
Revision Concepts before course starts

1. Java compilation model

2. Subroutines/methods

3. Storage allocation

(a) variables

(b) objects

1

Compilation Model

Java is (largely) portable. Historically many high
level languages have come in significantly dif-
ferent versions that were different enough that
any significant program created in one couldn’t
run under the other system. And even when a
language has come with a clear standard, the
same program might behave differently on dif-
ferent systems simply because of hardware differ-
ences between computers.

2

Java has been largely successful in avoiding these
difficulties by employing a hybrid model of trans-
lation from source code to machine code. First,
Java’s developers proposed a universal interme-
diate primitive language called bytecode. This
language is a kind of primitive Esperanto that is
similar to every machine’s machine language. Java
comes with a compiler that translates every Java
program to bytecode.

Then comes a second phase. For every distinct
machine with a distinct architecture, there is a
final, interpreter-driven translation phase. A differ-
ent final phase has been written for every com-
puter. This final phase deals with the differences
between machines. The diagram below illustrates
this two-phased approach to Java compilation.

3

RUN ANY WHERE

4

The model used by compilers and interpreters is
different.

In a fully compiled language the source language
is translated directly into machine code

compiler interpreter

5

Just in time compiler as in Sun’s HotSpot com-
bines both an interpreter and a compiler

6

Methods, procedures, functions, subroutines

All of the above are alternative names for the
same basic concept.

The basic idea is that the program branches to a
position and remembers where it came from.

7

In the very first micropocessor (Intel 4004) this was
done by having a hardware stack on the proces-
sor chip onto which the program counter could
be saved when a subroutine call was made.

8

Later microprocessors used a stack in main mem-
ory which allowed much greater nesting of sub-
routine calls. But you can still get stack overflow!

on entry to routine after reserving variable space

The stack frame is where the local variables of a
method are stored.

9

HEAPS

Java is an Object Oriented Language which uses
a Heap for storage allocation. If you are to under-
stand how java works you need at least a basic
understanding of memory allocation techniques.

These are hidden from you by the Java system,
but they still have a big influence on what you
can and can not do.

10

MEMORY ALLOCATION

1. C style

2. Garbage collectors

(a) Ref count

(b) Mark sweep

(c) Conservative

3. Persistent store

11

Malloc

Data structure used

1

1

0

0

free bits16

32

16

48

size in bytes

free

free

Stack

allocated
block

program
variables

heap

12

MALLOC algorithm

int heap[HSIZE];
char *scan(int s)
{int i;
for(i=0;i<HSIZE;i+=heap[i]> >2)
if(heap[i]&1&&heap[i]&0xfffffffe>(s+4))
{
heap[i]^=1;
return &heap[i+1];

}
return 0;

}
char *malloc(int size)
{ char *p=scan(size);

if(p)return p;
merge();
p=scan(size);
if(p)return p;
heapoverflow();

}

13

FREE ALGORITHM

This simply toggles the free bit.

free(char *p){heap[((int)p> >2)-1]^=1;}

Merge algorithm

merge()
{ int i;

for(i=0;i<HSIZE;i+=heap[i]> >2)
if(heap[i]&1&&heap[heap[i]> >2]&1)
heap[i]+=(heap[heap[i]> >2]^1);

}

14

Problem

May have to chase long list of allocated blocks
before a free block is found.

Solution

Use a free list

15

1

1

0

0

free bits16

32

16

48

allocated
block

heap

freepntr

chain free
blocks
together

16

Problem

the head of the free list will accumulate lots of
small and unusable blocks, scanning these will
slow access down

Solution

use two free pointers

1. points at the head of the free-list

2. points at the last allocated item on the free
list

when allocating use the second pointer to initi-
ate the search, only when it reaches the end of
the heap, do we re-initialise it from the first pointer.

17

Idea of garbage collection

1. Relieve the coder of the problem of keeping
track of unused blocks.

2. Fix the memory leaks which tend to occur
when the coder has to do this.

3. Automatically free heap blocks which are un-
reachable from program variables.

18

Organisation of heap objects for garbage collec-
tion

Each object is given a header word that can in-
dicate whether it contains pointers. We need to
be able to find all pointers in a heap block.

A possible approach is:

pvec structvecstring
len lwb

upb
lwb
upb

pcount

strings integer vectors pointer vectors structures

pointers
 pointers

"abcd"
integers

integers

header tags

19

Each object has its pointers segregated from the
non-pointers - for instance the class

person{
int age;
string name;
person father, mother;
int cmsheight;};

could be represented on the heap by a C struct
looking like

struct person{ short tag; // = STRUCT TAG
short pntrs; // = 3
void * name,*father,*mother;
int age, cmsheight;}

20

An implication of this approach is that the pro-
grammer does not know in what order the data
fields will actually occur. This does not matter in
most cases, but where one has to write structures
to disk or use the language to control i/o devices
it can be desirable to have a known mapping
from declaration order to field addresses.

