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Preface

This gives an example of a type hierarchy for Java that is fairly rigorously defined by
algebraic means. It is intended as a crib which students doing MscIT can extend for
their practical exercise.
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Chapter 1

Atomic types

1.1 Universal
This is the Superclass to which all other classes belong - we assume that basic arith-
metic is available on all types The universal type is the supertype that contains all of the
sub-types derived from atoms, tuples and sets.

Its Σ ( set of operations ) is {←=><≤≥ +−×÷ max min show #}. The class
Universal has a single pre-given member undefinedValue, which is returned when
any operation returns an undefined result.

These operations are inherited by or overriden by equivalent operators in all sub-
types of universal. The reason for universal having so mUniversal operations is that we
want to be able to construct tuples whose elements are drawn from the class univer-
sal. If we want to perform arithmetic on tuples, the basic arithmetic operation must be
defined on all members of the class universal.

Beneath the universal class we have atomics, tuples and sets.
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1.2 Operations on Unversal

Operator Type Explanation

a < b ( Universal⊗Universal→ B) Returns 1 if a is less than b, see section ??

a = b ( Universal⊗Universal→ B) Returns 1 if a equals b
z← a+b (Universal⊗ Universal→Universal) z is the algebraic sum of a and b
z← a++b (Universal⊗ Universal→Universal) z is the concatenation of a and b unlike addition, not a commutative operator
z← a−b (Universal⊗ Universal→Universal) z is the algebraic difference of a and b
z← a×b (Universal⊗ Universal→Universal) z is the algebraic product of a and b
z← a÷b (Universal⊗ Universal→Universal) z is the quotient of a and b
z←¬a ( Universal→ B) Negation: z = 1⇔ a = 0
z←−a ( Universal→Universal) Unary minus: z =− 1×a
z← #x ( Universal→R) z is the absolute value of x

package strathclyde.cs.relational;
import strathclyde.cs.relational.atomic.*;
public interface Universal{
public static final Universal undefinedValue = new Numeric(Double.NaN);

The implementaion of the undefined value makes use of the format NaN, short for Not
a Number, which is defined in the IEEE floating point standard as the undefined value.

public abstract Universal plus (Universal b);

implements +

public abstract Universal concat (Universal b);

implements ++

public abstract Universal minus (Universal b);

implements −

public abstract Universal times (Universal b);

implements ×

public abstract Universal divide (Universal b);

implements ÷

public Universal max (Universal b);
public Universal min (Universal b);

public abstract boolean lessthan (Universal b);
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implements < note that this returns a boolean not a universal, a boolean can be con-
verted to a universal using the class Bool which implements universal.

1.3 Numeric
The ∆ of type Number is the union of all the ∆s below it. The implementation will when
possible, use the most compact binary representation available for numeric values. Its
Σ is inherited from universal and extended by { main, inf, sup }. These are used for
compatibbility with triplex arithmetic their meanings of these are defined below.

Numerics will be held approximately using IEEE floating point representation when
they are existing as single objects. Collections of numerics will try to compress these to
minimum bit lengths.

1.3.1 Operations on Numbers

Operator Type Explanation

a < b ( Number⊗Number→ B) Returns 1 if a is less than b

a = b ( Number⊗Number→ B) Returns 1 if a equals b
z← a+b (Number⊗ Number→ Number) z is the algebraic sum of a and b
z← a−b (Number⊗ Number→ Number) z is the algebraic difference of a and b
z← a×b (Number⊗ Number→ Number) z is the algebraic product of a and b
z← a÷b (Number⊗ Number→ Number) z is the quotient of a and b

import strathclyde.cs.relational.*;
import strathclyde.cs.relational.structured.*;

public class Numeric extends Number implements Universal,Interval

{
public static final double epsilon =2.22044604925e-16;

protected double value;
public Numeric(){value = Double.NaN;}
public Numeric(double x) ...
public Numeric(float x) ...
public Numeric(int x){ value = (double)x; }
public byte byteValue(){return (byte)value;}
public double doubleValue(){return value;}
public float floatValue()...
public int intValue()...
public long longValue()...
public short shortValue()...
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public int hashCode()...

