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Noisy Text Categorization

Alessandro Vinciarelli

Abstract—This work presents categorization experiments performed over noisy texts. By noisy, we mean any text obtained through an
extraction process (affected by errors) from media other than digital texts (e.g., transcriptions of speech recordings extracted with a
recognition system). The performance of a categorization system over the clean and noisy (Word Error Rate between ~ 10 and

~ 50 percent) versions of the same documents is compared. The noisy texts are obtained through handwriting recognition and simulation
of optical character recognition. The results show that the performance loss is acceptable for Recall values up to 60-70 percent
depending on the noise sources. New measures of the extraction process performance, allowing a better explanation of the

categorization results, are proposed.

Index Terms—Text categorization, noisy text, indexing, offline cursive handwriting recognition, optical character recognition.

1 INTRODUCTION

SEVERAL media contain textual information that can be
accessed only through an extraction process. Important
examples are speech recordings and handwritten documents
(that can be converted into text with a recognition system) as
well as videos and images [1] (Where text can be detected and
recognized). In all of the abovementioned cases (the list is not
exhaustive), the extraction process produces noise, i.e., word
insertions, deletions, and substitutions with respect to the
actual clean text contained in the original source.

Applications dealing with clean text have been the subject
of extensive research efforts in the last few decades:
Techniques developed in domains like Information Retrieval
(IR) allow the management and the effective use of huge text
corpora[2]. The possibility of extending the results of previous
research from clean to noisy text would allow indirect
management of the sources from which the noisy texts are
extracted. This represents, in our opinion, an interesting
research direction thathasbeen only partially explored. While
the application of information retrieval to noisy texts (speech
recording transcriptions in particular [3]) has been shown to
be effective through extensive experiments, only moderate
effort has been made, to our knowledge, toward noisy Text
Categorization (TC). TC is the task of automatically assigning
a document one or more categories belonging to a predefined
setC' = {c1,¢c2,...,c}, where |C|is the cardinality of C. This
work focuses on such a problem and shows how noisy texts
extracted from different sources can be categorized.

The effectiveness of IR technologies over noisy data [3]
seems to suggest that TC methods developed for clean texts
could also be successfully applied to noisy texts. On the other
hand, although based on the same document representation
(the so-called bag of words [2]) as IR, state-of-the art TC systems
rely on Support Vector Machines (SVM) that are not
necessarily as robust to noise as the algorithms used in IR
(see the end of Section 2). In fact, the recognition errors result
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in many irrelevant features in the vectors representing texts
and SVMs have been shown to be sensitive to them [4].

The main problem in the application of TC to noisy text is
that the most effective TC approaches developed so far
involve algorithms that need to be trained (e.g., multilayer
perceptrons or support vector machines [5], [6]). This is a
problem in two main respects: The first is that training over
noisy data leads to models that may fit the noise and it can be
difficult to use them for data affected by noise with different
characteristics. This might result in the need to have, for a
certain category, a different model for each source from
which the text can be extracted. The second is that, for certain
media, it can be difficult to collect enough material for
training. A possible solution to both problems is to train
category models on clean digital texts (which are relatively
easy to collect) and then apply them to noisy texts. The
mismatch between training and test conditions due to the
presence of noise is likely to degrade the performance, but, if
the loss is acceptable, the solution can be a good trade-off
between categorization performance and the experimental
effort required to achieve it.

The experiments presented in this work are based on the
Reuters-21578 clean text database [7], a well-known and
widely applied benchmark in TC research. A subset of
200 documents has first been extracted from its test set (see
Section 4 for details), then noise has been added to the texts it
contains using two methods: The first is to manually write the
documents of the subset and then to recognize them with an
offline handwriting recognition system [8] (the use of
200 documents is due to the effort required to produce the
handwritten versions of the texts). The second is to simulate
an OCR-based extraction process by randomly changing a
certain percentage of characters [9]. The use of an automatic
simulation allowed us to perform experiments not only over
the abovementioned set of 200 texts (where it is possible to
compare results over both OCR and handwritten data), but
also over the whole test set of the Reuters-21578 corpus
(where comparison between handwriting and OCR is not
possible). In the OCR simulation, it has been possible to set
different values of Character Error Rate (CER) leading to
different amounts of noise. The categorization results show
that the performance loss when passing from clean to noisy
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versions of the same texts is acceptable at low recall values
(less than 60-70 percent depending on the noise sources).

The most common measure for the degradation produced
by an extraction process is the Word Error Rate (WER). The
WER is used for both processes considered in this work (see
Section 4) as well as for other cases (speech recognition, text
detection in videos and images, manual typing, etc.). The
WER values of the noisy texts considered in this work span
from ~ 10 percent to ~ 50 percent depending on the source,
while the categorization performance measures have a
smaller range, e.g., the average precision is between
~ 85 (75) percent and ~ 95 (80) percent for the 200 documents
set (the whole Reuters test set). This happens because the
WER is a measure oriented to the performance of the
extraction processes and takes into account errors that have
no influence on the categorization process (see Section 4). For
this reason, alternative measures are proposed that allow a
better explanation of the final categorization results.

The rest of this paper is organized as follows: Section 2
provides a survey of the domain, Section 3 describes the TC
system used in this work, Section 4 shows experiments and
results, and Section 5 draws some conclusions.

2 PREvious WORK

This section presents a survey of the literature dedicated to
processing of noisy texts. Relatively few papers are
available and, of those, the majority concern the retrieval
of speech recordings or scanned printed documents. In the
first case, the text extraction process is Automatic Speech
Recognition (ASR); in the second case, it is Optical
Character Recognition (OCR). The two processes produce
different forms of noise: ASR systems give rise to word
substitutions, deletions, and insertions, while OCR systems
produce essentially word substitutions (see Section 4 for
more details). Moreover, ASR systems are constrained by a
lexicon and can give as output only words belonging to it,
while OCR systems can work without a lexicon (this
corresponds to the possibility of transcribing any character
string) and can output sequences of symbols not necessarily
corresponding to actual words. Such differences have a
strong influence on the retrieval approach applied.