An alternative it to retain the original order of fields
but to have a pointer to a bitmap that specifies
which words in the object are pointers:

TAG

PBM

AGE

NAME

FATHER

MOTHER

HEIGHT

0000 1110

BITMAP

structure(int age, string name, pntr father, mother, int height)

indicates the pointer fields

STRUCTURE ON THE HEAP

IN STATIC STORE

21

Roots

A garbage collector must preserve all data reach-
able from certain roots these are pointers that
are referred to by program variables that are cur-
rently in scope. These divide into:

1. global variables - typically stored in the data
section but may be in several distributed chunks

2. variables in procedure invocations on the stack

In both cases we have the problem of specify-
ing which variables are pointers and distinguish-
ing these from other data on the stack.

22

Global variables can be subdivided into

1. Globals in languages like Ada, C, Delphi which
allow multiple compilation units. Such lan-
guages usually either provide no garbage col-
lector, or if they do provide one, only have a
conservative one. An exception to this was
Algol68 which had a non-conservative garbage
collector.

2. Globals in classic block structured languages
(Standard Pascal for instance). These can be
treated as special cases of procedure invo-
cations with the main program being just a
procedure that includes all the others.

23

Locals

We need some method of scanning the stack
and distinguishing between pointers and non-pointers.
Here are some techniques

1. Use a bitmap to describe the procedure con-
text, push a pointer to this on entry to the pro-
cedure. This follows the same technique as
used above for structs.

2. Use two stacks, one to hold all pointers, the
other for non-pointers.

3. Tag every word on the stack - used on the
Linn Rekursiv computer.

4. Use iterator functions associated with each
activation record.

24

2 stacks

slink

ret addr
dlink

plink

slink

ret addr
dlink

plink

FP

SP

PSP

scalar context of proc foo

pointer context
of proc foo

MAIN STACK

POINTER STACK

Need a second stack pointer register (PSP)

All pointer vars stored on the stack and accessed
via plink on main stack

Garbage collector visits all pointers on pstack

25

Tagged stack

int a
real b
pntr c
dlink
ret add

0
0
1
0
1

tag bits

26

Local iterator

Given the source procedure

foo(scalar x, vec1 p,vec1 q->scalar)
{
..... etc
}

transform to

foo(scalar x, vec1 p,vec1 q->scalar)
{

trav((vec1 x->void)gc->void)
{ gc(p);gc(q)}

..... etc
}

27

Ensure that the closure of trav is the first closure in
the frame of each procedure. Garbage collec-
tor calls trav for each frame passing in a visitor
function gc which does the actual garbage col-
lection.

Ref counting

Each a node on the heap has an associated count
of pointers to it. When the count falls to 0 the ob-
ject is freed. Rules:

1. When an object is allocated on the heap its
count=0

2. When a pointer is pushed on the stack, incre-
ment the count of the object associated

3. When a pointer is dropped from the stack,
decrement the count of the associated ob-
ject

4. on a:=b, decrement the count of a and incre-
ment the count of b.

5. on free(x) decrement count of all pointers in
x

28

Advantages of reference counts

• Performance is relatively predictable, not much
sudden usage of CPU for garbage collection

• Items freed as soon as possible, allows smaller
heaps to be used.

Disadvantages

• Does not collect circular pointer structures as
for these the reference count never reaches
zero. This is not a problem in some languages.

29

Mark Sweep collection

This is probably the most popular garbage collec-
tion technique, it uses a two pass approach

1. Visit each heap object recursively reachable
from the stack and set a mark bit in the header
word.

2. Scan the heap and set the free bit for any
object that does not have the mark bit set,
clearing the mark bits as you do so.

At the end all unreachable objects will have their
free bit set.

30

Mark pseudo code

mark ()
for each pointer p in stack do
rmark(p);

rmark(p)
if p.markbit=1 return;
p.markbit:=1;
for each pointer q in p do

rmark(q);

31

Advantages of Mark-Sweep

• Finds and disposes of all garbage

• Relatively simple to understand and implement

• Addresses of objects do not change

Disadvantages of Mark-Sweep

• Can lead to fragmentation

• Can lead to pauses in execution whilst it runs

Response: Semi space algorithms

These are designed to overcome the fragmenta-
tion problem, they can be extended to ovecome
the pauses.

32

Semi-space heap layout

1. uses 2 heap spaces

2. pointers are indirect via indirectory

freepntr
FREE

used

space 0

space 1

indirectory

heap block p

stack

pntr p

next

heap block
p->next

INACTIVE

ACTIVE

33

On heap full

1. toggle the active heap

2. Copy each object pointed to by the stack to
the new heap, adjusting the indirectory entry

Now looks like:

freepntr

FREE

used

space 0

space 1

indirectory

heap block p

stack

pntr p heap block
p->next

INACTIVE

ACTIVE

next

next

next

SCANPNTR

34

Advance scanpntr

In the second pass, the scan pointer is moved
forward until it reaches the freepntr, copying ev-
ery uncopied object for which it encounters a
pointer. At the end of garbage collection heap
looks like this.

freepntr
FREE

space 0

space 1

indirectory

heap block p

stack

pntr p

heap block
p->next

INACTIVE

ACTIVE

next

next

next
SCANPNTR

35

Recover indirectory

The indirectory is another resource that has to be
recovered. After the semi-space copying is done,
one can go through the indirectory and chain to-
gether all entries that point into the inactive ar-
eas. These then become free indirectory entries
that can be used to point to new objects.

