visitor Paradigm

For Advanced Programming
Paul Cockshott



What Is 1t for

 We may have trees which represent some
linguistic or other structure

* We may want to Examine this tree
 We may want to Modify this tree



Example of a tree

* We can represent |
part of a program t

as a tree i \

If(a<(b*c))x= a+1;

assign

dyad

VRN

dyad X dyad

AN




Node abstract class

This has methods
e void examine(TreeExaminer e)

A method that is used by an
examiner to visit all locations.

* Node modify(TreeModifier m)

A method that must be instantiated
allowing a TreeModifier to substitute
values into the tree.



Extends Node has fields
* Node left
left operand
* Op O
operator
* Node right
right operand



Assign extends Node

* Node dest

Destination of assignment
* Node src

Source data being assigned



If — extends Node

* Node al

action taken if cond is true
* Node a2

action taken if cond is false
 Node cond

the condition



Examine

* Each class of node has to implement an
Examine method which is used by
TreeExaminer classes to examine the tree

* | will show you the Examine method of
the class Dyad



Examine for Dyad

public void examine(TreeExaminer e) {
If (e.visit(this)) {
iIf (left '= null) {
left.examine(e);
}
If (right '=null) {
right.examine(e);

}

If (O !=null) {
O.examine(e);

¥

}

e.leave(this):

}



mutual feedback

>—
examine
this - . left
Vst -
class examiner
\ class dyad
right
what to do

how to get there



Examine for class If

public void examine(TreeExaminer e) {
if (e.visit(this)) {

If (@l '= null) {
al.examine(e);

}

if (@2 !'= null) {
aZ2.examine(e);

}

if (cond !'= null) {
cond.examine(e);

}
}

e.leave(this);

}



Abstract Class TreeExaminer

* public boolean visit(Node n)

This iIs called each time a node is visited,
but before any subtrees are visited. If it
returns false the subtree below the node
IS not visited

* public void leave(Node n)

This Is called after all subtrees have
been visited



CommonExpressionFinder

* This Is a tree
visitor that will find
all expressions that
occur more than
once in a tree

if

v

e |n this tree 'a’
dyad

occurs twice /j \ l \

dyad X dyad

SN

assign




leave method

Assume that we have a

public void leave(Node n) { hashtable called allexp within
String s = n.toString(); the ExpressionFinder

Object o = allexp.get(s);

If (0 == null) { .
int{]count = new int[1]; = Aoy of Mtegers to hold the
count[0] = 1; count
allexp.put(s, count);
} else {
int[] freq = (int[]) o;
freq[O]++;
}



Modify method of Dyad

public Node modify(TreeModifier m) {
if (m.visit(this)) {
try {
return new Dyad(m.modified(left), m.modified(right),
((Op) m.modified(0O)));
} catch (Exception ex) {

System.out.printin(ex);

}

return this;



Abstract class TreeModifier

* Node modified(Node n)
This returns the rewritten node n
e boolean visit(Node n)

This Is called each time a node is
visited, but before any subtrees are
visited.



ExpressionSubstituter

* Field Summary
* Node[] A
array of targets
* Node[] B
array of replacement values



Modified method

public Node modified(Node n ) {
String oldpad=pad;

boolean found=false;
int pos=0;
Node res=n;
try {
for (int i=0;i<Astr.length;i++)
if(!found)if (eq(n,i)) {found=true;pos=i;}
If (found) res=B[pos]; else res=n.modify(this);}
catch(Exception ex)
{ System.out.printin("Error in modifying ");}
return res;



Visitor Paradigm

 Allow examiners and modifiers to be
written that do not know how the tree is
structured

* The examiners and modifiers can
concentrate on one small task, the visit,
leave and modified methods encapsulate
the work.



Compare to Iterator/Enumerator

 Collections classes use
lterator/Enumerator classes to return the
elements of a collection.

* These are less general than the Visitor
Paradigm and are suitable only for
collections rather than irregular complex
trees.



