
PLDI3 notes

Paul Cockshott

October 3, 2001



Contents

1 Grammars and machines 4
1.1 Class 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Class 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Class 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Hierarchy of grammars . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 How should state bits be organised? . . . . . . . . . . . . . . . . 9
1.6 Random Addressed store . . . . . . . . . . . . . . . . . . . . . . . 10

2 Lexical analysis 13
2.1 Tabular FSM representation . . . . . . . . . . . . . . . . . . . . . 14
2.2 Character Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The primitive state machine . . . . . . . . . . . . . . . . . 18
2.2.2 Class table . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 McCtab program . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Output Classes and Actions . . . . . . . . . . . . . . . . . 21
2.2.5 Assign Characters to Classes . . . . . . . . . . . . . . . . 21

2.2.5.1 Make comment . . . . . . . . . . . . . . . . . . . 23
2.2.5.2 Output class . . . . . . . . . . . . . . . . . . . . 23
2.2.5.3 De�ne Charactersets . . . . . . . . . . . . . . . 24
2.2.5.4 Opsys . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5.5 Brackets . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5.6 Alphanumerics . . . . . . . . . . . . . . . . . . . 25

2.2.6 Transition table . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 Recognise and print . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Recognise . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Interface to FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.0.1 Compute new state . . . . . . . . . . . . . . . . 29
2.3.0.2 Handle end of bu�er . . . . . . . . . . . . . . . . 29
2.3.0.3 Get next character . . . . . . . . . . . . . . . . . 29

2.3.1 TEXTBUFFER . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Rewind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Push bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Pop bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Identi�er management . . . . . . . . . . . . . . . . . . . . . . . . 31

1



CONTENTS 2

2.5 Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Trie data structure . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Trie insertion . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2.1 Create a new node . . . . . . . . . . . . . . . . . 35
2.5.3 Recursive insert . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3.1 Add another letter . . . . . . . . . . . . . . . . . 37
2.5.4 Last letter of a word . . . . . . . . . . . . . . . . . . . . . 38

2.5.4.1 Char less than pre�x . . . . . . . . . . . . . . . 38
2.6 Lexeme De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Interface to syntax analyser . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Mustbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.2 Syntax errors . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.3 Current Id . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.4 Converting lexemes to strings . . . . . . . . . . . . . . . . 43
2.7.5 NextSymbol . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.5.1 Convert string to number . . . . . . . . . . . . . 46
2.7.5.2 Convert string to internal form . . . . . . . . . . 46
2.7.5.3 Convert pre�xed characters . . . . . . . . . . . . 47
2.7.5.4 Type coercion operation . . . . . . . . . . . . . . 47

2.7.6 Detect run time error location . . . . . . . . . . . . . . . 48
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Syntax analysis 50
3.1 Speci�cation of a machine readable syntax . . . . . . . . . . . . . 52
3.2 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Types and identi�ers 60
4.1 What types are. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Cartesian composition . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Subranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Constancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8 Representing types in a compiler . . . . . . . . . . . . . . . . . . 62
4.9 Representing Identi�ers . . . . . . . . . . . . . . . . . . . . . . . 64

5 Code generation 68
5.1 Modi�cation of syntax analyser . . . . . . . . . . . . . . . . . . . 68
5.2 Notion of an abstract machine . . . . . . . . . . . . . . . . . . . 70
5.3 Expressions and reverse polish notation . . . . . . . . . . . . . . 70
5.4 Handling of conditionals . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 If clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 For loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Variable access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS 3

5.5.1 Stack variables . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 Procedure calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.1 Simple procedures . . . . . . . . . . . . . . . . . . . . . . 80
5.6.2 Nested procedures . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Structure of the code generator . . . . . . . . . . . . . . . . . . . 84
5.7.1 Register use . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7.2 Keeping track of the stack . . . . . . . . . . . . . . . . . . 85

6 The Assembler 87
6.1 Converting the opcodes . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Address handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 The interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Algorithms

1 tabular FSM representation . . . . . . . . . . . . . . . . . . . . . 15
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Finite state transducer module FSM . . . . . . . . . . . . . . . . 19
4 mckctab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 assign characters to classes . . . . . . . . . . . . . . . . . . . . . 23
7 make comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Output class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 de�ne charactersets . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10 Opsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11 Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12 Alphanumerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13 recognise and print . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14 recognise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15 interface to FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16 compute new state . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17 Handle end of bu�er . . . . . . . . . . . . . . . . . . . . . . . . . 29
18 get next character . . . . . . . . . . . . . . . . . . . . . . . . . . 29
19 textbu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
20 rewind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
21 push bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
22 pop bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
23 program SIMTRANS . . . . . . . . . . . . . . . . . . . . . . . . . 33
24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
25 Insert token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27 The recognizer for case clauses . . . . . . . . . . . . . . . . . . . 55
28 parsing exp4s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
29 Basic type checking functions in a compiler . . . . . . . . . . . . 63
30 If clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
31 for loop code generation . . . . . . . . . . . . . . . . . . . . . . . 76
32 code generated for a for loop . . . . . . . . . . . . . . . . . . . . 77
33 example of nested scopes . . . . . . . . . . . . . . . . . . . . . . . 79
34 Code generated for the nested scopes in algorigthm ?? . . . . . . 79
35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4



LIST OF ALGORITHMS 5

36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Introduction

The notes in this collection are designed to suplement the material presented
in lectures. They give more details on several topics covered in the course. In
doing this they use illustrations drawn from the compiler writers toolbox, a
library of Pascal modules for the implementation of interactive compilers under
MS-DOS. The toolbox is available from Paul Cockshotts web pages.

It should be noted that whilst the source code is given in Pascal, the essential
principles of the algorithms are not altered by shifting to Java, C or some other
language.

Some detailed algorithms are provided with close documentation, in partic-
ular the algorithms for implementing lexical analysers. These are provided as
background material only. It should not be necessary for you to implement a
lexical analyser in your exercises, as a ready written lexical analyser class is
provided. However, the interface between the lexical analyser described in these
notes and the Basic lexical analyser that you will be using for your course are
very similar.

6



Chapter 1

Grammars and machines

What makes a language a language rather than an arbitrary sequence of symbols
is its grammar.

A grammar speci�es the order in which the symbols of a language may be
combined to make up legitimate statements in the language. Human languages
have rather relaxed informal grammars that we pick up as children. Computer
languages are sometimes called formal languages because they obey an explicitly
speci�ed grammar.

When people came to design computer languages around the end of the
1950's they had to devise methods of formally specifying what the grammar of
these new language was to be. By coincidence the linguist Chomsky had been
investigating the possibility of formally specifying natural languages, and had
published an in�uential paper in which he had classi�ed all possible grammars
into 4 classes. These classes of grammars are now refered to as Chomsky class
0, class 1, class 2 and class 3 grammars. It turns out that Chomsky class 2
and class 3 grammars are most suitable to describe programming languages. To
understand what these di�erent classes of grammars are we need to go into a
little formal notation.

The syntax or grammar of a language can be thought of as being made up
of a 4 tuple (T ,N ,S,P) where:
T stands for what are called the terminal symbols of the language. In a

human language these terminal symbols are the words or lexicon of the language.
In a computer language they are things like identi�ers, reserved words and
punctuation symbols.
N stands for what are called the non-terminal symbols of the language.

In a human language a non-terminal would be grammatical constructs like a
sentence, a noun clause or a phrase. A computer language is likely to have a large
number of non-terminals with names like clause, statement, expression .
S is the start symbol of the grammar. It is one of the non terminals. Its

meaning will become clear shortly.
P is a set of productions or rewrite rules. These tell you how to expand a

non-terminal in terms of other terminals and non-terminals.

7



CHAPTER 1. GRAMMARS AND MACHINES 8

This sounds a bit dry, but it will be clearer if we give an example. Suppose
we wish to de�ne a grammar that describes the `speech' of a tra�c light. A
tra�c light has a very limited vocabulary. It can say red or amber or green
or red-and-amber. These are the terminal symbols of its language.
T = { red, green, amber, red-and-amber }
At any moment in time the tra�c light is in a current state and after some

interval it goes into a new state that becomes its current state. Each state
is described by one of the colours of T . This can be expressed as a set of
non-terminal symbols which we will call:
N = { going-red, going-green, going-amber, going-red-and-amber }
We will assume that when the power is applied for the �rst time the light

enters state going-red. Thus
S = going-red
A tra�c light has to go through a �xed sequence of colours. These are the

syntax of the tra�c light language. Which sequence it goes through is de�ned
by the productions of the tra�c light language. If the light is in going-red then
it must output a red and go into going-red-and-amber. We can write this down
as:

going-red → red going-red-and-amber
This is an individual production in the tra�c light language. The whole set

of productions is given by:
P = { going-red → red going-red-and-amber
going-green → green going-amber
going-red-and-amber → red-and-amber going-green
going-amber → amber going-red
}
This combination of (T ,N ,S,P) ensures that the only sequence of colours

allowed by the tra�c light are thing like :
red red-and-amber green amber red going-red-and-amber
It turns out that tra�c lights speak the simplest of the Chomsky classes of

language, which perversely enough is class 3.
To distinguish between these classes of grammars the following notation will

be used:
bold letters : a b c ... represent non-terminals
italic letters : a b c ... represent terminals

1.1 Class 3

Class 3 languages like that of the tra�c light have all of their productions of
the form:

a→ ab
or
a→ c
The tra�c light obviously only has the �rst type of production or it would

stop at some point. These simple languages occur widely in nature. Look at



CHAPTER 1. GRAMMARS AND MACHINES 9

Figure 1.1: Plant generated by a regular grammar
T = { �ower, left, right }
N = { lstem, rstem }
S = lstem
P = { rstem→ �ower
lstem→ left rstem
rstem→ right lstem
}

the patterns of leaves round the stem of a plant. They will often alternate left
or right, or form a spiral that can be described by a class 3 grammar. In the
example in �gure 1.1 we can describe the plant shape by the grammar:

Class 3 grammars are also sometimes described at regular grammars and
the patterns they describe as regular expressions. It turns out that the reserved
words of most computer languages can be described by class 3 grammars. We
will go into this in more detail in chapters ?? and ??.

1.2 Class 2

Class 2 grammars, also called context free grammars have productions of the
form

a→ b
where a is a non-terminal symbol and b is some combination of terminals

and non terminals. We could describe the `if' expression in an algol like language
as:

if-expression→ if expression then expression else expression
where italics are non-terminals and bold letters are terminals. Most of the

syntax of algol like programming languages can be captured using class 2 gram-
mars. How these are used makes up the main topic of chapter ??.