Most of the research on the retrieval of speech recordings
has been made in the framework of the TREC conferences
[3]: Several groups worked on the same database (TDT-3
[10]) containing both manual (WER ~ 10 percent) and
automatic (WER ~ 30 percent) transcriptions of broadcast
news recordings. The TDT-3 data set is composed of around
25,000 documents and, in addition, a set of queries with their
respective relevance judgments. The participants equipped
with an ASR system could use their own transcriptions
which enabled the evaluation of the WER impact on the
retrieval performance. The works presented in the TREC
context do not try to model the noise: The techniques
succesfully applied on clean texts have been shown to also be
effective on noisy automatic transcriptions. All systems are
based on the Vector Space Model (VSM) [2], where
documents and queries are converted into vectors and then
compared through matching functions. In most cases, the
documents are indexed with tf.idf [2] (see Section 3 for more
details) and matched with the Okapi formula [11], [12], [13],
[14], along with other approaches [15], [16], [17].
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During the extensive experiments and comparisons
performed in the TREC framework, at least two important
conclusions emerge: 1) The retrieval is more effective over
transcriptions at the word, rather than at the phoneme level.
Some attempts were made to recognize documents as
phoneme sequences and then to match them with the query
words, but the performances were much lower than in the
alternative approach [3]. 2) There is almost no retrieval
performance degradation when increasing the WER from
around 10 percent to around 40 percent [3].

Several works have been dedicated to the retrieval of OCR-
based transcriptions of printed documents [18]. The first
approaches simply applied standard IR techniques to
transcriptions [9], [19]. The results showed that Character
Error Rates (CER) up to ~ 5 percent can be tolerated without
significant retrieval performance loss. A severe drop in
performance is observed only when the CER is around
20 percent. In order to make the retrieval systems more robust
with respect to the CER, several approaches have been
proposed: In [20], the OCR confusion matrix and character
bigram statistics are used to obtain multiple search terms
from the query words. This is supposed to enable matching
between the correctly spelled terms of the query and
document terms potentially affected by OCR errors. An
alternative way to solve the same problem is to use more
flexible string matching algorithms: In [21], approximate
string matching and fuzzy logic are used to match clean terms
and words containing OCR errors. Other works try to correct
the output of the OCR system in order to reduce the noise [22],
[23]. An alternative approach has been presented in [24],
where the texts are compared only in terms of how similar
their images are. This enables the comparison and matching
of texts without the need of OCR.

The retrieval of handwritten documents—for which the
extraction process is a recognition process analogous to the
case of speech recordings—has been investigated only
recently [25], [26]. Both of these works focused on the
detection of query words rather than on actual IR. In [25],
the N best transcriptions obtained through handwriting
recognition are used in order to deal with recognition
errors. In [26], word image matching techniques are used to
perform word spotting.

Although both are based on the same bag of words
document representation (see Section 3 for more details), IR
and TC use different algorithms. State-of-the-art IR systems
essentially rely on similarity measures between vectors
representing documents and queries, while state-of-the-art
TC systems use support vector machines [27]. The success of
IR technologies over noisy texts is thus not a sufficient
condition, in our opinion, to claim that SVM-based TC
technologies may also work effectively on noisy data. In IR,
the systems measure the similarity between queries and
vectors by looking for query terms in the documents and
retrieve as relevant the documents where query terms are
more frequent. The only errors actually affecting the retrieval
results are thus those concerning the query terms. Since more
important words are often repeated in the documents, it is
relatively rare that a query term disappears; moreover,
queries typically contain several words and, even with a
high WER, the probability of misrecognizing all of them is
low. On the contrary, the presence of errors can be more
problematic for SVMs. In fact, it has been shown that SVM
performance is negatively affected by the presence of many
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irrelevant features (such as those introduced by recognition
errors in vectors representing texts) in their input [4], and our
experiments show that the effect of recognition errors in
categorization is actually more significant than in retrieval,
especially at high recall values.

Moreover, in some applications, the noise has been shown
to significantly degrade the performance of state-of-the-art
systems. It is the case of Named Entity Extraction (NEE) and
summarization [28], [29]. In [28], it is shown that, for a state-
of-the-art NEE system, the F-measure (see Section 4.5 for
more details) decreases 0.6 for each 1 percent of word error
rate. Moreover, the absence of named entities in the
vocabularies used by the recognizers (recognition processes
can give as output only words belonging to their dictionaries)
has a heavy effect on the final performance. In [29], the
authors present an application summarizing voicemail
messages through the extraction of salient information
(message sender, call reason, etc.). The results show that,
when passing from manual to automatic transcriptions of the
messages, the correct identification of the sender by the
receiver drops from 94 to 57 percent. On the other hand, the
noise is not degrading the performance for other tasks like
finding the subject of the message or defining the call priority.

While noisy text retrieval has been extensively investi-
gated, noisy Text Categorization has been addressed, to our
knowledge, in only a few studies [30], [31], [32]. In [30], in
which the noisy texts are obtained from printed documents
through OCR, the features describing a text are word
substrings extracted with an iterative procedure. The selec-
tion of the features is task dependent and adapted to the data
under consideration. Such an approach enables the modeling
of the data noise and makes categorization more robust.
However, if, for example, the OCR system changed, a new
noise model could be required. In [31], German business
letters recognized with an OCR system (WER ~ 20 percent)
are attributed to one of five predefined classes. The experi-
ments are performed over a test set of 42 letters. The rate of
correct classification is 57 percent. In [32], the performance of
a naive Bayes classifier over 400 documents recognized with
an OCR (WER ~ 14 percent) is presented. Six categories (out
of 52) are analyzed and the highest rate of correct classifica-
tion achieved is 83.3 percent.

A comparison with results obtained using clean versions
of the documents is made only in [32]. For this reason, it is not
always possible to say whether the categorization techniques
are robust with respect to noise or not. Moreover, the works
focus solely on OCR and other modalities, such as speech or
handwriting recognition, have not been investigated.

3 TEeEXT CATEGORIZATION

This section presents the TC system used in this work.
Several approaches have been proposed in the literature
(see [5] for a survey) and the best results have been obtained
by representing the documents as vectors (like in the VSM
[2]) and by categorizing them with algorithms that can be
trained (e.g., neural networks and decision trees). The
system used in this work is based on support vector
machines [33] and achieves state-of-the-art performances on
the main benchmark tasks presented in the literature.
Thenextsections will describe in detail the individual steps
of the categorization process: preprocessing, normalization,
indexing, categorization, and performance evaluation.
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3.1 Preprocessing and Normalization

Preprocessing and normalization perform the so-called
lexical analysis, i.e., the selection of the information in the
texts that is useful for categorization [34].