The next set of methods are used to make the type Numeric compatible with the type
Triple, for interval arithmetic

public double inf(){
if (value>0)
return value - value * epsilon;

else if (value<=0)
return value + value * epsilon;

throw new RuntimeException("Error in inf of Triplex");
}
//====================================================
public double main(){return value;}
public double sup(){
if (value>0)
return value + value * epsilon;

else if (value<=0)
return value - value * epsilon;

throw new RuntimeException("Error in sup of Triplex");
}
//======================================================

public Universal plus(Universal b)
{

/* commented out initially, uncomment this when you get to implement triple
if(b instanceof Triple) return (new Triple(this)).plus(b);
else

*/
if (b instanceof Numeric ) return new Numeric(value+((Numeric)b).value);
else return undefinedValue;

}
public Universal concat(Universal b){ return new Text(toString()+b);}
public Universal minus( Universal b) ...
public Universal times( Universal b) ...
public Universal divide( Universal b) ...
public boolean equals( Object b)...
public boolean lessthan( Universal b)...
public Universal max (Universal b)...
public Universal min (Universal b)...
public String toString (){
if (Double.isNaN(value)) return "?";
return value + "";

}
}
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1.4 Interval
Interval is an interface shared by Numeric and Triple types allowing mixed mode arith-
metic between them.

package strathclyde.cs.relational.atomic;
public interface Interval{
public double inf();
public double main();
public double sup();

}

1.5 Bool
The class Bool is a subclass of universal that extends the Java class number. It does
this to allow booleans to be treated as a special case of numbers in the range 0 to 1.
What follows is an abridged look at a source implementation. Things for you to fill in are
indicated with ...

public class Bool extends Number
implements Universal
{
public boolean value;
public static final Bool False = new Bool(false);
public static final Bool True = new Bool(true);
public byte byteValue()...
public double doubleValue()...
public float floatValue()...
public int intValue()...
public long longValue()...
public short shortValue()...
public int hashCode()...
public Bool(boolean v)...
public boolean equals(Object b){
if(b instanceof Number){
return (intValue()==((Number)b).intValue());

} else {
return false;

}
}

public boolean lessthan(Universal b)...
}
public Universal plus (Universal b)...
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following the mathematician Boole this is treated as or

public Universal concat(Universal b){return new Text(toString()+b);}
public Universal times (Universal b)...

Following the standard boolean approach multiplication is equivalent to the and function
special care has to be taken with undefined values.

public Universal minus (Universal b)...
public Universal divide (Universal b)...
//*******************************************
public Universal max (Universal b)...
public Universal min (Universal b)...
//*******************************************
public String toString (){return value + "" ; }

}

1.6 Subscriptable
Subscriptable 1 is an abstract interface that is inherited by all those classes that can be
subscripted by universals - tuples, vectors, relations with primary keys. */

package strathclyde.cs.relational;

public interface Subscriptable
{
public Universal subscript(Universal i);
public Universal subscript(int i);
}

1.7 Text
Text which is the same as strings of characters are an atomic data type.

public class Text extends Structured implements Subscriptable
{
protected String thetext;

public Text(String s){ thetext=s;}

1* Part of Mbase implemented in Java author Paul Cockshott Started Aug 1997 Copyright (c) University
of strathclyde
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Operations inherited from Universal

public Universal concat(Universal b){return new Text(thetext+b.toString());}
public Universal plus(Universal b){return concat(b);}
public Universal max (Universal b){return(lessthan(b)?b:this);}
public Universal min (Universal b){return (lessthan(b)?this:b);}
public boolean lessthan(Universal b)
{ return (b instanceof Text?thetext.compareTo(((Text)b).thetext)<0:false);}
public Universal times(Universal b){return undefinedValue;}
public Universal minus(Universal b){return undefinedValue;}
public Universal divide(Universal b){return undefinedValue;}