1.3 Class 1

Class 1 grammars, also called context sensitive grammars have production of
the form

abc→ axc
where a and c are strings of terminals and non-terminals,
b
is a single non-terminal and x is a non-empty string of terminals and non-

terminals.
The reason why these are called context sensitive is that the production of

x from b can only occur in the context of abc. In the context free languages
a non terminal can be expanded out irrespective of the context. Although the



CHAPTER 1. GRAMMARS AND MACHINES 10

Program Module Grammar
type checking class 1
syntax analysis class 2
lexical analysis class 3
Figure 1.2: The hierarchy of grammars is re�ected in compiler structure

bulk of a programming language's syntax can be described in a context free
fashion, some parts are context sensitive. Consider the line:
x:=9

This will only be valid if at some point previously there has been a line
declaring x. The name of the variable must have been introduced earlier and
it must have been speci�ed that it was an integer or real variable. The context
sensitive part of the language is dealt with by the type checking system. In
untyped languages like Basic context sensitive parts are minimal. In more ad-
vanced languages they are crucial. Class 0 grammars, the most powerful class
are not needed for translating programming languages and we will ignore them.

1.4 Hierarchy of grammars

A programming language can be translated by using a hierarchy of grammars.
At the lowest level we use class 3 grammars to recognise the identi�ers and

reserved words of the language. Above that we use class 2 grammars to analyze
the context free parts of the language. Finally we use type checkers to verify
that the context sensitive rules of the language are being obeyed. The structure
of the compiler re�ects this structure of the language. to each of the layers
of grammar there is a module of the compiler. It also turns out that in our
strategy for writing the compiler we can take advantage of a relationship which
exists between classes of grammars and types of computing machines.

The idea of store and stored state will be familiar to all programmers, but a
stored program computer need not in principle be anything like the Von Neu-
mann machines that we normally call computers. There are in principle much
more general purpose designs. At the most general level digital computer ca-
pable of performing computation over time must contain a set of storage cells
each capable of holding a bit. The computer is capable of existing in a number
of states characterised by the values in its storage cells. If we consider these
we can see that the number of states that the computer can occupy will be 2s

where s is the number of storage cells in the machine.
Computation proceeds by the computer going from one state to the next as

shown by �gure 1.3.
Clearly the number of state that a computer can go through in the course of

a computation will be 2s. The larger the number of storage cells in the machine



CHAPTER 1. GRAMMARS AND MACHINES 11

Figure 1.3: Computation as an evolution of numbered states

&%
'$

(0,0)1-&%
'$

(0,0)2-&%
'$

(0,0)3

Figure 1.4: A digital door lock

the longer or more complex the sequence of state that it can go through. This
relationship is familiar to us all in the way more complex programs demand
more store.

To actually perform computation it is necessary to be able to modify the
sequence of states that the computer goes through on the basis of input signals.
To produce any useful e�ect the computer must generate one or more output
signals, to indicate the result of the computation. Reduced to its most simple a
computer must be capable of responding to a sequence of inputs and generating
appropriate outputs.

Consider a machine that has to recognise a 3 digit sequence and then respond
with a yes or no according to whether or not the sequence was correct. An
example might be digital door lock as shown in the diagram below. This requires
the sequence 469 to be keyed in to open the lock. This sequence of numbers can
be described by a class 3 grammar: (T ,N ,S,P) where
T = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }
N = { s, t, u }
S = s
P = {
s→ 4t
t→ 6u
u→ 9
}
We de�ne a set of numbered states corresponding to the non terminals of the

grammar such that s = 1, t = 2 etc. The machine starts in state 1 and undergoes
transitions to successive states on the basis of the keys that are pressed. If any
incorrect key is pressed the state reverts to the start state. This is shown in
�gure 1.4. The collection of numbered circles with arrows connecting them is
called a state transition diagram.



CHAPTER 1. GRAMMARS AND MACHINES 12

Figure 1.5: A �nite state machine

1.5 How should state bits be organised?

Given that we wish to be able to represent state, it still does not follow that
we will end up with a random access store. There are other possibilities, which
have been tried in the past, and which still have certain limited applications. If
each bit represents a state we could easily construct the door lock by stringing
4 cells together in sequence and having them activated sequentially by the and
of the signal from a button and the previous state.

This is simple to implement and some digital logic used to be built this way,
but it makes poor use of the state bits as we only get s rather than 2s states
from an s bit store.

An improved arrangement is to gather all of the bits in the computer into
one word s bits long. This is then treated as a binary number and the computer
program can be thought of as a mapping of the form:

program:(int x input)→ (int x output)
Succesive application of the program function to the state word and the

input generates a new state and an output. This is in theoretical terms the
ideal way to construct a computer. For large s the number of states possible
becomes astronomical. A computer with a 64 bit status word could have a state
to represent every centimeter of the distance between here and the nearest star.
This sort of computer is a generalised �nite state automaton . If the computer
is organised as shown in �gure 1.5.

This architecture can go from any state to any other in a single step - from
here to Alpha Centauri without stopping on the way. Each bit in the current
state can be taken into account in determining the next state. All values of the
input bits can be taken into account likewise. A class 3 grammar can be handled
by a �nite state machine. Finite state machines are widely used in computer
hardware in the form of PLA's or programmable logic arrays. These are basic
components of microprocessors that are used to decode machine instructions.
The instruction decode unit of a microprocessor has to parse machine code.
Machine code has a class 3 grammar so a �nite state machine is enough.

Although this sort of machine is very fast, we have practical di�culties in
scaling it up. The problem is the rate at which hardware complexity increases
with the size of the computer. The number of interconnection wires required
to allow each state bit to a�ect the next state of every other bit goes up as the
square of the number of bits, and the number of logic cells (ANDs , ORs) to
do this goes up quadratically in the number of state bits. This is illustrated in
�gure 1.6.



CHAPTER 1. GRAMMARS AND MACHINES 13

Figure 1.6: The number of wires used to connect state cells in �nite automata
goes up as s(s− 1)

��������

����
����
�
�
�
�@

@
@
@����
���� ����HHHH














�
��
��
��
�

��������

��
�
�

J
J
J
J
J
JJ

HHH
HHHH

H

���� ����HHH
H

����

����

Figure 1.7: A random addressed store computer

1.6 Random Addressed store

If instead of connecting all of the state cells to one another, we organise the
state cells into subgroups of bits termed words and lead these into a common
logic block then we can diminish the number of wires considerably

If we divide our s state bits into w = s/b words each of b bits, and wire them
up in a grid, we need only (w+b) wires to join them to the common logic block.
What we then have is the random access memory computer. Like a generalised
�nite state automaton it runs in a cycle reading the present state and modifying
the state vector as a result of what it has read but it is less powerful than an
FSA in that at most w bits of the state can be taken into account each cycle
and at most w bits of the state altered in each cycle.

The paradox is that although the FSA is the fastest type of computing
machine, used in CPU's where speed matters, it is linguistically the least com-
petent. Suppose that I have a class 2 grammar (T ,N ,S,P)

where
T = { ), (, 1, 2, 3 }
N= {s, t, u }
S= s
P= {s→( t )
t→1u2u→t
u→s
u→3
}
This can generate sequences like
(132) or (11322) or (1(132)2)



CHAPTER 1. GRAMMARS AND MACHINES 14

Figure 1.8: Stack machine parsing a class 2 grammar

You will �nd that you can not draw a state transition diagram that is capable
of handling this syntax. In fact it can not be handled by a �nite state machine.
The machine would have to remember how many left brackets and how many
1s it had encountered and in what order they had come so that it could match
them up with right brackets and 2s. Since the sequence de�ned by the grammar
can be of arbitrary length, no �nite memory could hold the information.

To handle a class 2 grammar like this you need to have an in�nite stack
memory. As each left bracket or one is encountered, a token representing it is
pushed onto the stack. When parsing, the computer looks at the top of the
stack and at the next character to decide what state to go into.

Of course in practice any stack that we build will be of �nite depth. This
means that looked at another way a stack machine is still a �nite state automa-
ton.

There will be sequences of symbols that are just too long to parse. For
practical purposes we are willing to accept that some programs are too big to
compile. But we can write our compiler as if it was going to run on a computer
with an in�nite stack. This technique allows us to write a program that only
needs to have a small number of rules in it. The complexity of the parser is then
limited by the size of the grammar itself rather than by the size of the programs
it will have to compile.

When we take into account context sensitive information, we will need the
full facilities of a random access memory in which we can built up information
about what identi�ers and types have been declared. Broadly speaking, the
lexical analysis part of compiling will be handled by algorithms that mimic a
�nite state machine. The syntax analysis will be handled using a stack, and the
type checking will use a random access heap.

Exercises

1. Consider the following grammar.
expression→ ( expression )
expression→ expression + expression
expression→ number
number→ digit number
number→ digit
digit→ 0
digit→ 1

2. give 4 examples of valid expressions derived from this.



CHAPTER 1. GRAMMARS AND MACHINES 15

(a) give a description in words of the language produced by the grammar.
(b) what class of grammar is this.

3. Give a grammar that describes decimal integers in place notation.
4. Give a grammar for Roman numerals.
5. Give a grammar that describes the behaviour of an automatic co�ee

machine.



Chapter 2

Lexical analysis

Lexical analysis is the process of recognizing the elementary words or lexemes
of a programming language. Suppose we wish to recognise the reserved words
begin or while or end.

A �le which contained one or more of these words could be produced by a
grammar of the form:

.*(begin| while|end).*
where
.→ any character
* means an arbitrary number of repetitions
| means alternation
This type of grammar which contains no recursive de�nitions corresponds to

the class 3 grammars described in the previous chapter, is also termed a regular
grammar. It is known that to each regular grammar there corresponds a �nite
state machine that can act as a recognizer for that grammar. The grammar
above would produce the set of strings recognised by the �nite state machine
shown in Figure 2.1. In this diagram each state of the machine has a number
and is drawn as a circle. There are lines ( or arcs as they are called in graph
theory) going between the states. The arcs are labeled with letters. If we start
out in state 0 and get a b then we go to state 1.

The letters e g i will then take us through states 2 to 4. The �nal n puts
us into the hit state indicating that we have found one of the words. If at any
state we get the wrong letter the machine goes back to state 0.

This class of �nite state machines can be represented in computer memory
in a number of di�erent ways. One way to do it would be with the pascal
record types shown in the listing below. To use this datastructure you would
need a pointer to the present state, then for each character in the �le you were
searching you would run down the list of transitions to see if any applied. If

Figure 2.1: A state machine recognizer

16



CHAPTER 2. LEXICAL ANALYSIS 17

they did you would take the transition, otherwise you would jump back tot he
start state.

type
transition = record

letter :char ;
nextstate : ^ state;
other_transitions: ^transition;

end;

state= record
hit: boolean;
transitions:^ transition;

end;

2.1 Tabular FSM representation

A simpler datastructure to use would be a two dimensional array indexed by
the current state and the incoming character. The recognition can then be
performed by a very simple fast algorithm. Given:
• a state transition table T [S,C] indexed on a set of states
• S = {0, P, h}
where
• 0 is the start state,

� h the hit state
� P the
parse states

• a character set C
• a �le of characters F with the operator
next(F )→ C that returns the next character in a �le
• a current state s

then the table T may be interpreted as a �nite state recognizer by the algorithm
shown in �gure 2.2.

This algorithm provides the bare bones of a lexical analyzer. We can envisage
coding it up in pascal and getting something like listing ??.



