recognizer is embedded in a cursive
word recognition system using a segmentation and recognition approach. For most of

7 Center of Excellence in Document Analysis and Recognition, State University of New York at Bu<alo
(USA). All the words belonging to directories train=cities and train=states were used.
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Fig. 3. Letter distribution in the test set.

the attempted segmentations, the word fragments to be recognized do not correspond to
actual letters (see Fig. 1). The score at the word level is calculated by averaging over
the scores corresponding to classifying each fragment as a letter of the word. Because
the word scores are expected to be lower when the segmentation is bad, no rejection
mechanism was added at the letter level.
The characters are extracted from the words through a segmentation process per-

formed by the system in which the recognizer is embedded. Before being segmented,
the words are desloped and deslanted following the scheme described in [12]. The
resulting character database contains 58000 samples. The letter distribution (shown in
Fig. 3) reRects the prior distribution of the postal plants where the handwritten words
were collected. For this reason, some letters are very frequent while others are almost
absent.
The database is split with a random process into training, validation and test set

containing respectively 25 000, 13 000 and 20 000 characters.

5.2. Optimal number of classes $nding

Clustering allows to verify whether vectors corresponding to the upper and lower
case versions of the same letter are distributed in neighboring regions of the feature
space or not. The more the two versions of the letter are similar in shape the more
their vectors are overlapping (e.g. like o and O) and can be joined in a single class.
On the other hand, when the two versions of a character are very di<erent (e.g. g and
G), it is better to consider them as separate classes.
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Table 1
Quantization error of SOM and NG for di<erent reference vector numbers

Neurons SOM (q.error) NG (q.error)

1300 0.197290 0.162117
900 0.204126 0.167981
600 0.209687 0.175800
400 0.217515 0.182672
200 0.227662 0.195116
100 0.242464 0.208706

Clustering was performed by means of NG and self-organizing map (SOM). In
Table 1 the performances of di<erent SOM and NG maps, measured in terms of quan-
tization error 8 on the whole character database, are reported. Given a number of
reference vectors, the NG always performs better than the SOM and is, for this reason,
selected.
The number of reference vectors in the map can be set up by 2nding an optimal

tradeo< between quantization and generalization error. The quantization error can be
decreased by simply adding reference vectors (in the extreme case, each training sample
can be a reference vector, resulting in a null quantization error), but after a certain
limit, this leads to over2t the map over the training set.
To avoid this problem, the generalization error must be estimated [17]. The recog-

nition error (the percentage of characters misclassi2ed) on the test set can provide
an estimate of the generalization error. In our experiments, the optimal number of
reference vectors is 1300.
The reference vectors were labelled with a kNN technique 9 and divided into 26

subsets collecting all the nodes showing at least one version of each letter � among
the k classes in the label. For each subset, the percentage �� of nodes having upper
and lower case versions of the letter � in the label was calculated. The results are
reported (for every subset) in Fig. 4. The percentage is an index of the overlapping
of the classes of the uppercase and lowercase versions of the letter. This information
can be used to represent the data with a number of di<erent classes ranging from
26 (uppercase and lowercase always joined in a single class) to 52 (uppercase and
lowercase always in separate classes). For example a class number equal to 46 means
that, for the six letters showing the highest values of � (i.e. c; x; o; w; y; z) uppercase
and lowercase versions are joined in a single class.

5.3. Recognition experiments

The percentage � was used to look for the optimal number of classes. The let-
ters showing the highest values of � were represented by a single class containing

8 Using the notation adopted in Section 4, the quantization error QE is de2ned as follows: QE =∑N
i=1

∑
�j∈V (wi) ‖�j − wi‖L2 where V (wi) is the Voronoi set of codevector wi .

9 Each node is labelled with the classes of the k closest feature vectors.
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Fig. 4. Value of � for each letter.

both upper and lower case versions. We trained LVQ nets with di<erent number of
classes. In each trial, the number of codevectors and the learning rate were selected by
means of cross-validation [16] and the learning sequence LVQ1+LVQ2+LVQ3 was
adopted. The number of LVQ codevectors, assigned to each class, was proportional to
the a-priori class probability.
In Table 3, for di<erent class numbers, the performances on the test set, measured

in terms of recognition rate in absence of rejection, are reported.
The performance is shown to be improved by decreasing the number of classes when

this is higher than an optimal value (in this case 39). A further reduction of the number
of classes results in a lower accuracy. The � parameter is then reliable in estimating
the optimal number of classes.
This is con2rmed by looking at the performance of the recognizer over the single

characters. Table 2 reports the change in recognition rate of each character when
passing from 52 to 39 classes. The characters are ordered following the value of �.
The 2rst 13 classes show in most cases a signi2cant accuracy improvement. The other
classes show smaller changes in both positive and negative directions.
The e<ect on the overall performance of the recognizer is inRuenced by the letter

distribution. In our case, the letters showing the highest improvements are not enough
represented to signi2cantly a<ect the overall accuracy, but in other cases, the distribu-
tion can be di<erent and the improvement of the recognition rate much higher.
Our best result in terms of recognition rate is 84.52%. The only result we know

[18], obtained on a smaller test, is approximately 75%. In Fig. 5 the confusion matrix
is shown. The cumulative probability function of the correct classi2cation is reported
in Fig. 6. The probabilities of classi2cation of a character correctly top three and top
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Table 2
Change in the recognition rate when passing from 52 (lower and upper case versions of the letter never
joined in a single class) to 39 classes (lower and upper case versions of the letter joined in a single class
for the 2rst 13 letters)

Class 52 classes 39 classes

c 88.99 88.47
x 84.40 88.23
o 90.19 91.76
w 71.39 77.60
y 87.94 88.23
z 65.90 85.71
m 72.54 81.84
k 59.86 62.25
j 70.73 75.70
u 90.55 90.55
n 88.13 87.53
f 80.50 80.71
v 73.81 76.82
a 83.62 84.01
e 82.30 84.36
t 87.94 90.55
s 81.87 83.34
l 83.25 82.22
b 88.15 87.89
r 85.80 83.34
d 80.94 80.47
g 80.58 80.00
h 83.11 82.56
i 75.98 75.46
p 91.38 88.61

The characters are ordered following the value of �.

Table 3
Recognition rates on the Test Set, in absence of rejection, for several class numbers

Class number Performance

52 83.74
46 83.91
42 84.25
41 84.27
39 84.52
36 84.38
26 84.27

twelve positions are, respectively, 95.76% and 99.50%. In our opinion, the fundamental
sources of misclassi2cation for our classi2er are two. The 2rst one (for the most rare
letters) is the low number of available samples. The second is the intrinsic ambiguity in
cursive characters. In fact, some couples of letters (e.g. e=l or a=o) are very di@cult to
be distinguished. This is con2rmed by the confusion matrix and by the high recognition
rate in the top three positions.
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6. Conclusion

We have presented a cursive character recognizer, a crucial module in Cursive Script
Recognition systems based on a segmentation and recognition approach. An improve-
ment of the correct classi2cation rate is obtained by combining a clustering algorithm
with a classi2er. Since in our experiments NG performs better than SOM, it is se-
lected as clustering algorithm. LVQ is used as classi2er. The optimal representation of
classes is obtained by evaluating the overlapping in the feature space of the vectors
corresponding to upper and lower case versions of each letter. When the degree of
overlapping is high enough, the two versions can be joined in a single class resulting
in an improvement of the classi2er performance.
The accuracy achieved is the highest presented, to our knowledge, in the literature.
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