Operations inherited from structured

public Enumeration members(){return new stupit(this);}
public int arity(){ return thetext.length();}
public double cardinality(){return arity();}

public Structured image(Moperator op)
{
int i;
String res ="";
for(i=0;i<thetext.length(); i++)
res=res+charof(op.apply(subscript(i)));

return new Text(res);
}

Operations inherited from Subscriptable

public Universal subscript(int I)
{return (I<arity()&&I>=0 ? subscript(I):undefinedValue );}
public Universal subscript(Universal i)
{
if(i instanceof Numeric)
{
int I = ((Numeric)i).intValue();
return subscript(I);

}
if (i instanceof Tuple)
{
Tuple T=(Tuple)i;
int j,N=T.arity();
String t="" ;
for(j=0;j<N;j++)
t=t+charof(subscript(T.subscript(j)));
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return new Text(t);
}
return undefinedValue;

}

Operations inherited from the java Object class

public String toString()...
public int hashCode()...
public boolean equals(Object b){
return((b instanceof Text)? ...

:false);
}

A private procedure used in the subscript function

private char charof(Universal a)
{
if(a==undefinedValue) return ’\0’;
if(a instanceof Numeric) return (char)((Numeric)a).intValue();
return ’\0’;

}
}
class stupit implements Enumeration{
int i;
Text t;
public boolean hasMoreElements(){return i<t.arity();}
public Object nextElement(){return t.subscript(i++);}
public stupit(Text t1){i=0;t=t1;}

}
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Chapter 2

Structured

Structured data in the form of vectors, tuples, sets, relations etc is supported.
The crucial principle applied in achieving parallelism is the provision of higher or-

der functions or functionals which allow lower level functions to applied to all elements
of structured values. The meanings of these higher order functions are discussed in
section ??. The higher order functions in the Σ of all structured types are in addition
to what they inherit from universal: {M R apply cardinality } For all structured types
the implementation provides a method applytomembers that applies a procedure to
each element of the structured type. This iterator can then be used to implement oper-
ations like reduce in a type independent way. At the level of tstructured the iterator
is defined as an abstract method that is to be overridden by lower level methods.

2.1 Operations on structured data

Operator Type Explanation

z←◦R § ((Any⊗Any→ Any)⊗Structured→ Any)
if x = a,b,c are some structured col-
lection and◦ a dyadic operator z =
((a◦b)◦ c)

z← FM x ((Any→Any)⊗Structured→ Structured) e.g. FM 〈a,b,c〉 → 〈Fa,Fb,Fc〉
see 2.1

z←‖x ( Struct→Number) z is the cardinality of x

public abstract class Structured implements Universal
{

public abstract int arity();
public abstract double cardinality();
public abstract Structured image(Moperator op);
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form image of set under operator

public Universal reduce(Doperator op)

reduce the set using a dyadic operator

{
Universal temp;
Enumeration n=members();

if (n. hasMoreElements())
{ temp=(Universal)(n.nextElement());
while(n.hasMoreElements())
temp=op.apply(temp,(Universal)n.nextElement());

return temp;
}
else return undefinedValue;

}
public int hashCode()

Hash code formed for structure S with n elements {S1,S2, ...Sn} is given by HS(n) where

HS(0) = hash(S1)

HS(i) = 37×HS(i−1)+hash(Si)

{
int temp;
Enumeration n=members();

if (n. hasMoreElements())
{ temp=(n.nextElement()).hashCode();
while(n.hasMoreElements())
temp=(n.nextElement()).hashCode()+temp*37;

return temp;
}
else return 1;

}
public Universal concat(Universal b){

defined as + for completeness

return plus(b);
}
public abstract Enumeration members();
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}

2.2 Tuples
Tuples are structured values whose components may not be of the same type.

class tupit implements Enumeration{
int i;
Tuple t;
public boolean hasMoreElements(){return i<t.arity();}
public Object nextElement(){return t.field[i++];}
public tupit(Tuple t1){i=0;t=t1;}

}
public class Tuple extends Structured
implements Subscriptable
{
public Universal field[];
// ------------ Generators
public Tuple(int n){field = new Universal [n];}

public Tuple(Universal u[])
{
field = u ;

}

public Tuple(String s[])

A constructor to form a tuple from a vector of strings the individual strings must either
be numbers or else they are treated as uninterpreted text strings.