CHAPTER 2. LEXICAL ANALYSIS 18

1. s← 0

2. s← T [s, next(F )]

3. if s ∈ {0, P} goto 2
4. stop, the pattern has been recognised

Figure 2.2: Table driven �nite state recognition algorithm

We assume that the �nite state automaton algorithm will be applied to a
program held in a bu�er. A function scan can be applied to this bu�er and
will return whether it found a lexeme. In a var parameter found the compiler
returns the second last state. In this simple algorithm we will assume that this
state is su�cient to distinguish the lexemes that are being looked for.

Algorithm 2
type buffer = array[0..maxbuf] of char;
var buf:buffer;
function scan(var found:state;var hitpos:integer):boolean;

this returns true if a hit is found in the bu�er
var i:integer;S:state;
label 1,2;
begin

for i:=hitpos to maxbuf do begin
S:=table[s,buffer[i]];
if S = hitstate then goto 1;
found:=S;

end;
scan:=false;
goto 2;
1:
scan:=true; hitpos:=i;
2:

end;

2.2 Character Classes

In practice the task of a lexical analyzer is more complicated than this.
The lexemes of the language are not just made up of reserved words. There

are variables and strings, comments and numbers to contend with. Although



CHAPTER 2. LEXICAL ANALYSIS 19

Figure 2.3: Two stage Lexical analysis

Low Level FSM

String Recognition

Number Recognition

Identi�er Recognition

A
A
A
A
AU

-�
�
�
�
��

Figure 2.4: Distinguishing identi�ers from numbers

the reserved words make up a small �nite set, all possible variables of a language
make up a very large set indeed. For languages which allow arbitrary length
variables, the set is in�nite. There can be no question of setting up a transition
table that would be capable of recognizing all the possible identi�ers, all the
possible distinct numbers and all the possible distinct strings.

We are better to handle the process in two stages. First a simple �nite au-
tomaton which tells us: 'we have a number' or 'we have an identi�er'. Second,
come other automatons that are invoked by the �rst to distinguish between dif-
ferent numbers or di�erent identi�ers, strings etc. This is the strategy used in
the Compiler Writer's Toolbox. Lexical analysis is split into two levels. First
level lexical analysis splits the source program into broad categories of lexemes
like identi�ers, numbers and strings. Second level lexical analysis then distin-
guishes between di�erent identi�ers etc.

Consider the problem of recognizing Pascal identi�ers and numbers. We
might de�ne them as follows:

number → digit digit*
identi�er → letter alphanumeric*
alphanumeric → letter
alphanumeric → digit
digit → [0-9]
letter →[a-zA-Z]
By [0-9] we mean any one of the set of characters from 0 to 9. This is termed

a character class. Using these character classes we can de�ne state machines
that will recognise either an identi�er or an number.

The graph in �gure 2.4 has far fewer states than the one in �gure 2.1, al-
though that one could only recognise 4 reserved words and this one will recognise
all numbers or identi�ers. It is an indication of the simpli�cation that can arise
from just dealing with classes of characters and classes of lexemes. Note that
the reserved words recognised by the �rst state machine begin, while, end will



CHAPTER 2. LEXICAL ANALYSIS 20

all be categorized as identi�ers by the state machine in �gure 5.3. This does not
matter. We can distinguish between reserved words and other identi�ers with
second level lexical analysis.

The Compiler Writer's Toolbox is supposed to be easily con�gurable to han-
dle di�erent languages. An attempt has been made to isolate language depen-
dent parts and make them readily alterable. The �rst level lexical analyzer has
been made very general. It splits the input into numbers, strings, comments
and lexemes. Lexemes are interpreted very liberally.

Anything which is not a string, number or comment is a lexeme. This
means that things like the brackets [ ] { } ( ) or the operators + - = are treated
as lexemes, as well as the more obvious alphanumeric strings. Although this
may seem strange, you should realise that some languages allow sequences of
operator symbols to be strung together as in: <= , ++, +=, % =. The �rst
level analyzer sees all of these as lexemes whose meaning will be sorted out later.
All it is concerned with is deciding where a lexeme starts and �nishes. Consider
this example:

x1:=ab<=c;

Where do the individual lexemes start and �nish here?
If we write it down with spaces between the lexemes it is obvious:

x1 := ab <= c ;

but the lexical analyzer can not rely upon the programmer putting it down
in this way. Without knowing what all the operators in the language are it
needs to be able break the string up. This is where character classes come in
handy. Using a recognizer like that in �gure 5.3 you can pick out the identi�ers,
but that still leaves a variety of partitionings that are possible.

x1 : = ab < = c ;

x1 := ab < = c ;

x1 : = ab <= c ;

x1 := ab <= c ;

We can pick out the last one as the right one, because our experience of
programming languages leads us to treat := and >= as single lexemes. We



CHAPTER 2. LEXICAL ANALYSIS 21

know that a string of operator symbols going together should be interpreted as
a single lexeme.

We can add to our grammar the rules:
operator →opsym opsym *
opsym → [+ * - % : = / ]
Exactly which symbols go to make up the class of operator symbols will vary

from language to language, but most languages do have a recognizable class of
characters used in operators.

There is another class of symbols which have to be treated distinctly: brack-
ets. We want (( to be two lexemes not one composite lexeme. We have certain
broad classes of characters that are likely to be used in many languages : digits,
letters, operators, brackets, spaces. The exact de�nition of these will vary from
language to language. In some languages the underbar symbol ` _ ' can be part
of an identi�er, in others it is an operator.

2.2.1 The primitive state machine

The �rst level lexical analysis is performed by the unit FSM.PAS. The �nite state
machine is accessed via the function newlexeme which returns an fsmstate.
Each time this function is called the �nite state machine processes a new lexeme
and terminates in a state which indicates what class of lexeme has been found.
The �nite state machine program is encoded as a transition table. This is a two
dimensional array indexed on the current state and the current character. In
association with the transition table is another array: the action table. Yielding
one of (last, skip, include) the action table is accessed in step with the transition
table. It provides instructions as to how to build up the lexeme. The �nite state
machine controls the actions of two pointers into a text bu�er. One points at
the start of a lexeme, the other, called finish points at the current character.
As each character is processed finish pointer is advanced.
• If the action speci�ed is skip, the start pointer is advanced to the current
character.
• If the action speci�ed is include, the start pointer remains where it is.
• If the action speci�ed is emit, the machine stops and returns the pointers
plus its current state to the second level lexical analyser.

As a subsidiary function, the �nite state machine keeps a count of the current
line that has been reached in the program. To con�gure the analyser for a
di�erent language, you would alter the mckctab program to produce a new set
of character class de�nitions, and make any necessary changes to the transition
and action tables.

2.2.2 Class table

The FSM uses two enumerated types for its operation. Fsmstate lists the states
that the machine can be in, whilst charclass speci�es the classes into which the



CHAPTER 2. LEXICAL ANALYSIS 22

Algorithm 3 Finite state transducer module FSM
{ -----------------------------------------------------------------
Module : FSM.cmp
Used in : Compiler toolbox
Author : W P Cockshott
Date : 3 Oct 1986
Version : 1
Function : Finite State Transducer to perform first level lexical

analysis.
Splits up text in a buffer into lexemes

Copyright (C) WP Cockshott & P Balch
----------------------------------------------------------------
}
UNIT fsm;
INTERFACE USES

editdecl;
`sec 2.3`Interface to FSM`
IMPLEMENTATION
var

include_sp :integer ;
NEWSTATE:fsmstate;

buffstack : array[1..includedepth] of textbuffer;

procedure rewind;
`sec 2.3.2`Rewind` ;
function the_line:integer;
begin

the_line:=the_buffer.linenumber;
end;
function push_buffer:boolean;
`sec 2.3.3`Push buffer`;

function pop_buffer:boolean;
`sec 2.3.4`Pop buffer`;

function newlexeme(var B:textbuffer):fsmstate;
`sec 2.2.6`Transition Table` ;

label 1,99;
var

S:fsmstate;
C:charclass;
A:action;
T:textbuffer absolute the_buffer;
I:integer;

begin
1:

t.start:=t.finish;
if listprog then
{ put the condition outside the loop to prevent things

being slowed down too much }
`sec2.2.7`Recognise and print`

else
`sec2.2.8`Recognise` ;

99:
newlexeme:=S;

end;
var i:integer;

begin
NEWSTATE:=startstate;
listprog:=false;
include_sp := 0;

end.



CHAPTER 2. LEXICAL ANALYSIS 23

Table 2.1: char class table
^@ whitespace, ^ A whitespace, ^ B whitespace, ^C whitespace,
^ D whitespace, ^ E whitespace, ^ F whitespace, ^ G whitespace,
^ H whitespace, ^ I whitespace, ^ J whitespace, ^ K whitespace,
^ L whitespace, ^ M separator, ^N whitespace, ^ O whitespace,
^ P whitespace, ^} Q whitespace, ^ R whitespace, ^ S whitespace,
^ T whitespace, ^ U whitespace, ^ V whitespace, ^ W whitespace,
^ X whitespace, ^ Y whitespace, ^ Z whitespace, ^ [ whitespace,
^\ whitespace, ^] whitespace, ^^ whitespace, ^ _ whitespace,

whitespace, ! shriek, " dquote, # whitespace,
$ operator, % operator, & operator, ' quote,
( bracket, ) bracket, * bracket, + operator,
, bracket, - operator, . digits, / operator,
0 digits, 1 digits, 2 digits, 3 digits,
4 digits, 5 digits, 6 digits, 7 digits,
8 digits, 9 digits, : operator, ; separator,
< operator, = operator, > operator, ? operator,
@ operator, A alpha, B alpha, C alpha,
D alpha, E exponent, F alpha, G alpha,
H alpha, I alpha, J alpha, K alpha,
L alpha, M alpha, N alpha, O alpha,
P alpha, Q alpha, R alpha, S alpha,
T alpha, U alpha, V alpha, W alpha,
X alpha, Y alpha, Z alpha, [ bracket,
\ whitespace, ] bracket, ^ operator, _ operator,
` operator, a alpha, b alpha, c alpha,
d alpha, e exponent, f alpha, g alpha,
h alpha, i alpha, j alpha, k alpha,
l alpha, m alpha, n alpha, o alpha,
p alpha, q alpha, r alpha, s alpha,
t alpha, u alpha, v alpha, w alpha,
x alpha, y alpha, z alpha, { bracket,
| operator, } bracket, ~ operator, del whitespace

Figure 2.5: Use of the class table to economise on the �nite state machine



CHAPTER 2. LEXICAL ANALYSIS 24

type
fsmstate =(startstate,opstate,idstate,numstate,

expstate,commentstate,stringstate,escapestate,
lastquotestate,sepstate,brackstate

);

charclass=(operator,bracket,alpha,digits,exponent,dquote,
quote,shriek,separator,whitespace

)
Const classtab:array[0..127] of charclass = ( see table 2.1 );

character set can be mapped. Between them, these types will act as indices into
the state transition table for the low level Finite State Machine.

2.2.3 McCtab program

The Compiler Writer's Toolbox encodes the classes to which individualcharac-
ters belong in the �le { CLASSTAB.CMP}. This includes a de�nition of the
type charclass, and an array classtab which maps from characters to this type.
The de�nitions of this type and the array are given in table 2.1.

The �le CLASSTAB.CMP is produced automatically by a program called
MckCtab.