The preprocessing takes as input the raw documents and
removes all elements supposed to be category neutral. In our
system, all nonalphabetic characters (digits, punctuation
marks, dashes between connected words like self-contained,
etc.) are eliminated. This solution has some disadvantages:
Acronyms cannot be distinguished from words composed of
the same letters (e.g., LS. is processed like us), connected
words that should be used as a single index term are
processed separately (e.g., state-of-the-art is treated like state
of the art), etc. On the other hand, this approach is very simple
and can be applied with good results to many text corpora.

The preprocessing converts the original raw texts into
streams of words that are then input to the normalization
stage. The normalization stage uses two techniques, stopping
and stemming, to remove information that is not useful for
categorization. Stopping is the removal of all words
expected to be poor index terms (the so-called stopwords):
articles, propositions, pronouns, and other functional words
that are not related to the content or words that appear in
too many documents to allow discrimination between
different texts. Stopwords occur with high frequency (e.g.,
the word the accounts for around 7 percent of the total
amount of words in an average text corpus) and the
application of the stopping results in an average reduction
of the number of words by around 50 percent.

Stemming is the conflation of the morphological variants
of the same word (e.g., connection, connecting, connected) into a
common stem (connect) [35]. The application of stemming is
based on the hypothesis that different inflected forms of a
certain word do not carry category dependent information.
The experiments show that, in most cases, the stemming
actually leads to an improvement of the categorization
performance, although some counter examples have been
presented in the literature [5], [6]. After stemming, the
number of unique terms in the text corpus is reduced, on
average, by around 30 percent. This reduces the dimension of
the vectors representing the documents (see Section 3.2),
leading to computational advantages and to a limitation of
curse of dimensionality related problems [36]. Among the
various stemming techniques proposed in the literature (see
[35] for a survey), the most commonly applied is the one
proposed by Porter [37]. Such an algorithm represents a good
trade-off between complexity and effectiveness and it is used
in our system.

3.2 Indexing

After preprocessing and normalization, the original docu-
ments are available as streams of terms containing only the
information supposed to be useful for the categorization. A
stream of terms is not a suitable representation and an
indexing procedure must be applied in order to represent
the document content in a way allowing the actual
categorization step.

The indexing techniques applied in TC are the same as
those used in IR. The VSM [2] is used in most cases [5], [6]:
The documents are represented with vectors where each
component accounts for one of the terms belonging to the
dictionary (the list of all unique terms contained in the text
corpus after preprocessing and normalization). The VSM is
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based on the bag-of-words approximation: The terms are
assumed to be independent of each other and the order of the
terms in the original texts is not taken into account. Although
simple, the VSM has been shown to be effective in both IR and
TC [2], [6]. More complex representations give rise to
improvements not worth the effort they require [5].

The indexing is typically based on a term by document
matrix A, where each column j corresponds to a document of
the text corpus under consideration and each row ¢ corre-
sponds to a term of the dictionary. The element A;; is the
component of document vector j related to term ¢. The matrix
element can be thought of as a product of two functions:

where L(i,j) is a local weight using only information
contained in document j and G(7) is a global weight using
information extracted from the whole corpus (an extensive
survey about L(z, j) and G(7) functions can be found in [38]).
The most commonly applied weighting scheme is the so-
called tf - idf:

N
Aij=tf(i,4) - log <NL)7 (2)
where tf(i,j) is the term frequency, ie., the number of
times term ¢ appears in document j, N is the total number of
documents in the database, and N; is the number of
documents containing term i (the logarithm is called inverse
document frequency). In this scheme, a term is given more
weight when it occurs more frequently (it is assumed to be
more representative of the document content) and when it
is contained in few documents (it is assumed to be more
discriminative). The dimension of the data is very high
(several tens of thousands) and the vectors are typically
sparse. Only a few terms (less than 1 percent on average) of
the dictionary are represented in each text and this results
in few nonzero components in the vectors.

3.3 Categorization

Several categorization approaches have achieved state-of-
the-art performance [5]. In this work, we apply support vector
machines (see [33], [27] for a good introduction) because there
is theoretical evidence that they are especially suitable for
data with characteristics typical of document vectors [6]: very
high dimensionality (several thousand dimensions), sparse-
ness (few features have values different from zero), high
number of relevant features (every term is important even if it
appears only a few times), distribution of the term frequen-
cies following Zipf’s Law [39], and a high level of redundancy
(several features account for the same category). Based on
such properties, it is possible to bound the expected
prediction error [6] of the SVMs. This supports their use not
only on the basis of empirical performance evaluation, but
also from a theoretical point of view.

Given a document vector d, the SVM related to c
calculates the following score:

f(d) = Zaiyiq)(si)q)(d) +b= Z aiyiK(s;,d) + b, (3)

where the o;s and b are coefficients obtained during training,
the s;s are the support vectors and the y;s are labels (y; =1
when s; belongs to category c and y; = —1 otherwise). The
function ®(x) is supposed to map the data into a space (the
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feature space) where the documents belonging to ¢ can be more
easily separated from others with a hyperplane. Since a
positive score is associated with support vectors belonging to
¢, the higher f(d), the higher the probability that d belongs to
category c.

The product ®(x;) - ®(y) can be replaced with a
function K(x,y) (called kernel) satisfying appropriate
conditions [33], [27]. This allows the use of infinite
dimensional feature spaces or mappings that cannot be
known explicitly.

Because of the characteristics mentioned at the beginning
of this section, the document space has the properties
expected in a feature space. For this reason, it is possible to
achieve statisfactory results by simply using a linear kernel
[40]: K(x,y) =x -y (we used the SVM Light package [41]).
The main advantage is that a linear kernel has no hyperpara-
meters to be set manually and this simplifies the training of
the SVMs using it. More sophisticated kernels [33] lead to
better performances, but the goal of this work is to show the
effect of the recognition errors on a categorization system
rather than to achieve the highest possible performance. For
this reason, our experiments involve only linear kernels.

A different SVM is trained for each category to
distinguish between the documents belonging to it and
the others. This makes it possible to cope with documents
that belong to more than one category and texts that do not
belong to any of the categories in the predefined set C: Since
the decisions about different categories are made separately
and do not influence each other, a certain document can be
accepted by more than one SVM or it can be rejected by all
of them: in the first case, the document is assumed to belong
to more than one category; in the second case, it is assumed
to be a document that does not belong to any ¢ € C.