{

int i,n= s.length;
Universal [] u= new Universal [n];

for(i=0;i<n;i++){
try {u[i]=new Numeric(Double.valueOf(s[i]).doubleValue());}
catch (NumberFormatException e){
u[i]=new Text(s[i]);

}
}
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field=u;
}
private static String[] split(String s,char delim) ...

function to split a string s into a vector of strings using a delimiter character

public Tuple(String s, char delim)

A constructor that splits a string using the delimiter into fields and then builds a tuple.
Suitalble for parsing comma or tab separated relational database files.

{

this(split(s,delim));
}

// ------------------------ from structured
public double cardinality(){ return (float)( field.length);}

public Enumeration members(){return new tupit(this);}

Used to implement reduce and Image

public Structured image(Moperator op)
{
Tuple n= new Tuple(arity());
int i;
for(i=0;i<arity();i++)
{ n.field[i]= op.apply(field[i]);
}
return n;

}

2.2.1 Subscription
A tuple may be subscripted. If

t = 〈a,b,c, ...〉

then
t1 = a, t2 = b, t3 = c
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etc. Subscription of a tuple by a tuple of integers in the appropriate range yields the
tuple formed by using the elements of the second tuple as subscripts

〈a,b,c,d〉〈1,3,2〉 = 〈a,c,b〉

Subscription can bein either by numbers or tuples.

// ---------------------- from subscriptable
public Universal subscript(int I)

useful for call within java when one knows the fields that one is to subscript.

{return( (I>=0 && I<arity()) ? field[I]: undefinedValue);}
public Universal subscript(Universal i)

This is useful within an interpreter to allow an arbitrary number or tuple to be used for
subscription. Numbers are rounded to integers before subscription. Uses the previous
function to do its dirty work.

{
if(i instanceof Numeric) return subscript( ((Numeric)i).intValue());
if (i instanceof Tuple)
{
Tuple T=(Tuple)i;
int N=T.arity();
Tuple t = new Tuple(N);
int j;
for(j=0;j<N;j++)t.field[j]=subscript(T.field[j]);
return t;

}
return undefinedValue;

}
// ---------------------- from Universal

2.2.2 Concatenation
Tuples may be concatenated, for notation of this we use the ++ symbol. thus

〈i, j, ...,n〉++〈p,q, ...r〉= 〈i, j, ...n, p,q, ...,r〉

public Universal concat(Universal b )
{
if(b instanceof Tuple){
Tuple bt=(Tuple)b;
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int n = arity()+bt.arity();
int i;
Universal [] u = new Universal [ n ];
for (i=0;i<n;i++)
if(i>=arity())u[i]=bt.field[i-arity()];

else u[i]= field[i];
return new Tuple(u);

}
else{
int i,n=arity();
Universal [] u = new Universal [n+1];
for(i=0;i<n;i++) u[i]=field[i];
u[n]=b;
return new Tuple(u);

}

}

2.2.3 Injection
Binary operations between tuples are treated as the binary operation distributed over
corresponding elements of the two tuples.

Thus
〈1,2,3,4〉+ 〈1,3,5〉= 〈2,5,8,5〉

etc.
We can have tuples containing tuples

〈1,〈′ joe′,3〉〉

for which of course the injected binary operators are well defined

〈1,〈′ joe′,3〉〉+ 〈2,〈′ f ish′,100〉〉= 〈3,〈′ joe f ish′,103〉〉

public Universal minus(Universal b )
{ int i; Tuple t;
if (b instanceof Tuple) {
int l= Math.max(field.length,((Tuple)b).field.length);
//int l= Math.min(field.length,((Tuple)b).field.length);
t=new Tuple(l);
for (i=0 ; i<l;i++) {
t.field[i]=
(field[i%field.length].minus(((Tuple)b).field[i % ((Tuple) b).arity()]));

}
return t;

}
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else return undefinedValue;
}
public Universal plus(Universal b )...

public Universal times(Universal b )...
public Universal divide(Universal b )...

public boolean equals(Object b )

Equal if have same number of fields and corresponding ones are equal

{ int i; boolean t;

if (b instanceof Tuple ){
t=arity() == ((Tuple)b).arity();
for (i=0 ;i<arity();i++)
t= t && (field[i].equals(((Tuple)b).field[i]));

return t;
}else return false;
}
public boolean lessthan(Universal b )...