This is an example of the use of a program generator program: a program
which produces another program. these are very useful tools when writing a
compiler. In MckCtab the classes can be speci�ed as sets of char, the program
then generates the source declaration for an appropriate character class table.

2.2.4 Output Classes and Actions

The program outputs the type de�nitions that are to be used in the �nite state
machine module of the compiler. There are two types representing the state of
the �nite state machine and the character classes that are jointly used to index
the state transition table.

An example of the output generated from listing 5 can be seen in section ??.

2.2.5 Assign Characters to Classes

The program writes out the contents of a constant array that maps characters
to their classes. These are written 4 entries to a line separated by commas. A
somewhat pretti�ed version of the output from this section was shown in section
??.

Each entry is made up of a comment followed by the value of the entry.



CHAPTER 2. LEXICAL ANALYSIS 25

Algorithm 4 mckctab
{ -----------------------------------------------------------------

Program :Mkctab
Used in :Compiler~Writer's Toolbox
Author :W~P~Cockshott
Date :3~Oct~1986
Version :1
Function :to build a class table include �le for the
lexical analyser
Copyright (C)~WP~Cockshott & P Balch

}

`sec 2.2.5.3`De�ne Character Sets`
var~c:char;
begin

`sec 2.2.4 on the preceding page `Output Classes and Actions`
writeln('const classtab:array{[}0..127{]} of charclass=(');

for~c:=chr(0) to chr(127) do begin
`sec2.2.5 `Assign Characters to Classes`
end;
writeln('); {~end~of~classtab~}');~
end.

Algorithm 5
writeln('type fsmstate =(startstate,opstate,idstate,numstate,');

writeln(' expstate,commentstate,stringstate,escapestate,');
writeln(' lastquotestate,sepstate,brackstate);');
writeln(' charclass=(operator,bracket,alpha,digits,exponent,dquote,');
writeln(' quote,shriek,separator,whitespace);')

Algorithm 6 assign characters to classes
if (ord(c) mod 4) = 0 then writeln;

`section 2.2.5.1`Make Comment`
`section 2.2.5.2`Output Class`



CHAPTER 2. LEXICAL ANALYSIS 26

2.2.5.1 Make comment
The comments for printable characters are the characters themselves. If they
are non printable ( DEL or a control character ) they are output in mnemonic
form.

For a control code the menmonic is of the form �followed by the printable
character that is 64 greater than the control code.

Thus the bell character (07) will appear in the comment as �G .
The character '}' has to be handled as a special case so as not to prematurely

end the comment.

Algorithm 7 make comment
write(' { ');

if c < chr(32) then write('^',chr(64+ord(c)),'} ')
else if c='}' then write('closing bracket}')
else if c=chr(127) then write('del}')
else write(c,'} ');

2.2.5.2 Output class
Certain characters have to be treated as special cases.

The letter E can occur either as part of an identi�er or as the label for the
exponent part of a �oating point number. For this reason it is convenient to
assign it to a special class EXPONENT. The newline character (ASCII 13) is
assigned to the class of separators, this is done explicityly because it can not be
given as a Pascal character literal in the de�nition of the set SEPSY.

Quotes and double quotes are single member character classes and so are
more e�ciently dealt with by simple equality tests here.

Algorithm 8 Output class
if c in opsy then write('operator,') else
if c in ['E','e'] then write('exponent,') else
if c in alpha then write('alpha,') else
if c in digits then write('digits,') else
if c in bracket then write('bracket,') else
if c = '!' then write ('shriek,') else
if (c=chr(13)) or (c in sepsy) then write('separator,') else
if c = �� then write('quote,') else
if c = '"' then write('dquote,') else
begin
write ('whitespace');
if ord(c)<>127 then write(',') else writeln;
end;



CHAPTER 2. LEXICAL ANALYSIS 27

Exercises 1. De�ne the character classes that would be appropriate for �rst
level

lexical analysis of Pascal.
2. Draw a state transition diagram based upon the listing of �le fsm.pas
that describes the behavior of the �rst level lexical analyser.
3. Devise a regular grammar to describe Pascal �oating point numbers.
4. Modify the �les Mckctab.pas and fsm.pas to construct a �rst level

2.2.5.3 De�ne Charactersets
The characters are divided into several subsets depending upon where they occur
in the source language. All are declared using the structured constant facility
of Turbo Pascal.
Algorithm 9 de�ne charactersets

const
sepsy:set of char = [';'];
`sec 2.2.5.4`Opsys` ;
`sec 2.2.5.5`Brackets`;
`sec2.2.5.6`Alphanumerics`

2.2.5.4 Opsys
These characters can be put together to form an operator. That is to say if
we have the characters `+' and `=' occuring next to one another they are to be
treated as the composite operator `+='. An operator in the source language
must be made up entirely of these operator characters.

Algorithm 10 Opsys
const opsys:set of char=[':', '-', '=', '+', '@','&',

'^','%','`', '_','$',
'?', '/', '>', '<','~','|'

]

2.2.5.5 Brackets
These characters include the obvious bracket characters like `[' or `]' and also,
less obviously `,' and `*'. These are thrown in because all of the characters in the
bracket set stand as single lexemes. They do not form part of a larger lexeme.

A `*' put next to another `*' must not be read as `**' nor must a pair of `('s
be read as `(('.



CHAPTER 2. LEXICAL ANALYSIS 28

Algorithm 11 Brackets
const brakets:set of char = [ ')', '(', '{', '}', ']', '[','*',', ]

2.2.5.6 Alphanumerics
Alpha numeric characters can occur in two contexts: in numbers, and in identi-
�ers. They are split into subsets according to whether they are staring characters
of identi�ers and of numbers. Note that the character `.' can occur in either an
identi�er or a (real) number.

Algorithm 12 Alphanumerics
const
alpha:set of char = ['a'..'z','A'..'Z'];
digits:set of char = ['0'..'9','.'];
alphanum:set of char = ['a'..'z','A'..'Z','.','0'..'9','#'];
spacechars:set of char =[' ']

2.2.6 Transition table

This table which is stored as a two dimensional array encodes the behaviour of
the low level �nite state machine for PS-algol lexical analysis. The behaviour
of the machine is indicated in the state transition diagram shown in �g ??.

2.2.7 Recognise and print

This is the basic loop that recognises a lexeme. Between invocations the state
of the FSM is stored in NEWSTATE.

2.2.8 Recognise

This is the recognition loop when printing is disabled. Two variants of the loop
are provided to prevent a test for printing being enabled within the inner loop.

2.3 Interface to FSM

These are the functions and variables exported from the �nite state machine
module to the second level lexical analyser. If Turbo Pascal allowed a more
modular structure one would like the declaration of the type of the Textbu�er
to be hidden.

This can not be done under Turbo Pascal V4.0.



CHAPTER 2. LEXICAL ANALYSIS 29

const transtable:array [fsmstate,charclass] of fsmstate =

state operator bracket alpha digits exponen

” ’ ! ; whitespace

startstate opstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate,

opstate opstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate,

idstate opstate brackstate idstate idstate idstate

stringstate startstate commentstate sepstate startstate,

numstate opstate brackstate idstate numstate expstate

stringstate startstate commentstate sepstate startstate,

expstate numstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate,

commentstate commentstate commentstate commentstate commentstate commentstate

commentstate commentstate commentstate sepstate commentstate,

stringstate stringstate stringstate stringstate stringstate stringstate

lastquotestate escapestate stringstate stringstate stringstate,

escapestate stringstate stringstate stringstate stringstate stringstate

stringstate stringstate stringstate stringstate stringstate,

lastquotestate opstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate,

sepstate opstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate,

brackstate opstate brackstate idstate numstate idstate

stringstate startstate commentstate sepstate startstate)

);

type action =(last,skip,include);

const emit:array [fsmstate,charclass] of action = (

state operator bracket alpha digits exponen

” ’ ! ; whitespace

startstate skip skip skip skip skip

skip skip skip skip skip,

opstate include last last last last

last last last last last,

idstate last last include include include

last last last last last,

numstate last last last include include

last last last last last,

expstate include last last include last

last last last last last,

commentstate skip skip skip skip skip

skip skip skip last skip,

stringstate include include include include include

include include include include include,

escapestate include include include include include

include include include include include,

lastquotestate last last last last last

last last last last last,

sepstate last last last last last

last last last last last,

brackstate last last last last last

last last last last last)

);



CHAPTER 2. LEXICAL ANALYSIS 30

Algorithm 13 recognise and print
repeat

S:=NEWSTATE;
`sec 2.3.0.3`Get the next character`
write(listfile,chr(i));
if I= 10 then begin
t.linenumber:=t.linenumber+1;

end ;
`sec 2.3.0.1`Compute new state`
if A= skip then t.start:=t.finish ; mark start of lexeme
`sec 2.3.0.2`Handle end of buffer`

until( A=last)

Algorithm 14 recognise
repeat
S:=NEWSTATE;
`sec2.3.0.3`Get the next character`
if I= 10 then begin
t.linenumber:=t.linenumber+1;

end ;
`sec 2.3.0.1`Compute new state`
if A= skip then t.start:=t.finish ; mark start of lexeme
`sec 2.3.0.2`Handle end of buffer`

until( A=last)



CHAPTER 2. LEXICAL ANALYSIS 31

Algorithm 15 interface to FSM
const

includedepth=2;
type

'sec 2.3.1 'textbuffer'
string80= string[80];

var
the_buffer:textbuffer;
stopline :integer;

{-------------------------------------------------------------- }
{ THE_LINE }
{ return the current line number }
{-------------------------------------------------------------- }
function the_line:integer;
{-------------------------------------------------------------- }
{ REWIND }
{ moves the finite state recogniser back to the start }
{ of the text buffer }
{-------------------------------------------------------------- }
procedure rewind;
{-------------------------------------------------------------- }
{ Push and Pop buffers }
{ this is used to implement include files }
{ push_buffer saves old text buffer }
{ pop_buffer restores old text buffer }
{---------------------------------------------------------------}
function push_buffer:boolean;
function pop_buffer:boolean;
{-------------------------------------------------------------- }
{ NEWLEXEME }
{ skips start and finish to point at new lexeme }
{ returns type of lexeme }
{ ------------------------------------------------------------- }
function newlexeme(var B:textbuffer):fsmstate;



CHAPTER 2. LEXICAL ANALYSIS 32

2.3.0.1 Compute new state
This uses the class table to determine the class of the input character and then,
using 2d array indexing determines the newstate and the action to perform given
the current state.
Algorithm 16 compute new state

C:=classtab[I and 127];
NEWSTATE:= transtable[S,C];
A:=emit[S,C];

2.3.0.2 Handle end of bu�er
Check of the end of the lexeme goes pas the end of the bu�er. If it does then
terminate the lexeme and pop the �le bu�er.
Algorithm 17 Handle end of bu�er

if t.finish >= t.textlen then begin
{ HANDLE RUNNING OUT OF THE BUFFER }

if pop_buffer then goto 1 ;
a:=last;

end;

2.3.0.3 Get next character
Increment the �nish pointer for the lexeme and then fetch the character at this
position in the text bu�er as an integer.
Algorithm 18 get next character

t.finish := t.finish+1;
I:=ord(T.thetext^[t.finish] );

2.3.1 TEXTBUFFER

Program text is represented to the lexical analyser by the type TEXTBUFFER.
This is a record which has the form shown in �gure 2.3.1, and is declared in
listing 19.