3.4 Performance Evaluation

The performance evaluation of a TC system is an open
problem. Several measures are available, but none of them
exhaustively describes the system performance. Moreover,
depending on the application, the appropriateness of a
measure can vary. In this work, we use several measures in
order to give a description comprehensive of the results.

Given a category ¢, R(c) is the set of the documents
actually belonging to it and R*(c) is the set of the documents
identified as such by the system. The two fundamental
measures of TC performance rely on such sets and are
called Precision [2]:

_ R (e) N R(e)|

"= TR W
and Recall [2]:
_ R (c) N R(c)|

The value of = is typically calculated at standard values of p
(10%,20%, . ..,100%), resulting in the so-called Precision
versus Recall curve [2]. The comparison between different
systems can be difficult if only these curves are available. For
this reason, there are two ways of representing the curve with
a single value: The first is to average over the 7 values along
the curve to obtain the average Precision (avgP) [2]. The second
is to find the Break Even Point (BEP), i.e., the point of the curve
where 7™ = p [2]. In both cases, the single measure is less
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informative than the whole curve, but it is easier to use in
comparisons.

The above measures must be averaged over different
categories in order to obtain a global performance measure.
The average can be obtained in two ways: macroaveraging
and microaveraging [5]. In the first case, the average m value
at a certain p level is obtained as follows:

M = ‘—é,' Z (), (6)

where the index M stands for macroaverage. In the second
case, the average is calculated as:

o 2B m(e)
YR

where the index ;. stands for microaverage (the expression of
the micoraveraged recall can be obtained in the same way).
The macroaverage is a category pivoted measure: All
categories are given the same weight independently of how
much they are represented. The performance of categories
occurring few times is emphasized. The microaverage is a
document pivoted measure: All documents are given the
same weight and the most represented categories have more
influence on the final performance measure (the R* set is
typically bigger for the categories occurring more frequently).
Macroaverage and microaverage can be very different when
the number of occurrences changes significantly, depending
on the category. Whether one or the other should be used
depends on the application. When a TC system is used to
organize a document collection (e.g., the creation of direc-
tories in an archive), the macroaverage is more appropriate.
In applications like mail filtering or routing, where the
categorization is performed document by document, the
microaverage is a better measure. In this work, both averages
will be used (wherever possible) in order to give a
comprehensive description of the performance.

The measures described so far are typically used in a
laboratory setup and are oriented to a general description of
the system performance. In application environments, dif-
ferent measures can be used that better reflect the require-
ments of the specific task the system must perform. An
application-oriented measure is the precision at position n: All
the documents of the test set are ranked according to the score
obtained with the SVM related to category cand the 7 value at
position n is measured. Such a measure is interesting for
applications where the system deals with document data-
bases where, rather than taking a decision, it ranks the
documents depending on their score. A good system is
supposed to rank all documents belonging to ¢ at the top
positions (this allows the user to find all the needed
documents without browsing the whole data set), i.e., to have
high precision at position n.

A further example is the application-oriented precision used
in contexts where the decisions are taken document by
document: The system attributes category c¢ to a certain
document when the score obtained using the related SVM
(see Section 4.4) is above a thresold 6(c). The threshold set
O ={0(c1),0(c2),...,0(cic;)} must be obtained using a
validation set independent from the test set. The thresholds
are selected in order to achieve a specific task (e.g., a certain
7w value) and the results obtained over the test set show
whether the system can achieve it.

(7)
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4 EXPERIMENTS AND RESULTS

This section describes the experiments performed in this
work. The first step is the creation of noisy documents
starting from a set of clean texts. Two methods are used: The
first is based on handwriting recognition and the second on
the simulation of an Optical Character Recognition (OCR)
process. The categorization performance over both clean
and noisy versions of the same documents is compared. The
results show that the performance loss is acceptable for
recall values up to 60 or 70 percent depending on the
sources, but it is difficult to relate noise measures to
categorization results. For this reason, new noise measures
are proposed in order to better relate extraction process and
categorization performance.

4.1 Experimental Setup

The experiments performed in this work are based on the
Reuters-21578 database [7], a well-known and widely applied
TC benchmark. The database contains 12,902 documents
partitioned into training (9,603 documents) and test sets
(3,299 documents) following the so-called Mod Apte split [42].
The database is composed of articles extracted from the
Reuters newswire bulletin. The number of categories is 115,
but not all of them are sufficiently represented to allow
training of a model. The 10 most represented categories
account for more than 90 percent of the database, while the
less represented categories occur only in the training set (or
only in the test set) and cannot thus be considered. For this
reason, this work focuses on the 10 most frequently occurring
categories.

The noisy versions of the documents were obtained
through OCR simulation and handwriting recognition (see
the next section for more details). In the OCR case, it is
possible to use the whole Reuters-21578 test set (referred to
as full). In the handwriting case, because of the heavy effort
required to produce manuscript data, it was necessary to
select a subset of the full test set. For each of the 10 most
represented categories, 20 examples were randomly se-
lected, resulting in a collection of 200 documents referred to
as small test set. All the experiments presented in this
section are performed over both full and small test sets.

4.2 The Noisy Data

In order to obtain noisy versions of the documents, two
methods are applied: The first is to change a certain
percentage of characters into other symbols through a
random process [9]. This simulates Optical Character
Recognition (OCR) or manual typing and the Character
Error Rate (CER) can be set arbitrarily, leading to different
levels of noise. The second is to manually write the
documents and then recognize them using an offline
cursive handwriting recognition system. In this case, the
noise level cannot be set in advance, but is only measured
after the recognition is performed.

The OCR simulation is simple, and several phenomena
occurring in real systems are not simulated (e.g., systematic
errors for certain characters or frequent confusion between
couples of letters like i and [). On the other hand, what is most
important for our work is the way OCR errors affect
categorization results: When a character is misrecognized, it
rarely transforms the word it belongs to into another
meaningful term. When a document is indexed, only terms
in the dictionary are taken into account, thus most of the
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words where a character is misrecognized simply disappear
and no longer play a role in the categorization process. From
this point of view, the effect of our simulation on the
categorization process is similar to the effect of a real OCR
system. The use of simulation makes it possible to add noise
to large amounts of data and to perform experiments over the
full test set.