Tuple a < b follows string comparison rules.

//********************************************
public Universal max (Universal b){
if (lessthan(b)){
return b;

} else {
return this;}

}
public Universal min (Universal b){
if (lessthan(b)){
return this;

} else {
return b;}

}
//*********************************************
public int arity(){ return field.length;}

Return number of fields in the tuple

public String toString()

Return the fields comma separated and with the whole square bracketed
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{
String r="[";
int i=0;

for(i=0;i< arity(); i++)
{ if (i>0)r= r.concat(",");
r=r.concat(field[i].toString());
}
return r.concat("]");

}
}

2.3 Sets
A set follows the normal semantics of set theory. It provides the base class for relations.
You are to implement sets yourself in a manner consitent with the rest of the type
hierarchy and following the algebraic specification below.
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2.3.1 Operations on Sets

Operator Type Explanation

a < b ( Set⊗Set→ B) Returns 1 if a is proper subset of b
({a}< {b,c})⇒ (a = b)or(a = c)

b 6= a,{a}< {b}= f alse

?A (Set→Any) Choice, returns a random member of set.
(?A) ∈ A

a = b ( Set⊗Set→ B) Returns 1 if a equalsb
z← a+b (Set⊗ Set→ Set) z is the union a and b

{a}+{b}= {a,b}
z← a−b (Set⊗ Set→ Set) z is the set difference of a and b

(x+ y)− y = x− y
{a,b}−{a}= {b}

z← a×b (Set⊗ Set→ Set) z is the intersection of a and b
({a}×{a}) = {a}

x× (y× z) = (x× y)× z
({a}×{b}) = ({b}×{a})

z← a÷b (Set⊗ Set→ Set) z is the quotient of a and b
thus a = b× z

x•a (Atom⊗ Set→ Set) set insertion
(a•{a}) = {a}
(a•{}) = {a}

(◦• x) = x
(a•{b}) = b•{a}

x ∈ a (Atom⊗ Set→ B) tests membership
x ∈ (x• y) = true

A| f (Set⊗(Any→B)→ Set) selection
A| f = {a|a ∈ A, f (a)}

z←‖x ( Set→R) z is the cardinality of x

2.4 Weighted or fuzzy sets
If we wish to be able to represent uncertain knowledge, then it is thus convenient to
provide a type of set that models the axioms of probability theory. Probability theory
defines itself in terms of the following axioms1: Let E be a collection of elements αβγ...
called elementary events, and FE a set of subsets of E; the elements of the set FE
being random events.

1. F is a field of sets.
1Kolmogorov, ”Foundations of Probability”, New York, 1950.
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2. F contains E.

3. ∀A ∈ FE ,∃PE(A) ∈ R where PE(A) is the probability of A.

4. PE(E) = 1

5. If A×B = {} then
PE(A+B) = PE(A)+PE(B)

If we associate with our sets S a function PS(A) with the properties above then we
have a model for probability theory2.

We need to extend the definitions of the basic set operations to take probabilities
into account.

import strathclyde.cs.relational.*;
import java.util.Random;
public abstract class Wset extends Set
{
protected double multiplier;
public Wset(){super();card=0;multiplier=1;}

The variable m is a multiplier used to compute the probability of an element from its
weight. It is a useful scaling factor used to normalise probabilities to be equal to 1.

public String toString()

Returns a space separted string of elements bracketed thus { } with each element
preceded by its probabilty.