2.3.2 Rewind

When a program is to be recompiled for whatever reason there needs to be
the facility for the compiler to move its compilation point back to the start of



CHAPTER 2. LEXICAL ANALYSIS 33

textbu�er
thetext pCharSeq Pointer to an array of char
start word �rst character of lexeme
�nish word character after the lexeme
textlen word number of chars in the bu�er
linenumber integer the line number we are at

Algorithm 19 textbu�er
type textbuffer = record

thetext: pCharSeq;
start,finish,textlen: word;
linenumber :integer;

{point at the start and finish of lexeme and give length of buffer }
end;

the bu�er. This sequence reintialises the low level �nite state machine. The
constant textbuflo is declared in the editor package.

The variable include_sp is used to keep track of the level of nesting of
`include' �les in the compilation process.

Algorithm 20 rewind
begin

NEWSTATE:=startstate;
the_buffer.start:=textbuflo;
the_buffer.finish:=textbuflo;
include_sp:=0;

end

2.3.3 Push bu�er

This operation pushes the current text bu�er onto a stack and advances the
include_sp. This will be done whenever an include �le is encountered and our
position in a previous bu�er has to be saved.

2.3.4 Pop bu�er

This is the obverse operation to pushing a bu�er. It is performed whenever an
include �le ends. The space occupied by the bu�er can then be freed and the
�nite state machine switched back to obtaining its input from the old bu�er.



CHAPTER 2. LEXICAL ANALYSIS 34

Algorithm 21 push bu�er
begin
if include_sp<includedepth then begin
push_buffer:=true;
include_sp:=include_sp+1;
buffstack[include_sp]:=the_buffer;

end else push_buffer:=false;
end

Algorithm 22 pop bu�er
begin

if include_sp>0 then begin
pop_buffer:=true;
with the_buffer do freemem(thetext,textlen);
the_buffer:=buffstack[include_sp];
include_sp:=include_sp-1;

end else pop_buffer:=false;
end

2.4 Identi�er management

The �rst level of lexical analysis picks out the start and �nish of lexemes. At
this point the lexemes are sequences of characters. This is not a convenient form
to deal with computationally. A common operation that has to be performed in
the higher levels of a compiler is to compare two lexemes to see if they match.
String comparison is slow. A representation more suited to fast manipulation is
needed. Computers carry out atomic operations on words of binary data. The
fastest type of comparison is between two binary words. This can generally be
done in one or two instructions. For speed, the representation of lexemes should
be changed from strings into words. Can this be done?

Can strings of perhaps a dozen characters be represented in a 32 bit or 16
bit word?

It all depends upon how many of them there are. An 8 character string
contains 64 bits. It is only possible to represent this in a 16 bit word if the string
actually contains less than 64 bits of information. With a 64 bit binary number
264 di�erent values can be represented. There are 264 possible 8 character
strings. If longer strings are considered the number of possible strings will rise
exponentially in the length of the string. A 16 bit word can only encode 216

values. It seems impossible to cram into this all the possible strings.
In principle a program could be written that would use the billions of bil-

lions of di�erent identi�ers that are theoretically permitted in programming
languages. In practice, in our �nite world such a program will never occur. All
we have to worry about is how many distinct identi�ers will actually occur in



CHAPTER 2. LEXICAL ANALYSIS 35

a program. This number is unlikely to rise above a few hundreds, so a 16 bit
word can easily range over them. One simply has to assign ascending integers
to the lexemes in the order in which they are encountered. The second level
lexical analyzer can be seen as a black box that takes in strings, numbers them
and then outputs the numbers.

strings → 2nd level lexical analysis → numbers
In functional notation we can characterize it as a function
identify(string → number)
such that
identify(A) = identify(B) i� A = B
In words this means that the mapping from strings into numbers preserves

string equality. If we knew beforehand what strings were to be encountered this
would be trivial. We need only construct a �xed table with two columns, strings
in one numbers in the other. When we needed to perform a conversion we would
scan the �rst column for a match and output the corresponding number. For
the reserved words of a language this is feasible and it is indeed the technique
used by some compilers. A �xed table is set up containing the reserved words,
which is searched for a match each time a lexeme is produced. If you do this
however, you end up with the reserved words of the language embedded in your
compiler. This may be a disadvantage when you have to convert the compiler
to handle a new language. Furthermore, a compiler will always have to handle
additional symbols over and above the reserved words. It has to handle the user
de�ned names of variables. These can not be known before hand, so a compiler
is forced to have an extendible data structure - often called the symbol table - to
deal with these. An alternative approach is to deal with all lexemes other than
literal values ( integers, reals etc) in a homogeneous way. The lexical analyzer
of the Compiler Toolbox contains no built in knowledge of what identi�ers are
used in the language. It works entirely with dynamic data structures. The
simplest way to build a mapping from strings to numbers would be something
like the algorithm shown in program SIMTRANS.

This algorithm is simple and reliable but su�ers from two serious disadvan-
tages. The �rst is excessive space consumption. The second is slowness.

In order to be able to handle the longest identi�er that you are going to
encounter the constant idmaxlen is going to have to be set to something like
40 or 50. The type idrange may have to go up to 1000 to handle the number
of identi�ers that might occur in a big program. Already you have reserved 40
to 50 kilobytes of store. A compiler will need several other tables. Is it wise to
use up so much space that you may not need? Most identi�ers will be closer
to 8 characters than 40 characters in length. Perhaps 80 per cent of the table
will be wasted. This kind of pressure tempts compiler writers to restrict the
length of identi�ers that the compiler will accept. When computers had less
memory, the temptation to only allow short identi�ers was severe. Fortran had
only 6 characters in identi�ers. Early versions of C ignored all but the �rst 8
characters of a name. This kind of thing is no longer acceptable. Some sort of
dynamic data structure should be chosen for an identi�er table that does not
restrict how long the identi�ers can be.



CHAPTER 2. LEXICAL ANALYSIS 36

The simple table used in SIMTRANS will be slow to search. On average
you will have to scan through half the table to �nd an identi�er. This can
mean hundreds of string comparisons for each symbol processed. In order to
prevent identi�er translation becoming a bottleneck it should be made as fast
as possible.
Algorithm 23 program SIMTRANS

program simtrans;
type idrange=1..idmax;

idstring=string[idmaxlen];
var idpntr:idrange;

idtab:array [idrange] of idstring;
procedure pushid(var id:idstring);
begin
idtab[idpntr]:=id;
idpntr:=succ(idpntr);

end;
function identify(var id:idstring):idrange;
var i:idrange;
label found;
begin
for i:=1 to pred(idpntr) do if id= idtab[i] then
begin
identify:=i; goto found

end;
pushid(id);
identify:=identify(id);
found:

end;
begin
idpntr:=1;

{ rest of program goes here }
end.

2.5 Tries

There are a variety of dynamic data structures that could be used based upon
trees or hashing. What the Compiler Toolbox uses is a Trie. This is a special
sort of tree that makes use of the observation that many of the names used in
a program will be similar to one another. Consider the user de�ned identi�ers
in what follows.

idrange



CHAPTER 2. LEXICAL ANALYSIS 37

Figure 2.6: Identi�ers organised as a trie

founD
IDentifY

maXleN
pntR
rangE
strinG
taB

pushiD

Figure 2.7: the trie data structure

idmax
idstring
idmaxlen
idpntr
idtab
pushid
id
identify
i
found

There is a great deal of commonality here. A trie takes advantage of the
fact that many identi�ers share common pre�xes with other identi�ers. We can
reorganise the identi�ers to show this in �gure 2.6.

In this arrangement the pre�xes are only written down once. The last letter
of an identi�er is written in capitals. Although this arrangement is more com-
pact, it contains all of the names. A trie achieves this arrangement in computer
memory using a linked list.

2.5.1 Trie data structure

A possible record format for a trie is shown in listing24 .
The type lexnode points at a delabrandis record. This has a character in it

and two further lexnodes. The follower pointer corresponds to moving horizon-
tally in �gure 2.6, the alternates pointer corresponds to moving vertically. The
number �nal will be non zero if this is the last letter in a word, corresponding



CHAPTER 2. LEXICAL ANALYSIS 38

Figure 2.8: Use of index to speed up trie access

to the use of bold characters in �gure 2.6. The identi�ers are further indexed
on their �rst character using the type lexarray.

Algorithm 24
type

lexnode = ^delabrandis;
lexarray = array[minchar..maxchar] of lexnode;
delabrandis = record

final:integer;
pref:char;
follower,alternates:lexnode;

end;

2.5.2 Trie insertion

The dynamic trie structure places no limits on the the number of characters
that can be in an identi�er. Despite this, no unnecessary space is allocated
for short identi�ers. Very short, one or two letter identi�ers are likely to fall
entirely within other longer ones, and e�ectively use no space. Search is fast.
Using the index the algorithm restricts its search space to just those identi�ers
that start with the right letter. With each further letter matched, the search
space is restricted.

The trie is manipulated by the function insert_token which updates the trie
as a side e�ect of searching it for an identi�er. Because the trie is a recursive
datatype the actual insertion is done by a recursive procedure ins. The function
maintains the alternates in alphabetical order. The presence of an order reduces
the number of unnecessary comparisons that have to be made if you are inserting
a new string.

Note how access to the trie is accelerated by using an array n indexed on
characters. This means that there is essentially a sub trie for each possible �rst
letter of the identi�ers. This produces a cheap speedup in the search perfor-
mance. If this were not the case the �rst letter would have to be matched using
a linear search.

2.5.2.1 Create a new node
A new node is created on the heap. Its character �eld is initialised to the current
character. Its �nal �eld is set to 0 to indicate that this is not the last character
on the list. It has no follower or alternates as yet.

begin



CHAPTER 2. LEXICAL ANALYSIS 39

Algorithm 25 Insert token
function insert_token(var B:textbuffer; var n:lexarray):lextoken;
{ inserts the string into the tree }
{$S-}
var p : lexnode;

charno : integer;
c : char;
hit ,inserted :boolean;
procedure newnode(var next:lexnode;c:char);

`sec 2.5.2.1`Create a new node`

procedure ins(var n:lexnode;charno: word );
var t:lexnode;

c:char;

`sec 2.5.3`Recursive Insert`
begin
{$r-}
ins( n[B.thetext^[B.start]], B.start);

end;



CHAPTER 2. LEXICAL ANALYSIS 40

new(next);
with next^ do begin

pref:=c; final:=0;
follower:=nil;
alternates:=nil;

end;
end;

2.5.3 Recursive insert

The recursive insert procedure has to deal with 3 alternatives.
• We are at a leaf node of the trie with a nil pointer.
• We are at a node that matches the current character.
• The current character is lexx than the character in the node.

begin
c:=b.thetext^[charno];
if charno <B.finish then with B do

if n=nil then

`sec 2.5.3.1`Add another letter`
else with n ^ do
if c = pref then begin

if charno=finish -1 then

`sec 2.5.4`Last letter of word`
else ins(follower,charno+1);

end
else if c< pref then ins(alternates,charno)
else

`sec 2.5.4.1`Char less than pre�x` ;
end;

2.5.3.1 Add another letter
A new node is attached to the currenly nil node pointer. The insert procedure
is invoked recursively to append any further characters in the word to the trie.
begin

newnode(t,c);
n:=t;
ins(n,charno)

end



CHAPTER 2. LEXICAL ANALYSIS 41

2.5.4 Last letter of a word

We are on the last character of the word. Either the word has been encountered
before or it has not.