Handwriting recognition is the second technique we use to
add noise to the data. A complete description of the
handwriting recognizer used can be found in [8]. The
transcription is performed line by line (reducing the search
space dimension) through several steps: normalization, feature
extraction, and recognition. During the first step, the system
removes slant and slope. The slant is the angle between the
vertical direction and the direction of the strokes supposed to
be vertical in anideal handwriting model (e.g., the vertical bar
of a t, which is often inclined due to personal handwriting
style). The slope is the angle between the horizontal direction
and the direction of the line the words are aligned on (the
acquisition process often rotates the data, resulting in lines
that are not horizontal). A full description of the normal-
ization technique can be found in [43].

Feature extraction is performed with a sliding window
technique: A fixed width window shifts column by column
from left to right and, at each position, a feature vector is
extracted from its content (see [8] for more details). After
feature extraction, the line image is converted into a
sequence of vectors O = {01,09,...,0)} and it is possible
to perform the recognition. In the approach we use [44], we
look for the word sequence W= {wy,ws, ..., wy} maximiz-
ing the probability p(W]0):

W = arg rrﬁayxp(W|O). (8)
By applying the Bayes theorem, the last equation can be

rewritten as

- p(OW)p(W)
W = arg H%%LXW

and, since p(O) is constant during the recognition, this
corresponds to:

(9)

W = arg max p(O|W)p(W). (10)
In our system, p(O|W) is estimated with Continuous
Density Hidden Markov Models (HMM) and p(W) is
estimated with bigrams [44].

The HMMs are trained using a set of 50 documents (40 for
training and 10 for validation) independent of the 200 docu-
ments used in the small test set. An HMM is built for each
letter and word models are obtained by concatenating single
letter models. All letter models have the same number of
states S and Gaussians G per state. The values of G and S are
selected through validation: Systems corresponding to
several (S, G) couples are trained over the training set and
tested over the validation set and the couple leading to the
highest recognition results is retained as optimal.

The bigram statistical language model is trained over the
training set of the Reuters-21578 corpus. The lexicon is
composed of the 20,000 most frequent words in the same set.
There are two main reasons behind this choice: The firstis that
we can expect that the most frequent words in the training set
are frequent also in the test set (the hypothesis is that the
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TABLE 1
Word and Term Error Rates
Source WER (small) | TER (small) | WER (full) | TER (full)
Handwriting 49.4% 40.7% none none
OCR (2%) 11.3% 24.5% 11.4% 16.1%
OCR (4%) 20.7% 35.5% 21.4% 27.8%
OCR (6%) 29.9% 44.8% 30.4% 38.5%
OCR (8%) 37.2% 54.2% 28.1% 47.3%
OCR (10%) 44.2% 54.6% 44.8% 54.9%

This table reports the noise level of the documents in terms of word and
term error rate for both the small (second and third columns from left)
and full (fourth and fifth columns from left) test sets.

training set is representative of the test set data), the second is
that the estimations performed over more frequent words are
statistically more reliable. The same lexicon is used as the
dictionary for the handwriting recognition and TC systems.
Since the training and test set are independent of each other,
around 4 percent of the words in the latter set are not
represented in the lexicon and, thus, cannot be correctly
recognized. This happens especially for proper names that
typically appear several times in a few documents concen-
trated in a certain time interval (the documents in the corpus
are ordered by time). On the other hand, it is not possible to
extract the lexicon from the test set since no information
obtained from it can be used when building the system (for
more details about this experimental setup, see [8]).

4.3 Word and Term Error Rates

The effect of both extraction processes can be measured with
the Word Error Rate (WER), i.e., the percentage of words
incorrectly extracted from the original text. The WER is
obtained through an alignment (performed with dynamic
programming) between the original text and the text obtained
after the extraction process and it can be used as a general
measure of the noise. On the other hand, the WER is not a
good noise measure in the categorization context because it
takes into account errors that have no influence on the
document representation: the recognition of stopwords as
other stopwords (e.g., there as these) and the transcription of
inflected forms of a word into other inflected forms of the
same word (e.g., yields into yield). Both these errors are
corrected during the normalization: Stopwords are removed
and morphological variants of the same words are replaced
with their stem (see Section 3). Moreover, the WER takes into
account the order of the words while, in the bag-of-words
approximation, the position of the terms is not important.

The WER is thus an overestimation of the noise and it is
better to use the Term Error Rate (TER), i.e., the percentage
of terms lost during the extraction process:

> min(tf(i),tf* (1))
> tf (k) ’

wheretf(i) and ¢ f*(¢) are the frequencies of term ¢ in the clean
and noisy text, respectively. The values of WER and TER for
the different noisy versions of the documents are shown in
Table 1. While, in the case of handwriting recognition, the TER
is lower than the WER, in the OCR simulation, the TER
is higher than the WER. The reason for this is that, in

TER=1-

(11)
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Fig. 1. Precision versus recall (small test set). The precision is plotted as a function of the recall. The curves are obtained by both (a) macroaveraging

and (b) microaveraging over the different categories.

handwriting recognition, the transcription is performed on a
word basis. The recognizer finds the sequence of words
belonging toits dictionary that maximizes the likelihood of the
handwritten data [8]. Since the recognition rate is lower for
shorter words, the stopwords (which are shorter than other
words on average) tend to be misrecognized more frequently,
leading to a TER lower than the WER. In the case of the OCR
simulation, the transcription is performed on a letter basis.
The shorter the word, the higher the probability of correctly
transcribing all of its characters. This favors the stopwords
and penalizes the content words, leading toa TER higher than
the WER.

4.4 Categorization

This section presents the results of the categorization
experiments performed over the different versions of the
above described data sets. The results have been collected for
clean texts (small and full test set), handwriting-based
transcriptions (small test set), and OCR simulations with
CERbetween 2 percentand 10 percent (small and full test set).
The performance is measured in terms of precision versus
recall curves, BEP, avgP, precision at position n, and
application oriented precision (see Section 3.4 for details
about the measures). The results are presented both as
macroaverages and microaverages (see Section 3.4) where
possible.

The category models used in the experiments are trained
over the training set of the Reuters-21578 database. The
mismatch between the training (the texts are clean) and test
(the documents are affected by noise) conditions is likely to
degrade the categorization performance. On the other hand,
if the loss is acceptable, the possibility of using models
trained over clean texts to categorize noisy documents
extracted from different sources has two important advan-
tages: The first is that clean texts are relatively easy to
collect and it is thus possible to have enough training
material. The second is that it is not necessary to train a
different model for each source of noisy text.