{
String r="Weighted{";
Enumeration i;

for(i=members();i.hasMoreElements(); )
{ Universal ui=(Universal)i.nextElement() ;
r=r.concat(" "+ui+":"+P(ui) );

}
return r.concat("} x "+cardinality());

}

protected abstract double W(Universal b);

2This approach differs from that of Dey and Sarkar in A Probabalistic Relational Model, (ACM TODS,
Vol 21, No. 3, Sept 1996). In their model the sum of the probablilities of the tuples in a relation do not sum
to 1.
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This returns the current weight of an element in the set. Weights are proportional to
probabilities but do not sum to 1.

protected abstract void addmember(Universal b, double w);

Adds a new member with a given weight, if a member already exists then the previ-
ous weight is replaced by the new weight. After executing addmember(b,w) we have
W (b) = w.

protected abstract void submember(Universal b, double w);

Removes a member and part of its weight, the new weight W ′(b) is either zero or the
difference between the old weight and w

W ′(b) = max(W (b)−w,0)

public double P(Universal u){return multiplier*W(u);}

public Universal choice()

If we interpret the basic choice operator ? as returning all members of a set with
equal probability then there is an obvious extension to weighted sets. For large numbers
of choices, the proportion of times that (?E) ∈ A will tend to PE(A). That is to say, the
probability function associated with the elements of the set specifies the probability that
elements will be chosen randomly from the set.

{ if (cardinality()==0) return Universal.undefinedValue;
Random r= new Random();
while(true)
{ Enumeration i;

Universal e;
for(i=members();i.hasMoreElements();){

if(r.nextFloat()<P(e=(Universal)i.nextElement()))
return e;

}

}
}
public Set join(Doperator comb,Doperator sim, Set b)

Let r,s be sets. Let p = r(⊕ § ≈)s where

• § is the join functional,
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• ⊕ is some dyadic combining operator of type (Any⊗Any→ Any)

• ≈ is some similarity operator of type (Any⊗Any→ 0..1), two tuples t,u are said
to be similar if (t ≈ u) > 0.

then we can say that p contains an element corresponding to every pair of elements
in x,y that are similar.

∀i ∈ r,∀ j ∈ s|i≈ j,∃k ∈ p (2.1)

each such k = i⊕ j is the result of applying the combining operator to the pairs of similar
elements.

Let us define the conditional similarity Cab of two weighted sets a,b to be :

Cab = ∑
i∈a

∑
j∈b

(i≈ j)×Pa(i)×Pb( j) (2.2)

This will be a number in the range 0..1. We can use it to define the probabilities associ-
ated with elements of a joined set. Thus in (??) and (2.1) we have

Pp(k) =
∑∀i, j|k=(i⊕ j)(i≈ j)×Pr(i)×Ps( j)

Crs
(2.3)

Note that

• as it should, the probabilities of the elements sum to unity: ∑a∈p Pp(a) = 1,

• equation (2.3) generalises equation (2.1).

Taking the definition of conditional similarity Cab given in (2.2), the cardinality of joined
sets is given by

‖p = Crs×‖r×‖s (2.4)

{
Wset s = (Wset)EmptySet();
Enumeration i,j;
double C=Double.MIN_VALUE; // conditional similarity
for (i=members();i.hasMoreElements();){

Universal ui = (Universal)i.nextElement();
double Pi= P(ui);
for(j=b.members();j.hasMoreElements();){

Universal uj = (Universal )j.nextElement();
double Ws,Pj = b.P(uj);
Number compare = (Number)sim.apply(ui,uj);// similarity
C+= (Ws=Pj*Pi* compare.doubleValue());
if (compare.doubleValue()>0){

Universal nm=comb.apply(ui,uj); // new member
(s).addmember(nm,s.W(nm)+Ws);

}
}

}
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// Set multiplier to reciprocal of conditional similarity
s.multiplier= 1/C;
// set cardinality of s
s.card =( cardinality()*b.cardinality())*C;
return s;

}
public Universal times(Universal b)

The product of two sets is their intersection. Intersection of two sets is an operation
defined in terms of the join functional, the equality operator and an operator left that
always returns its left argument. thus for sets r,s:

r× s = r(left§ =)s (2.5)

Consider two departments represented as unweighted ( equiprobable ) sets:

• sales= {Jo,Mo, Flo,Sue} with cardinality 4.

• marketing= {Lou, Sue, Mo} with cardinality 3.

under the normal interpretation of set theory their intersection would have cardinality 2.
The conditional similarity of the two sets is given by summing the product of the

probabilities of occurence of Sue and Mo in the two sets = 2× ( 1
4 ×

1
3 ) = 2

12 = 1
6 .