If it has been met previously then a token will have been stored for the word
in the final �eld of the node. Alternatively, the word is new and the final �eld
indicates this by holding 0. It is then replaced by the value of lasttoken, which
is itself then incremented. After this the value in final must be the appropriate
code for the word and can be returned from insert_token.
begin

{ a hit }
hit:=true;
if final = 0 then
{ first time we have encountered this word}
begin

final:=lasttoken;
lasttoken:=succ(lasttoken);

end;
insert_token:=final;

end

2.5.4.1 Char less than pre�x
A copy of the pointer to the current node is made in t. A new node is then
attached to the current node pointer. The old node is then made the �rst
alternative for the new node. Then the insert operation is invoked recursively.
begin

t:=n;
newnode(n,c);
n^.alternates:=t;
ins(n,charno);

end

2.6 Lexeme De�nition

The identi�er table is initially loaded with a list of all of the reserved symbols of
the language. This includes not only the reserved words, but also the operators
and brackets. At startup the procedure init_lexanal gets invoked to read these
in from a �le: lexemes.def. Because the insertion procedure assigns ascending
integers to the identi�ers read in, the lexemes in the �le will be given internal
integer representations in the order in which they occur in the �le. Within this
�le they are organised as list of symbols one per line.

The entries in the lexeme de�nition �le are put in one to one correspondence
with an enumerated data type: lexeme. This type provides the interface between



CHAPTER 2. LEXICAL ANALYSIS 42

Figure 2.9: A section of a lexeme de�nition �le.
then
to
TRACEON
TRACEOFF
true
upb
vector
while
write
{
}
~
~=
\
..INT.LIT
..REAL.LIT
..STRING.LIT
..IDENTIFIER

the lexical analyzer and the syntax analyzer. The context free grammar of the
language will be de�ned in terms of these lexeme values.

2.7 Interface to syntax analyser

FORDOCUMENTATION
The lexical analyzer communicates with the syntax analyzer via a small

group of procedures and variables. The most important of these is the procedure
next_symbol. Each time it is called it processes one symbol. The �nite state
machine in the level one syntax analyzer is invoked to delimit the symbol. The
terminating state of the machine determines whether the symbol was a name,
an operator, a number or a string.

If a number is found then a numeric conversion function is invoked to convert
the decimal representation of the number into a binary format. In Turbo pascal
this is easily achieved using the val function. This takes a string and returns
an integer or real equivalent. If your compiler is in another dialect of pascal, it
may become necessary to write your own numeric conversion functions.

Next_symbol leaves the results of lexical analysis in a set of global variables:
symbol :lextoken;
lexsymbol :lexeme;
the_string :stringv;



CHAPTER 2. LEXICAL ANALYSIS 43

Figure 2.10: Corresponding section of the type lexemes

THEN_SY,
TO_SY,
TRACEON_SY,
TRACEOFF_SY,
TRUE_SY,
UPB_SY,
VECTOR_SY,
WHILE_SY,
WRITE_SY,
CUR_SY,
LEY_SY,
TILDE_SY,
NEQ_SY,
SLASH_SY,
INT_LIT,
REAL_LIT,
STRING_LIT,
IDENTIFIER,



CHAPTER 2. LEXICAL ANALYSIS 44

the_real :real;
the_integer:integer;

Lexsymbol will hold the lexeme that has been matched. If it was an in-
teger, real or string then it will take on the values INT_LIT,REAL_LIT
or STRING_LIT and the corresponding value of the literal will be stored in
the_integer, the_real or the_string. If the lexeme is a reserved word then the
corresponding enumerated type value is stored in lexsymbol. If the lexeme is
a user de�ned identi�er, then the value of lexsymbol will be IDENTIFIER
and the number associated with that identi�er will be returned in symbol as a
lextoken.

The writer of a syntax analyzer can choose to call next_symbol and perform
tests on these global variables. In the process of analysis certain actions have
to be carried out repeatedly. A common sequence is to test to see if the current
lexeme has a particular value, and, if it has to call next_symbol to see what
follows. This combination of actions is bundled up in :

function have( t: lexeme) : boolean;

If the lexical analyzer has t then it says yes and grabs the next lexeme.
{ ------------------------------------------------------------------- }
{ HAVE }
{ conditionally matches a token }
{ ------------------------------------------------------------------- }
function have( t: lexeme ) : boolean;
begin

if t = lexsymbol then
begin next_symbol(the_buffer);

have:=true
end

else have:=false;
end;

2.7.1 Mustbe

The stricter version of have is mustbe. This is called when the syntax stipulates
the presence of a particular symbol. If the symbol is not found then an error
is reported. The error message speci�es what symbol was found and what was
expected. This can generate such messages as `begin found instead of then'.

Note that as presently con�gured, mustbe will skip over newlines until it
comes to a symbol. This is appropriate for most modern languages, but would
not be appropriate for parsing assembly language for instance.



CHAPTER 2. LEXICAL ANALYSIS 45

{ ------------------------------------------------------------------- }
{ MUSTBE }
{ compulsorily matches a token }
{ ------------------------------------------------------------------- }
procedure mustbe(t : lexeme );
begin

if not have(t) then begin
if have(newline_sy) then mustbe(t) else syntax(t);
end;

end;

2.7.2 Syntax errors

{ ------------------------------------------------------------------- }
{ SYNTAX }
{ report error and stop }
{ ------------------------------------------------------------------- }
procedure syntax( t : lexeme);
var m :stringv;
begin

m:= currentid +' found instead of '+ psym(ord(t));
ReportError(m);

end;

2.7.3 Current Id

The code generator may need to know the current identi�er's printable form in
order to be able to plant information for a linker. It is thus convenient to have
a function that will return this. This avoids the code generator having to know
anything about the data format of the text bu�er.
{ -------------------------------------------------------------- }
{ CURRENTID }
{ returns the identifier as a string }
{ -------------------------------------------------------------- }

function currentid :stringv;
var n:stringv;

i,p:integer;
begin

with the_buffer do begin
n:='';

for i:=start+1 to finish do begin
n:=n+thetext^[i];

end;



CHAPTER 2. LEXICAL ANALYSIS 46

currentid:=n;
end;

end;

TOPICS

2.7.4 Converting lexemes to strings

For error reporting purposes it is often convenient to be able to convert from
lexemes back into printable strings.

The technique that you chose for this will depend upon how frequently you
want to make the conversions each way. If conversions back into strings are very
rare: just when the compiler stops with an error, then it is not necessary for
the conversion process to be very fast. In this case one could perform a depth
�rst traversal of the trie looking for a node marked with the current lexeme.
When one is found, one knows that this node represents the last character of
the identi�er. By tracing ones path back through the trie the original identi�er
can be extracted.

If speed is more important then it may be worth explicitly storing each iden-
ti�er in ram. This of course brings with it all the problems of space overheads
mentioned earlier. If you use a 2 dimensional character array, you have to agree
upon the maximum length of character that you can store.

An alternative storage mechanism shown in �gure 2.11 uses an array starts
indexed on the lexemes to �nd the starting positions of identi�ers in a one
dimensional character array: pool. The lexeme l will then occupy positions

2.7.5 NextSymbol

The lowest level interface to a lexical analyser is provided by a procedure that
gets a symbol. We call this procedure NEXTSYMBOL. It reads in a lexeme
and stores the token in the variable symbol.

If the symbol turns out to have been a literal value, for instance a number
or a string then the actual value of the literal must be stored for the subsequent
stages of the compiler. The value can be stored in one of several global variables:

the.integer, the.real, the.string.
In order to do this some processing will be necessary to convert between

source character strings and numbers or strings.
{ ------------------------------------------------------------------ }
{ NEXTSYMBOL }
{ ------------------------------------------------------------------ }

procedure next_symbol;
var S:fsmstate;

function numconv:lexeme;
var n:stringv;



CHAPTER 2. LEXICAL ANALYSIS 47

Figure 2.11: Use of a character pool

pool[starts[l]]..pool[starts[l + 1]− 1]



CHAPTER 2. LEXICAL ANALYSIS 48

i,p:integer;
isint:boolean;

begin

`sec2.7.5.1`Convert string to number`
end;

procedure printsymbol;
var i:integer;

c: char;
begin

with the_buffer do
if lexsymbol <> newline_sy then begin

for i:=start to finish -1 do write(thetext^[i]);
write(' ');

end else writeln;
end;

function stringconv:lexeme;
var n:stringv;

i,p:integer;
escape:boolean;
c:char;

procedure append(c:char);
begin if length(n)<MAXSTRING then n:=n+c; end;

begin

`sec 2.7.5.2`Convert string to internal form`
end;

`sec ??`Type coercion operation`
begin

coerce.dummy:=0;
compilercursor:=the_buffer.start;
S:=newlexeme(the_buffer);
with coerce do
if s in [opstate,brackstate,idstate] then

l1:=insert_token(the_buffer,predefined)
else if s in[numstate,expstate] then l2:=numconv
else if s in [stringstate,lastquotestate] then l2:=stringconv
else symbol:=coerce.l1;
if symbol >maxpredefined then lexsymbol:=identifier
else lexsymbol:=coerce.l2;

`sec 2.7.6`Detect run time error location`



CHAPTER 2. LEXICAL ANALYSIS 49

end;

2.7.5.1 Convert string to number
The string is searched to see if it contains any non-digit characters.

If it does then the �ag isint will be set. On the basis of this �ag the turbo
pascal function val is called to convert the string either into an integer or a real.
Then the appropriate lexeme is returned from numconv.

isint:=true;
with the_buffer do begin

n:='';
for i:=start to finish-1 do begin

n:=n+thetext^[i];
isint:=isint and (thetext^[i] in ['0'..'9']);

end;
if isint then begin val(n,the_integer,p); numconv:=INT_LITend

else begin val(n,the_real,p); numconv:=REAL_LITend;
end;

2.7.5.2 Convert string to internal form
Some characters that one may want to place in a string have no printable rep-
resentation. Most of these are format characters like carriage return, tab, or
backspace. Some computer languages provide special means of including these
into a string by pre�xing a printable character with an escape character. When
so pre�xed, the printable character means something else.

In C the escape pre�x is \ and in S-algol it is ' .
The conversion from the printable to the internal form of a string can be

performed by a simple �nite state machine that has two states:
• Processing normal characters.
• Processing the character after an escape.