An SVM has been trained for each of the 10 muost
represented categories. Good categorization results can be

obtained with a linear kernel [40]: This corresponds to the
use of the document space as feature space (see Section 3.3)
and it has the advantage that no hyperparameters must be
set. An SVM related to category c is trained to give a
positive answer when the document actually belongs to ¢
and a negative answer otherwise. The decisions about
different categories are made separately and independenlty
of each other. This allows the system to assign a document
more than one category (when more than one SVM gives a
positive answer) or none of the predefined categories (when
all SVMs give a negative answer).

In order to evaluate the results, the documents of the test
set are ranked according to the score assigned to them by
the SVM related to a certain category c. The documents at
the top of the ranking are used as set R*(c) of the texts
identified as belonging to ¢ by the system (see Section 3.4).
This allows one to measure p and = for each category. When
the system works correctly, all the documents actually
belonging to ¢ occupy the first positions of the ranking, then
high precision is achieved for all values of recall. When
some documents belonging to ¢ fall toward the last
positions of the ranking, the m values become low because
R*(c) contains many documents not belonging to c.

Figs. 1and 2 show the precision versus recall curves for the
small and full test set, respectively. For the small test set, the
Wilcoxon test [45] shows that, with a confidence level of
95 percent, the differences between the curve obtained from
the clean texts and the curves obtained from the other sources
are not statistically significant for recall values up to
70 percent. The long documents tend to be more robust to
noise. The reason is that they contain multiple occurrences of
the terms relevant to their category, thus the probability that
these are preserved during the extraction process is higher.
The precision drops at recall values higher than 70 percent for
the small test setare due to few documents that, because of the
noise, fall at the bottom positions of the document ranking.
The results are similar in both microaverage and macro-
average. The reason is that, on average, the performance of
the system is similar for all categories and the category
distribution is relatively uniform.
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Fig. 2. Precision versus recall (full test set). The precision is plotted as a function of the recall. The curves are obtained by both (a) macroaveraging

and (b) microaveraging over the different categories.

In the case of the full test set, the impact of the noise on the
categorization performance is more evident: For recall values
higher than 50-60 percent, the performance loss is high and
the system is less robust with respect to the noise. The BEP
and avgP values extracted from the curves of Figs. 1 and 2 are
shown in Tables 2 and 3, respectively. BEP and avgP values
are heavily influenced by the last points of the plot. For this
reason, sources like handwriting or OCR at CER > 8 percent
have a low value compared to the clean case.

The curves of the precision at position n allow one to
evaluate a different aspect of the categorization performance.
When using the previous measures, the user is assumed to be
interested in finding all the documents belonging to a certain
category in the database. When using the precision at
position n, the user is assumed to be interested in finding
only n documents belonging to the category. The perfor-
mance is influenced in this case by the highest positions in the
ranking (i.e., low recall points of the curve) where the systems
are closer to each other. This can be observed in Fig. 3, where
the curves do not show the same differences as in the case of
the precison versus recall curves. At n = 20, the precision is
between ~ 90 percent and ~ 95 percent (~ 80 percent and

TABLE 2
Categorization Performance (Small Test Set)

~ 95 percent) for the small (full) test set. This means that, on
average, for the small test set, at least 18 documents (16 for the
full test set) out of the 20 top ranking ones actually belong to
the category under consideration. Since precision at positionn
measures take into account only the top of the ranking, the
increase of the overlap in the score distributions (see above)
hasno effect. For thisreason, the results over the small and full
test set are, for this measure, more similar. No distinction can
be made between macroaverage and microaverage: Since the
performance is considered at a specific position rather than at
acertainrecall level, the value of | R*(c)| (see (7)) is the same for
all categories and it simply corresponds to n. For this reason,
the weight given to each category becomes |—é‘ and this results
in the equivalence between microaverage and macroaverage.

The evaluation can also be performed in a different
application perspective. A system can be used to separately
assign a category to input documents. This is necessary when
input texts must be routed to different users or destinations.
In this case, the category c is assigned to a document if the
score obtained with the ¢ related SVM is higher than a
threshold 0(c). The threshold set © = {0(c1), 0(c2), ..., 0(cic)}
must be obtained from an evaluation set different from the
test set. In our experiments, we used the Reuters-21578 train-

TABLE 3
Categorization Performance (Full Test Set)

Source M BEP (%) | M avgP (%) | u BEP (%) | n avgP (%)

Clean 00.8 03.7 03.3 91.7 Source M BEP (%) | M avgP (%) | n BEP (%) | p avgP (%)
Handwriting 80.3 84.0 81.0 82.6 Clean 85.0 90.5 91.4 95.2
OCR (2%) 89.4 94.3 90.7 95.1 OCR (2%) 65.4 66.5 77.3 81.4
OCR (4%) 88.4 92.8 89.0 91.4 OCR (4%) 63.5 64.5 76.3 80.8
OCR (6%) 86.3 88.9 87.7 88.9 OCR (6%) 60.3 61.3 74.0 77.9
OCR (8%) 82.9 86.0 84.0 84.5 OCR (8%) 59.6 58.8 735 76.6
OCR (10%) 81.2 85.0 82.3 83.4 OCR (10%) 56.0 55.5 73.0 74.5

This table shows BEP and avgP for each source of text. Both
macroaverages and microaverages are reported.

This table shows BEP and avgP for each source of text. Both
macroaverages and microaverages are reported.
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ing set as the evaluation set. The thresholds 6(c) are selected
in correspondence with the BEP as measured over the
evaluation set. Fig. 4 shows the values of 7 and p obtained
for the different noisy sources. In the small test set, most of
them remain close to the 7 = pline, i.e., tend to also reproduce
the BEP over the test set. In the case of handwriting, the
precision of the BEP is preserved, but at the price of a high
recallloss. This is still helpful in applications where the user is
not necessarily interested in high recall, but in the selection of
a subset with high precision. A similar phenomenon is
observed for all the sources over the full test set. The system
tends to select fewer documents (all the points have lower
recall with respect to the BEP on the validation set), but with
high precision. This further confirms the fact that the highest
scoring documents are less affected by the noise.