The cardinality is then the products of the individual set cardinalities by the condi-
tional similarity = 3×4

6 = 2 as expected.
Consider now an example using weighted sets.

• bombings= {England0.2,Ulster0.8} with cardinality 10, representing IRA bomb-
ings over the last 3 years.

• meteors = {Scotland0.3,Ulster0.1, Wales0.1, England0.5} with cardinality 2 repre-
senting probable meteorite falls over the next 3 years.

The intersection of the two sets would represent the probabilities that areas would have
an IRA bombing in the last 3 years and a meteorite fall in the next 3 years.

The conditional similarity is given as ∑{England0.2×0.5+Ulster0.1×0.8}= 0.18.
The cardinality is given as 2×10×0.18 = 3.6.
The resulting set is

3.6×{England0.55556,Ulster0.44444}

we can interpret this as there being 3.6 expected pairs of bombs and meteorites hitting
the same country.

{
if(b instanceof Set)
{ return join(new Left(),new Equals(),(Set)b);
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} else return undefinedValue;
}

public Universal plus(Number weight,Universal b)
{

double t,re,c1,c2,r;

r=((Numeric)weight).doubleValue();
if((r>1)||(r<0) ) return undefinedValue;
if(b instanceof Set)
{

Set b1=(Set)b;
Wset e= (Wset)EmptySet();
Enumeration [] n={members(),b1.members()};

Universal u;
int i;
for(i=0;i<2;i++){

for(;n[i].hasMoreElements();)
{

Universal ui=(Universal)n[i].nextElement();
e.addmember(ui,e.P(ui)+(i==0?r*P(ui):(1-r)*b1.P(ui)));

}
}
e.multiplier=1; // unitary scaling of weights
t=cardinality()+b1.cardinality(); // total cardinality
re= cardinality()/t; // equilibrium partionioning
c1= (re/r)*t; // two estimates of cardinality
c2= ( (1-re)/(1-r))*t;
e.card = (c1<c2?c1:c2); // chose minimum
return e;

} else return undefinedValue;
}

Union of sets

Disjoint Union
Consider the union operation, and more specifically the union operation on disjoint sets
A,B. We know by axiom (5) of probability theory that probabilities of disjoint sets should
be additive within the context of some set FE to which these constitute subsets. Thus if
we let C = A+B we know that

PC(C) = 1 = PC(A)+PC(B) (2.6)
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and that if Ai < A,B j < B then

PC(Ai +B j) = PC(Ai)+PC(B j) (2.7)

However we do not yet have enough information to derive PC() from PA() and PB().
If we make the assumption that

PC(Ai) = (PC(A))× (PA(Ai)) (2.8)

then we have an interpretation of the probability function over the union set in terms of
the conditional probability of Ai given that A occurs. Thus given a real number r : [0,1)
as an additional parameter to + , as in +r, we can define a new union operator that has
a consistent interpretaion:

A×B = {},C = A+r B,Ai ⊂ A⇒ PC(Ai) = rPA(Ai) (2.9)

From 2.9 we can deduce that

B j ⊂ B⇒ PC(B j) = (1− r)PB(B j) (2.10)

Clearly it is necessary to have a similar parameterisation of the insertion operator

A•r b = A+r {b} (2.11)

It is desirable to have an interpretation of the simple unparameterised + operator that
retains its original meaning. That is to say, it must preserve the meaning of the choice
operator. Unparameterised union, must result in a set all of whose members are equally
probable. This can be achieved if

a+b = a+re b,re =
‖a

‖a+‖b
(2.12)

that is to say, the sets are given union probabilities in proportion to their cardinalities.

2.4.1 Cardinality
The cardinality of the union of two sets is normally defined by the equation

A×B = {}⇒ ‖(A+B) = (‖A)+(‖B) (2.13)

For weighted sets, this is no longer sufficient. Instead we want to model situations like
the following: a department has 3 employees, { John who is there full time, Robert and
Gordon who each work half time }. However, the number of employees who are there
at any one time is 2. If we randomly select one of the employees present we will get
John 50% of the time, Robert 25% and Gordon 25% of the time.