In the �rst case, the characters in the source string are just copied over to
the internal form. In the second case, the translation rule appropriate to the
language must be applied to get the internal non-printable character.
begin

escape:=false;
with the_buffer do begin

n:='';
for i:=start+1 to finish -2 do begin

c:=thetext^[i];
if not escape then begin



CHAPTER 2. LEXICAL ANALYSIS 50

escape:=classtab[ord(c) and 127]=quote;
if not escape then append(c);

end
else begin

`sec 2.7.5.3`Convert pre�xed characters`
escape:=false;

end;
end;

the_string:=n;
stringconv:=string_lit;

end;
end;

2.7.5.3 Convert pre�xed characters
Most languages provide a mechanism for embedding control characters in strings,
typically by providing a pre�x character and then some code that follows. This
example obviously applies to the language S-algol, but other languages would
require similar code. S-algol has the following mapping from escape sequnces to
non-printable characters:
′n→ LineFeed = 10
′t→ Tab = 9
′o→ CarriageReturn = 13
′b→ BackSpace = 8
′p→ V erticalTab = 11
Anything else preceded by a ' stands for itself. Hence � stands for ' and '"

stands for " .
FORCOMPILER

case c of
'n' : append(chr(NEWLINE));
't' : append(chr(TAB));
'o' : append(chr(CR));
'b' : append(chr(BS));
'p' : append(chr(VTAB));
else append(c);
end ;

2.7.5.4 Type coercion operation
We wish to have an enumerated type lexeme for the reserved words of the
language. Subsequent identi�ers are assigned ordinal values as their lexical



CHAPTER 2. LEXICAL ANALYSIS 51

tokens that start up where the prede�ned lexemes �nish. What we obtain from
our identi�er conversion routine is a lextoken which is an ordinal type. We have
to convert this to a lexeme. There is no built in way of converting an ordinal to
an enumerated type in standard pascal, so we cheat by using a variant record.
We assign the lextoken to �eld l1 and then read it back as a lexeme from �eld
l2.
var coerce:record

case boolean of
true:(l1:lextoken);
false:(l2:lexeme;dummy:byte);
end

2.7.6 Detect run time error location

If an error occurs during the execution of an S-algol program, the line number
on which this occured is passed back to the compiler. The program is then
searched using the lexical analyser to �nd the appropriate position in the text
where the error happened. The lexical analyser knows it has been called to �nd
an error if the variable stopline is non zero.

if stopline >0 then
if coerce.l2=newline_sy then

begin
if the_line > stopline then
begin

if errorfree then
error('Run time Error');

end
end;

2.8 Exercises

1. Write numeric conversion functions to convert from the decimal representa-
tion of integers and reals to binary.

2. Modify these to handle numbers in any base from 2 to 16. Use the
notation de�ned by the grammar:

anybase → base # number

base → decimalnumber

number → anydigit anydigit*



CHAPTER 2. LEXICAL ANALYSIS 52

decimalnumber →decimaldigit decimaldigit*

anydigit → [0-9A-F]

decimaldigit → [0-9]

An example in this notation might be
16#01A
3. Alter the string conversion procedure to handle pascal strings. These are

deliminated by single quotes.
4. Modify the data type lexeme to correspond to the lexemes needed for

pascal. Create a new version of the �le lexemes.def called lexemes.pas that
contains the pascal lexicon. Test the ability of your recon�gured lexical analyzer
to accept pascal input. This may require you to write a driver program that
will print the output of the lexical analyzer.

5. How would you make the lexical analyzer insensitive to the di�erences
between upper and lower case keywords and identi�ers whilst retaining the cases
of letters in strings?



Chapter 3

Syntax analysis

The syntax analysis method used in this course is called recursive descent. It is
the standard method of syntax analysis used in block structured languages.

The idea of recursion or self reference is central to this compiling technique.
Consider the class 2 grammar described in chapter 1.

G = T, N, S, P
where
T = ), (, 1, 2, 3
N = s, t, u
S = s
P =
s ->( t )
t ->1u 2
u ->t
u ->s
u ->3
The non-terminals of this grammar refer to one another: s refers to t which

refers to u which in turn refers back to both of them. This grammar is recursive
or self-referential. Recursion is a property of those grammars that allow terms
to be nested within one another to an arbitrary depth. Because the conventions
governing the way that mathematical formulae are written down allow the use of
nested brackets, most computer languages too allow this sort of nesting: if only
when handling mathematical expressions. In consequence the grammars used
in computer languages tend to be recursive. Most high level languages allow
recursion in several parts of their grammar. Recursion in a grammar is handled
by recursion in the syntax analyzer. The analyzer is a collection of mutually
recursive procedures. Associated with each non-terminal of the grammar is a
procedure whose job it is to recognise that non-terminal. This is best understood
by example.

To parse G we would set up 3 procedures, one to handle each of s, t, u . We
know from the de�nition of G that an s is a t with brackets round it.

A procedure that would accept an s would be:

53



CHAPTER 3. SYNTAX ANALYSIS 54

Procedure to accept s
accept a '('
accept a t
accept a ')'

Likewise a procedure that would accept a t would be:
Procedure to accept t
accept a '1'
accept a u
accept a '2'

These procedures are simple because they have no choices in them. The proce-
dure to accept a u has to chose between three alternatives: 3 s t . This can only
be done by looking ahead to see what the next symbol is. If the next symbol is
a ( then we know we have an s , if it is a 1 then we must have a t.

Procedure to accept u
If the nextsymbol = '(' then accept an s
else
if the nextsymbol = '1' then accept a t
else
accept a '3'

These pseudo english procedures can be implemented in pascal using the pro-
cedures provided by the lexical analyzer described in the last chapter. For each
non-terminal in the language a pascal procedure is de�ned that will recognise an
instance of that non terminal. The tests on variable symbol and the procedures
have and mustbe can be used to determine the �ow of control.

procedure U;
begin
if symbol=bra then S else
if symbol=one then T else
mustbe(three)
end;
procedure S;
begin
mustbe(bra);T;mustbe(ket)
end;
procedure T;
begin
mustbe(one);U;mustbe(two)
end;

The process of going from a context free grammar to a collection of procedures
to recognise it is simple and almost mechanical. Given a speci�cation of a



CHAPTER 3. SYNTAX ANALYSIS 55

the context free part of a grammar, a collection of recursive procedures can
usually be quickly written to parse it. For this technique to work though, the
grammar must be such that the decision about which procedure to call next can
be made by looking ahead a single symbol as is done in U. Those grammars for
which this is possible are termed LL(1) grammars. Designers of programming
languages tend to try to make their languages LL(1) to simplify parsing. If
you are interested in the technicalities of this is done consult a book on formal
language theory like Principles of Compiler Design, by Aho and Ullman. Unless
you are designing a programming language ab initio this is unlikely to be a
problem you will encounter.

3.1 Speci�cation of a machine readable syntax

It is clear that you will not get very far with producing your parser unless you
have a clearly speci�ed grammar for your language. There are a number of
formalisms for putting a grammar down on paper. Some of these, like the one
we have used up to now depend upon the use of special type faces. We have been
showing non-terminals in italics and the terminals in bold. Although this reads
well enough on the printed page, and can be handled by most word processors,
variations in typeface are di�cult to express in the standard ASCII codes used
on Western computers.

It is convenient at times to allow parsers to be built automatically by other
programs which have been given a speci�cation of a grammar. The automatic
construction of a compiler in this way is termed compiler compilation, and the
programs which do it compiler compilers. These compiler compilers need a clear
machine readable speci�cation of the grammar, without italics or boldening. A
formalism that meets these criterion is BNF or Backus Naur Format, that was
developed to describe algol 60 by Backus and Naur in 1960.

In BNF non-terminals are shown between angle brackets '<' '>' thus: <
expression> means the non terminal whose name is expression. Symbols written
down outside the brackets stand for terminals. The way that a non terminal
expands out is shown by ::= which plays the same role as -> in out earlier
notation. Thus in the production

<clause>::=if <clause> do <clause>

the symbols 'if' and 'do' are terminals. The exception to this are a few punc-
tuation symbols. If a group of symbols is enclosed in square brackets '[' ']', it
means that they are optional. For instance in the production

<clause>::=repeat <clause> while <clause> [do <clause>]

the �nal pair of symbols
do <clause>

is optional. The vertical bar symbol '|' is used to designate alternatives as in:



CHAPTER 3. SYNTAX ANALYSIS 56

<addop>::= +|-

The Kleene star * is used to designate repetition, as in:
<exp3>::=<exp4>[<addop><exp4>]*

which allows zero or more repetitions of an <addop> followed by an <exp4>.
Where any of these punctuation symbols occur in the �nal language, as they
are likely to do they are designated by non-terminals:

<exp4>::=<exp5>[<multop><exp5>]*
<multop>::=<star>|div|/|rem
<star>::=*

3.2 Control Structures

In S-algol the if clause has two variants depending upon whether else is to be
used. We have examples like:

if b>0 do write "b positive"

and we also have ones like
write "b is ",if b>0 then "positive" else "negative"

The problem of how to parse these two variants will can give us a concrete
example of how to use the primitives supplied by a lexical analyzer to perform
a context free parse. A cut down version of the parsing procedure for if clauses
is reproduced in 26.

Algorithm 26
procedure if_clause ;
label 1,2,3,4;
begin

next_symbol;
1: clause;

if have(do_sy) then begin clause end else
2: begin

mustbe(then_sy);
3: clause;

mustbe(else_sy);
4: clause;

end;
end;

The syntax handled by listing 26 is:



CHAPTER 3. SYNTAX ANALYSIS 57

if <clause> do <clause> |
if <clause> then <clause> else <clause>

Assume that the procedure has to parse the clause:
if b>0 then "positive" else "negative"

^

The up arrow indicates where the current symbol is. The procedure if_clause
will only be called if some other procedure has performed a look ahead and
decided that the next symbol is an 'if'. Since the 'if' has already been recognised,
it is discarded by if_clause when it calls next_symbol. This gets us to label 1.
The state of the parse is now:
if b>0 then "positive" else "negative"

^

The syntax stipulates that an 'if' must be followed by a clause so the procedure
that parses clauses is called. Next a choice has to be made. If the program that
is being read in is valid then the next symbol must either be 'do' or it must be
'then'. Which of these it is can be tested using the have call. This tests the
current symbol against its parameter. If they match, then the current symbol
is 'eaten' and a true result returned. Otherwise false is returned. Since we have
a 'then' not a 'do' false will be returned and we go to label 2. The state of the
parse is still.
if b>0 then "positive" else "negative"

^

The grammar now o�ers no alternative. We must have a 'then'. Mustbe is
called to make sure that we do and eats up the 'then'. The program has now
moved to label 3. The state of the parse is now:
if b>0 then "positive" else "negative"

^

There are no further alternatives. We must have a clause followed by a an
'else'. This brings us to label 4: with the parse in state:
if b>0 then "positive" else "negative"

^

One more call on clause and the parse is �nished. The other form of con-
ditional clause: the case statement, provides some new problems. Its syntax in
S-algol is:



CHAPTER 3. SYNTAX ANALYSIS 58

<caseclause>::=case<clause>of<caselist>default:<clause> <clauselist>::=<clause>[,<clause>]* <caselist>::=<clauselist>:<clause>;[<caselist>]

In pascal it also has a very similar syntax. The case statement involves recursion
on the case list and iteration (the Kleene star) on the clauselist. When we
transform this syntax into a parsing procedure it is more convenient to use
double iteration.
Algorithm 27 The recognizer for case clauses
procedure case_clause ;
begin

next_symbol;
clause(t1);
mustbe(of_sy);
while errorfree and not have(default_sy) do begin

repeat clause (t)
until not have(comma_sy);
mustbe(colon_sy);
clause(t);

end;
mustbe(colon_sy); clause(t);

end;

The procedure case_clause uses two loops. The while loop recognizes each
of the actions of the case clause and can be terminated either by an error in the
parsing of lower level code or by the occurrence of the symbol ' default'. Within
this we have a repeat loop that recognizes the list of guards in front of each of
the actions.