All experiments performed so far make use of the whole
Reuters training set, but, often, less material is available. For
this reason, we trained the category models using only the first
10,20, ... 100 percentof theavailable training data (the Reuters
documents are ordered by time and this corresponds to using

the documents available at a certain moment to categorize
those which are provided in the future). The corresponding
systems are tested over the test set and the performance (in
terms of microaveraged BEP) is shownin Fig. 5 for both the full
and small test sets. The results show that the effect of the
training setsizeis essentially the same for both clean and noisy
documents. After a certain amount of materialis used, adding
training data does not result in significant improvements.

Another problem that can occur is that only noisy material
is available, thus it is not possible to train over clean texts.
Fig. 6 shows the precision versus recall curves obtained over
the full test set when the training set contains noisy texts
(training and test sethave the same CER, from 2 to 10 percent).

The precision versus recall curves are essentially the
same as those shown in Fig. 2 and this seems to suggest that
the training is robust with respect to noise.

4.5 The Coverage Plan

The results of the previous section show that there is no clear
correlation between noise measures (WER and TER) and
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Fig. 6. Training on noisy data (full test set). The plots show the precision versus recall curves obtained over noisy data when the training set contains
also noisy texts. Both the (a) macroaverage and (b) microaverage are shown.

categorization results. Data affected by very differentlevels of
WER and TER have similar categorization performances and,
in some cases, data with higher WER or TER have lower avgP
or BEP. This means that the noise measures used so far are not
more appropriate in this context.

The TER solves some of the problems of the WER, but
still it neglects an important aspect of the extraction
processes: Certain errors result in spurious information
that can mislead the categorization process. This can be
taken into account by measuring not only how many terms
are preserved, but also what fraction of the document
transcription they account for. This is done by introducing
term recall and term precision. The measures used so far
(WER and TER) are focused on the substitution errors, i.e.,
on the words incorrectly extracted. This neglects the noise
introduced by other errors: insertions (a word is incorrectly

split into two or more words) and deletions (two or more
words are merged together and extracted as a single word).
These errors are especially frequent in the handwriting and
speech recognition cases and might result in a significant
difference in the number of terms of the clean and noisy
version of the texts. In order to observe the effect of this
difference, it is necessary to plot the points corresponding to
the different noisy documents on a plan (that we call
coverage plan) where the coordinates are the term recall
(percentage of terms preserved through the extraction
process) and the term precision (percentage of terms in the
transcription actually corresponding to terms of the original
clean text). The term recall can be calculated as:

> min(tf (i), 1" (i)

TR== iy

(12)



1892

Coverage Plan (small)
T o s el

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 12, DECEMBER 2005

Coverage Plan (full)

TrNr . b

LR

0.8
0.7 4

0.6 ;: > i il

N ]

& os| 4 4 R ost g
0.4 i 0.4 3
03 i 0.3 =4
0.2 . + Handwriting H 0.2 .

- OCR2% OCR 2%
35 - OCR4% - OCR4%
0.1 OCR6% [ 0.1 OCR6% [
- OCR8% - OCR 8%
- OCR10% - OCR 10%
0 1 I 1 | | 1 1 T 0 | 1 1 1 | 1 | 1 T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TR

TR

Fig. 7. Coverage plan. The simulated OCR-based transcriptions have term precision close to 100 percent.

while the term precision is:

S min(tf(0), £ (i)
TP=="srm

Fig. 7 shows the positions of the noisy documents
extracted through handwriting recognition (only the small
test set) and OCR with CER between 2 percent and 10 percent
(the small and full test sets). The OCR-based transcriptions
show high precision. This happens because, when one or
more characters of a word are uncorrectly recognized, the
resulting word very likely does not belong to the dictionary
and thenitis not counted as a term. The only terms remaining
in the transcription are thus terms that also were present in
the clean version of the document (for this reason, the TP is
close to 1). In the handwriting recognition case, the mis-
recognitions are made at the word level and certain terms are
transcribed into other terms. Such terms do not appear in the
clean version of the documents and this makes the 7P lower.
This is an important problem because the spurious terms can
potentially mislead the categorization system.

If the transcription contains all the terms of the clean
version and no other terms, its position on the coverage
plan is the point (1,1). A transcription plotted in such a
position gives the same categorization results as the clean
text from which it is extracted. The position of a transcrip-
tion on the coverage plan can be described using the so-
called F3 measure [2]:

(13)

2 1).TP.
p,_FHD-TP-TR

. 3-TP+TR (14)

where (3 is a parameter allowing one to give more weight to
TP or TR (when =1, both measures have the same
importance). The average value of Fjs can be used as a
measure of the noise produced by the extraction process.
When < 1 (more weight is given to T'P), the values of Fj
have a good correlation with avgP and BEP over the small
test set: An increase of Fj;3 corresponds to an improvement
in categorization performance. This is no longer true when
B > 1 (TR is given the same or more importance than 7'P).

The categorization performance thus appears to be more
affected by errors leading to spurious terms. This can
explain why the handwritten data (that have, on average,
low TP) lead to results lower than the OCR simulations.
This suggests that the extraction processes must be oriented
to achieve good term precision rather than high term recall.

In the case of the full test set, the results appear to be
better correlated with the TER. This is not surprising since
the TP is very similar for all OCR simulations (I'P ~ 1 for
all documents) and the only parameter showing significant
variability is T'R. This means that it is not possible (in the
case of the OCR simulations) to measure the impact of the
TP loss and the variability in the categorization perfor-
mance is determined essentially by the TR. Since
TR =1 —TER, this results in a better correlation between
TER and categorization performance. This can be consid-
ered as a further positive effect of high T'P transcriptions.

4.6 Information Gain Plan

The measures described so far take into account only how
many terms are incorrectly extracted and not which terms
are incorrectly extracted. The loss of certain terms during
the the extraction process is more important than the loss of
others and this should be considered in the noise measure.
Certain terms are more representative of the categories of
their documents. A measure of such property is the so-
called Information Gain (IG) [46]:

1G(k) = H(c) — p(k) - H(c|k) — p(k) - H(clk),
where IG(k) is the IG of term k, p(k) is the fraction of
documents where k is present, p(k) is the fraction of
documents where term k is absent, and H(.) is the entropy.
The entropy H(c) is estimated as — ) _p(c)logp(c), where
p(c) can be obtained as follows:

_ )
p(C) - Z TL(C’) ’

i

(15)

(16)

where n(c) is the number of times category c is represented.
The same defintion is used for H(c|k) and H(c|k), but on the
set of the documents where term k is present and absent,
respectively.
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the position of the documents.