36

Advantages

1. Data is compacted so that there are no frag-
mented chunks,

2. Concurrent implementations are possible (see
what follows)

3. Better performance on paged virtual mem-
ory

4. Will garbage collect loop structures

Disadvantages

1. Twice as much space is used

2. Indirectory slows down access

37

Who uses copying garbage collection?

Derivatives of this basic copying algorithm are pop-
ular in object oriented languages.

Java uses an algorithm similar to the one described.
This has implications for C interfaces to java, since
Java objects can be moved by the garbage col-
lector during program runs, C code must not re-
tain pointers to them.

38

Concurrent garbage collection

With semi-space collectors it is possible to run the
garbage collector concurrently with the main pro-
gram. This prevents annoying pauses

The concurrent garbage collection is spawned
after the stage of copying over all objects reach-
able from the stack has been achieved.

It then runs in parallel with the main program ad-
vancing the scan pointer and copying objects
from the inactive to the active area.

The compiler must ensure that if a pointer field in
an object in the active area is assigned a pointer
to an object currently in the inactive area, that
object must be copied accross to the active area
before the assignment.

If this is not done, the concucurrent collector could
loose pointers to lexically reachable objects.

39

Conservative Collectors

The garbage collectors desribed so far are suit-
able for type safe languages. In C the existence
of union types and the tendency of programmers
to copy pointers into integers means that type in-
formation can not be relied upon to find pointers.

This does not rule out garbage collection for C.

If you know that the heap exists within a certain
address range, heapbase..heaptop then this infor-
mation can be exploited to find pointers.

Scan the stack, check each word on it to see if it
is in the range of heap addresses, if it is, assume it
is a pointer and mark the object it points to.

Problems

40

1. You will include a few integers that just hap-
pen to be in the right address range. Call
these pseudo objects.

(a) At one level, this does not matter too much,
it simply means that not all the garbage
will be collected.

2. If you try to mark a pseudoobject they you
might set a mark bit in the middle of a valid
object and corrupt it.

(a) Solution: use a distinct bitmap to hold the
mark bits.

Example approach

• Allocate store in 16 byte chunks. The bitmaps
have a bit for each 16 byte block of the heap.

• Use 3 data structures

1. Heap proper

2. Start bitmap, with a bit set for the start of
each allocated heap object

3. Mark bitmap, with a bit set for each chunk
into which a pointer is found

41

• When marking P

1. set bit P in the mark bitmap,

2. and determine the start of the block by
scanning backwards through the start bitmap.

3. then call mark on all words in the heap
block

• When sweeping, free a heap block if none of
its 16 byte chunks is marked.

• Marking must search for pointers on every pos-
sible byte boundary.

42

16 byte chunks
start bit map

mark bit map

stack

HEAP

object with no
pointers to it

unused area

unused

unused

unused

pointer to
the middle
of an object

43

Persistent Heaps

A number of programming languages support Per-
sistence: the notion that data on the heap out-
live the program and can be loaded into the mem-
ory space of another program.

APL supported this with its ’Workspace’ concept

Smalltalk supported it

PS-algol introduced it to imperative languages

PJama - persistent java from Sun supported it, as
did a number of other Java implementations.

Persistence is based on a generalisation of garbage
collection techniques to cover filestore as well as
RAM. It allows arbitrary databases to be built up
in the heap, giving all the benefits of the pro-
gram languages : structuring, strong type check-
ing etc, with the long term storage of files.

We will look at two approaches to persistence -
the Smalltalk and the PS-algol approach.

44

Smalltalk store

Segmented virtual memory approach

Addresses in the Smalltalk virtual machine split into
two parts segment and offset. Originally these
were only 20 bits in all, but here I give an exam-
ple based on the segmented address structure of
the Intel CPUs.

SEG OFFSET

16 32

These are interpreted by the memory manage-
ment system as follows

45

SEG OFFSET

16 32

baselength
flags

address space

present bit

dirty bit

executable bit

segment for
all wigits

descriptor table

+

a wigit

wigit #43

CLASS INSTANCE
pointer to mother
of all wigits

00000000

FFFFFFFF

If the present bit is not set, an address fault occurs
and the run time system can load the segment
into memory from disk.

46

This is like paging except that the segments are
of variable size, and can be much bigger than
pages, or alternatively very small.

The language run time system allocates addresses
so that

1. All objects of the same class share the same
segment. Thus the segment number in the
pointer to an object encodes its type.

2. At the start of each segment is a pointer to
the class descriptor of the type, which can
be used to find methods etc.

3. At program terminate, segments are swapped
back to disk to ensure that the programmers
environment persists.

4. Garbage collection by reference counting.

47