This probability distribution can be obtained by parameterising the + operator with
0.5.

{John0.5,Robert0.25,Gordon0.25}= {John}+0.5 {Robert,Gordon}

Is there a treatment of cardinality that is consistent with our requirements?
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If we define re as in eqn(2.12), and let t = (‖A) + (‖B), then we can define the
cardinality of weighted unions as follows:

A×B = {},‖(A+r B) = min(
re

r
t,

1− re

1− r
t) (2.14)

This definition of cardinality reduces to the normal definition in the case of unweighted
union. In the example above we get:

‖({John}+0.5 {Robert,Gordon}) = min(
1/3
1/2
×3,

2/3
1/2
×3) = 2

Generalised Union
Having dealt with cardinality and disjoint union we can now take on the problem of union
between weighted sets with non-null intersections.

Suppose we have two departments sales ={John1/3,Robert2/3} and marketing=
{John1/5,Alice2/5, Gordon2/5}. Sales set has cardinality 1.5, marketing has cardinality
2.5. We can interpret this as John working half of his time in each department whilst
Robert, Alice and Gordon work full-time in their respective departments. The union of
the two departments sales-and-marketing= sales + marketing should have a cardinality
4, as four people work in it full-time, and each person should have equal weight. We
can generalise eqn(2.9) to:

C = A+r B,Ai ⊂ A,Ai ⊂ B⇒ PC(Ai) = rPA(Ai)+(1− r)PB(Ai) (2.15)

In the example of the sales and marketing department,
sales+marketing = sales+3/8marketing
by the normal equiprobable interpretation of union. Johns probability of being ran-

domly selected from the joint department is then 3
8 ×

1
3 + 5

8 ×
1
5 = 1

4 as desired.

public Universal plus(Universal b)
{ double t,re;
if(b instanceof Set){

t=cardinality()+((Set)b).cardinality();
re = cardinality()/t;
return plus( new Numeric(re),b);

}
else return undefinedValue;

}

The inherited plus operation is implemented in terms of the addition of sets using the
equiprobable ratios as in eqn(2.12).

}
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2.5 Relations
A Relation is a set all of whose elements are tuples, all of which are of the same arity
and type. It inherits all of its operations other than projection and join from sets. A
weighted relation similarly inherits all of its operations from weighted sets. We will treat
weighted relations as the general form with unweighted relations being treated as the
special case of a relation for which all tuples have equal weights.

Relations add to the set operations : Projection and Compression.
You should implement relations

2.5.1 Relational projection
Let r be a relation over tuples of type 〈t1, t2, t3, ..., tn〉 with ti being types, then if

x = r proj 〈 j,k, ...〉 (2.16)

with j,k, .. integers in range 1..n. Then x is a set of tuples of type 〈t j, tk, ...〉 and

∀a = 〈p,q, ...〉 ∈ x,∃i ∈ r|i j = p, ik = q, ...., etc (2.17)

and
∀z ∈ r,∃s ∈ x|s1 = z j,s2 = zk, ...., etc (2.18)

where in the above, the set membership operator ‘∈’ is interpreted as true if the proba-
bility of occurence of the tuple in the relation is non zero:a ∈ B⇒ PB(a) > 0.

2.5.2 Probabilities under projection
When projection occurs the probabilities of the projected tuples are the sum of the
probabilities of the tuples that are projected onto them. Thus in (2.16),(2.17)

Px(a) = ∑Pr(i)∀i ∈ r|i j = p, ik = q, ...., etc (2.19)

2.5.3 Cardinalities under projection
Since a weighted relation is taken to encode two things

1. A probability density function over a population characterised by the fields of the
tuples,

2. The size of the population - the cardinality of the relation

it follows that the population should be invariant under projection, in that projection is
equivalent to ignoring certain attributes of the population. Thus in (2.16), ‖x = ‖r.
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Chapter 3

Operators

The whole package contains classes for operators which I will distribute to you as a
packed jar file. You do not have to either implement these or use them, but I give them
to you for interest sake.
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