For most terms, p(k) is close to zero, p(k) is correspond-
ingly close to one, and H(c|k) ~ H(c). The resulting IG value
is close to zero and the term is assumed to be not
representative of the category of the documents it belongs
to. In order to have a high IG value, a term must appear in
many documents (p(k) >> 0) and such documents must
belong to few categories (H(c|k) << H(c)).

It is possible to think of the total IG contained in a
document as the sum of the term frequencies multiplied by
the corresponding IG values:

IG(d) =Y tf(k)- IG(k),

k

(17)

where d is a document. After an extraction process, only a
certain fraction of the original IG will be preserved, while
word insertions, deletions, and substitutions introduce a
certain amount of spurious IG. This leads to two noise
measures that can be called Information Gain Recall (IGR),

> min(tf (@), tf7(4)) - 1G(4)

== e W
and Information Gain Precision (IGP),

o tf*(k) - 1G(K)

(seeSection 4.1 for themeaning of symbols). The twomeasures
can be calculated for each document in the data set and this
leads toa pointona plan (that we call the Information Gain Plan)
where the coordinates are the values of IGR and IGP (see
Fig.8). While, in OCR simulations, /G Pis always closeto1,in
thehandwriting case, important /G fractions are spurious, i.e.,
they are due to terms that are the result of a misrecognition.
When a document contains terms that have high IG with
respect to a certain category ¢, the categorization system tends
to identify it as belonging to ¢, thus the presence of spurious
high IG terms can mislead the system.

The Fj; measure can be used as in the case of the
coverage plan (see the previous section) to measure the
noise of the transcriptions. Also, in this case, the better

correlation with the categorization results over the small
test set is obtained for 3 < 1. This confirms that extraction
processes introducing few spurious terms lead to better
categorization performances. The IGP should thus be
privileged with respect to the /GR.

In the case of the full test set, the same considerations made
at the end of the previous section apply. Also, in this case, the
only parameter showing significant variability is /GR and it
is not possible to evaluate the impact of the /G P loss. On the
other hand, high IGP seems to lead to better correlation
between categorization performance and TER.

5 CONCLUSIONS

Several media can be converted into texts through a process
producing noise, i.e., word insertions, deletions, and sub-
stitutions with respect to the actual clean text contained in the
source. This work shows the effect of the noise over the
performance of a text categorization system. The categoriza-
tion effectiveness has first been measured over the clean
version of a data set, then over several noisy versions of the
same data. The noisy versions have been obtained with two
methods: The first is to manually write the documents and
then to transcribe them with an offline handwriting recogni-
tion system, the second is to simulate an OCR recognition by
randomly changing a certain percentage of characters. The
OCR simulation allowed the use of different character error
rates (from 2 percent to 10 percent). The noise produced by the
two different sources has different characteristics and it is
representative of different extraction processes. The noise
produced by the handwriting recognizer is similar to the
noise produced by speech recognizers. The noise produced
by OCR is similar to the one produced by systems detecting
and recognizing texts in images and videos or manual typing.
The two sources of noise have been selected in order to be
representative of a wider spectrum of situations.

The results show that, for recall values up to 60-70 percent
depending on the sources, the categorization system is robust
to noise even when the term rrror rate is higher than
40 percent. The categorization performance has been mea-
sured by using a wide spectrum of metrics focusing on the
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needs of different potential users. Precision versus recall
curves give a general idea of the TC system behavior from low
to full recall. It has been shown that, for low recall values, the
noise has almost no effect and the gap between different
sources is not statistically significant. A larger difference can
be observed for higher recall values.

The precision at position n (measured for 1 <n < 20)
shows that all systems perform at the same level in the top
ranking positions. This means that higher scoring docu-
ments (on average longer than others and with a higher
degree of redundancy) are moderately affected by the noise
and they remain in the top ranking positions even for high
levels of mismatch with respect to their clean version.

A specific experimental setup has been used to obtain an
application-oriented evaluation. A set of thresholds has
been set in order to achieve BEP precision. The same
thresholds have been used over the noisy texts, showing
that, while the system was able to keep the same precision
level of the evaluation set for all the noise sources, there was
a significant recall loss in the case of handwriting and OCR
simulations over the full test set.

For any metric used, the results from the handwritten data
appear to be lower than those obtained from OCR simula-
tions. The main difference is that OCR transcriptions are more
precise, i.e., few spurious terms are introduced during the
extraction process. This seems to suggest that, in loose terms,
produces fewer problems than transcribing them into other,
potentially misleading, terms. This can be important in the
development of extraction processes oriented toward the
categorization: The use of mechanisms able to reject terms
recognized with a confidence level too low could be applied.

The analysis of the results shows that word error rate and
term error rate provide only a partial insight about the
extraction process. Both measures account for the similarity
between a noisy text and the clean text from where it is
extracted, but donot consider the impact of different errors on
the final categorization performance. Different measures
have been proposed that better explain the final categoriza-
tion results. It has been shown that the insertion of spurious
terms (frequent in the case of handwritten data) has a greater
influence than the simple loss of terms. This explains why the
categorization performance for handwritten data is lower
than in the other cases and suggests that extraction processes
should aim at high Term or IG Precision. This is important
because an optimization of the extraction processes in terms
of WER or TER leads to high Term or IG Recall that does not
necessarily lead to good categorization results.

The possibility of categorizing noisy texts gives the
possibility of organizing and managing databases of sources
different from digital text. This is important when more and
more databases of images, speech recordings, videos, etc., are
collected. Our experiments showed that it is possible to train
category models over clean material (relatively easy to collect
and manage) and then apply them over different kinds of
noisy texts. This is an important advantage because it gives
the possibility of having a single system for different
databases (each containing a different source) or databases
containing different kinds of sources. On the other hand, the
results appear to be close to those obtained over clean texts
only for low recall values.

Our experiments show that it is possible to extend SVM-
based categorization techniques from clean to noisy texts (at
least in the cases we have considered). In a future work, we
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plan to use the information that can be extracted from
sources together with text (in speech recordings, it is
possible to extract speaker identity, dialogue annotations,
emotional states, etc., in videos, it is possible to process
images, motion, audio, etc.). This will not only help to fill
the performance gap between clean and noisy texts, but also
to explore categorization possibilities that cannot be
exploited for purely textual documents.
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