
v i s i to r Pa rad igm

For Advanced Programming
Paul Cockshott

What i s i t f o r

● We may have trees which represent some
linguistic or other structure

● We may want to Examine this tree
● We may want to Modify this tree

Example o f a t ree

● We can represent
part of a program
as a tree

if(a<(b*c))x= a+1;

if

dyad

dyad dyad

assign

a

b
c a

1

x

<

* +

Node abs t rac t c lass

This has methods
● void examine(TreeExaminer e)

 A method that is used by an
examiner to visit all locations.

● Node modify(TreeModifier m)

 A method that must be instantiated
allowing a TreeModifier to substitute
values into the tree.

Dyad

Extends Node has fields
● Node left

 left operand
● Op O

 operator
● Node right

 right operand

Ass ign ex tends Node

● Node dest

 Destination of assignment
● Node src

 Source data being assigned

I f – ex tends Node

● Node a1

 action taken if cond is true
● Node a2

 action taken if cond is false
● Node cond

 the condition

Examine

● Each class of node has to implement an
Examine method which is used by
TreeExaminer classes to examine the tree

● I will show you the Examine method of
the class Dyad

Examine fo r Dyad

public void examine(TreeExaminer e) {
 if (e.visit(this)) {
 if (left != null) {
 left.examine(e);
 }
 if (right != null) {
 right.examine(e);
 }
 if (O != null) {
 O.examine(e);
 }
 }
 e.leave(this);
 }

examine

class dyad

class examiner

visit
left

right

this

mutua l feedback

what to do

how to get there

Examine fo r c lass I f

public void examine(TreeExaminer e) {
if (e.visit(this)) {

if (a1 != null) {
a1.examine(e);

}
if (a2 != null) {

a2.examine(e);
}
if (cond != null) {

cond.examine(e);
}

}
e.leave(this);

}
●

Abst rac t C lass T reeExaminer

● public boolean visit(Node n)

 This is called each time a node is visited,
but before any subtrees are visited. If it
returns false the subtree below the node
is not visited

● public void leave(Node n)

 This is called after all subtrees have
been visited

CommonExpress ionF inder

● This is a tree
visitor that will find
all expressions that
occur more than
once in a tree

● In this tree 'a'
occurs twice

if

dyad

dyad dyad

assign

a

c a

x

<

* +

l eave method

 public void leave(Node n) {

 String s = n.toString();
 Object o = allexp.get(s);
 if (o == null) {
 int[]count = new int[1];
 count[0] = 1;
 allexp.put(s, count);
 } else {
 int[] freq = (int[]) o;
 freq[0]++;
 }
 }

Assume that we have a
hashtable called allexp within
the ExpressionFinder

we are using a one element
array of integers to hold the
count

Mod i fy method o f Dyad

 public Node modify(TreeModifier m) {

 if (m.visit(this)) {

 try {

 return new Dyad(m.modified(left), m.modified(right),

 ((Op) m.modified(O)));

 } catch (Exception ex) {

 System.out.println(ex);

 }

 }

 return this;

 }

Abst rac t c lass T reeMod i f i e r

● Node modified(Node n)

 This returns the rewritten node n
● boolean visit(Node n)

 This is called each time a node is
visited, but before any subtrees are
visited.

Express ionSubst i tu te r

● Field Summary
● Node[] A

 array of targets
● Node[] B

 array of replacement values

Mod i f ied method

public Node modified(Node n) {
String oldpad=pad;

boolean found=false;

int pos=0;

Node res=n;

try{

for (int i=0;i<Astr.length;i++)

 if(!found)if (eq(n,i)) {found=true;pos=i;}

if (found) res=B[pos]; else res=n.modify(this);}

catch(Exception ex)

{ System.out.println("Error in modifying ");}

return res;

}

V is i to r Pa rad igm

● Allow examiners and modifiers to be
written that do not know how the tree is
structured

● The examiners and modifiers can
concentrate on one small task, the visit,
leave and modified methods encapsulate
the work.

Compare to I t e ra to r /Enumera to r

● Collections classes use
Iterator/Enumerator classes to return the
elements of a collection.

● These are less general than the Visitor
Paradigm and are suitable only for
collections rather than irregular complex
trees.