3.3 Expressions

The other types of clauses in the language: for_clause, while_clause etc, can
be parsed by applying the same principles exhibited in the case_clause and the
if_clause. A more complicated problem is raised in the parsing of expressions.
In most programming languages there is the notion of operator priority. If we
consider the expression:

2+3*3
the answer should be 11 rather than 8 since the multiplication operator is

taken to be of higher priority than addition. What 'of higher priority' means is
that we can rewrite the expression as:

2+(3*3)
without changing its meaning. High priority operators implicitly cause their

arguments to be bracketed. They allow the programmer to leave out the brack-
ets.



CHAPTER 3. SYNTAX ANALYSIS 59

* / div rem ++
+ -
is isnt < > >= <= = =
and
or
Low

Table 7.1 Operator priorities

In S-algol the priorities of the operators are shown in table 7.1. High :=
The operator priorities are encoded in the syntax for expressions. Syntac-

tically expressions are de�ned to be made up of 8 classes of sub expressions
generated by 8 non-terminals called: expression, exp1,exp2,..., exp7. The pro-
duction rule for an expression is

<expression>::= <exp1>[or <exp1>]*

This de�nes an expression to be an exp1 followed by an optional list of exp1s
separated by 'or'. An exp1 is de�ned as:

<exp1> ::= <exp2>[and <exp2>]*

It can be seen that the de�nition of an exp1 has the e�ect of bracketing any 'and'
operations together before the 'or' operations are recognised. The sequence

a and b or c and d

is a valid example produced by the grammar. There are in principle various
ways of bracketing this:

((a and b) or c )and d)
(a and( b or (c and d)))
((a and (b or c)) and d)
(a and ((b or c) and d))
((a and b) or (c and d))

Only the last form matches the operator priorities we want, but this is also the
only form that can be generated by the grammar. Its derivation can be seen
below with the implicit brackets shown underlined.

<expression>
(<exp1> or <exp1>)
((<exp2> and <exp2>) or ( <exp2> and <exp2>))
(( a and b) or ( c and d))

The rest of the syntax for expressions is shown in table 3.3.
The parsing of expressions provides a particularly direct example of how to

translate a BNF into a set of recursive procedures. We take as an example the
procedure that recognizes an exp4.



CHAPTER 3. SYNTAX ANALYSIS 60

Table 7.2 Expression syntax
<exp7> ::= <name >|

<stdproc>|
<literal>|

(<clause>)|
<cur> <sequence> <ley>|
begin <sequence> end |

@<clause> of <type1><bra><clauselist<ket>|
vector<bounds> of <clause>

<clauselist> ::=<clause>[,<clause>]*
<subscription> ::=(<clauselist>)[<subscription>]*|

(<clause><bar><clause>)
<exp6> ::=<exp7>[<subscription>]
<exp5> ::=<exp6>[:=<exp6>]
<exp4> ::=[<addop>]<exp5>[<multop><exp5>]*
<multop> ::=<star>|div|rem|/|++
<star> ::=*
<bar> ::=|
<addop> ::= +|-
<exp3> ::= <exp4>[<addop><exp4>]*
<exp2> ::= [~] <exp3> [<relop> <exp3>]
<relop> ::= is|isnt|<|>|>=|<=|~=|=



CHAPTER 3. SYNTAX ANALYSIS 61

Algorithm 28 parsing exp4s

{ -------------------------------------------------------------- }

{ EXP4
this parses the syntax rules

<exp4>::=[<addop>]<exp5>[<multop><exp5>]*
<multop>::=<star>|div|rem|/|++
<addop>::= +|-

}

{ -------------------------------------------------------------- }
procedure exp4 (var t:typerec);
var continue:boolean; sym:lexeme;

adop:(plus,minus,noadop);

begin
debug(' exp4 ');
adop:=noadop;
if have(plus_sy) then adop:=plus else

if have(minus_sy) then adop:=minus;
exp5(t);
sym:=lexsymbol; continue:=true;

repeat
sym:=lexsymbol;
case lexsymbol of
star_sy : begin

next_symbol;exp5(t1);
end ;

slash_sy : begin
next_symbol;
exp5(t1);
end ;

div_sy,rem_sy : begin
next_symbol;
exp5(t1);
end ;

dplus_sy : begin
next_symbol;
exp5(t1);
end ;

else continue:=false;
end;

until not continue ;
end;

end;



CHAPTER 3. SYNTAX ANALYSIS 62

The important technique to notice in Listing 28 is the way a case statement
is used to select between which of the operators has been found. This is used
for clarity and speed. We could quite readily have used a list of if .. then...
else... statements directed by calls to have but this would have been slower and
a little less clear. As a general rule, if you are writing a parsing procedure for
a rule that has only a couple of alternatives, then you should use calls on have
along with an if .. then... else... statement. When you have many alternatives
use a case statement. The techniques described in this chapter are su�cient to
parse the context free portion of the language. There are some portions of the
language for which they are inadequate. Consider for example:

x(1)
This can either mean subscript a vector called 'x' and extract its �rst ele-

ment, or it could mean call a procedure called 'x' with parameter one.What it
means can only be determined once we know what type of identi�er 'x' is. This
is context sensitive. Before we can deal with it we must look athow a compiler
stores information about types.



Chapter 4

Types and identi�ers

4.1 What types are.

A type is a set of values.
Reals are a set of numbers. Integers are a subset of the reals. Booleans are

the set true,false. Characters are the set A, B, C,.., a, b, c ..+, -, *, ...
These sets are what are often termed base types in a computer language,

they correspond to sets of values that can be represented in machine words
of variaous sorts. Most modern computers provide support for �oating point
numbers, integer numbers, binary values and characters. For this reason, these
types are given priority in computer langauges. They are taken to be prede�ned.
For the machine supported base types there is a one to one mapping between
the type and a data format

Type Format
boolean bit
character byte
integer machine word
real IEEE 64bit floating point number

Some compilers may not use this particular representation of types. It may
be convenient to represent reals, booleans and integers all in 32 bits. Whatever
the particular convention followed, the idea remains the same. For each type
there is a determinate data format.

In addition to the base types, it is usually possible to de�ne new types ina
program. These types are constructed using type composition operations.Such
operations have a variety of syntactic forms in di�erent languages.When build-
ing a general purpose set of compilation tools it is advisable to look at type
composition in a language independent fashion. If we do that wecan capture

63



CHAPTER 4. TYPES AND IDENTIFIERS 64

the generality of types rather than just the particular typesthat one �nds in a
given language.

4.2 Cartesian composition

We are all familiar with the Cartesian co-ordinate system in geometry. This
uses ordered pairs of real numbers, conventionally designated [x, y], to represent
points on a two dimensional surface. Triples [x, y, z] represent points in 3 space.
Quadruples would represent points in 4 space etc. In computer science the
notion of Cartesian composition is generalised to then notion of tuple as in:
4tuple, 5tuple. An ntuple is an ordered list of n components. The components
may all have the same type, or they may be di�erent. In the case of Cartesian
co-ordinates all components are real numbers. In polar co-ordinates, one is an
angle the other a real number. Examples of tuples in computer languages are
records, structures and procedure parameter lists.

4.3 Unions

A union type is one that may take on several forms. Let A and B be types
representing the sets of values a1, a2, a3,.... and b1, b2, b3,....

Then the type C=union(A,B) is the type formed by the union sets of values
a1, a2, a3,.... b1, b2, b3,....

4.4 Sets

Given a type T which represents the set of values t1, t2, t3,... then the type
powerset of T is the set of all subsets of T. Powerset types are rather mislead-
ingly termed set types in programming languages like Pascal. Powersets are
di�cult to implement on a computer, so some compilers restrict themselves to
implementing powersets of the integers.

4.5 Subranges

Given an ordered type then a subrange type can be de�ned on it. Given the
integers, 1..2 is a subrange of them. Given the characters, 'A'..'C' is a subrange
of them.

4.6 Maps

Given the types T and U then the type map(T->U) is the powerset of the
ordered pairs [t,u] where t is an element of T and u is an element of U. An
individual value of the type map(T->U) will be a set of ordered pairs [t,u]
where t is an element of T and u is an element of U.



CHAPTER 4. TYPES AND IDENTIFIERS 65

Maps in the general sense are relations. These are implemented in database
programming languages.

Where the maping is such that for each value of t there is only one pair [t,
u] and thus a unique value of u, we have a function from T to U. Functions
are widely implemented in programming languages. The two main sorts of
functions are algorithmic functions and storage functions. Algorithmic functions
are implemented by passing parameters to subroutines that return a result.
Storage functions are things like arrays where the result is computed by indexing
an area of memory.

4.7 Constancy

Some languages distinguish between the type of a value and the type of a store
location holding that value. A location that can be updated is a variable. The
type of a variable that can hold an integer is distinguished from the type of an
integer itself.

4.8 Representing types in a compiler

These concepts of maps, sets, cartesian composition, constancy and subranging
are su�cient to represent most of the concrete types that you will come accross
in compilation. We need some way to represent them in a compiler. In the
compiler toolbox they are represented using pascal records whose types are
declared in idtypes.pas. A functional interface is provided to the data structure
with functions implementing the type construction operations described in this
chapter. Operations are provided on types to determine whether they are equal
or not.

We can distinguish 2 types of equality on types. In the �rst case the types have
the same name or have been formed by the same type operations from base
types. We call this name equivalence. In the second case types have the same
store format, we call this representational equivalence. From the pointof view
of semantics we are interested in name equivalence. When it comes to stor-
age allocation and code generation, we will be concerned with representational
equivalence. Procedures shown in listing 29 allow these types of equivalence to
be checked.

The equivalence of types can be tested using eq and eq2 which return boolean
results. In contexts where only a certain type is permited: for instance with
procedure parameters, then the operations match,coerce, and balance can be
used. These force type equivalence and generate error messages if the types are
not equivalent. Match is used for name equivalence and coerce for representa-
tional equivalence. Balance is a special form of coerceion used with numbers.
In the arithmetic expression

1 + 2.9



CHAPTER 4. TYPES AND IDENTIFIERS 66

Algorithm 29 Basic type checking functions in a compiler
����������������������

EQ : compare two types
EQ - name equality
EQ2 - representation equality
------------------------------------------------------------------
function eq(var t1:typerec; var t2:typerec):boolean;
function eq2(var t1:typerec; var t2:typerec):boolean;
------------------------------------------------------------------
MATCH
enforce name equality of types
------------------------------------------------------------------
procedure match(var t1:typerec;var t2:typerec);
var em:textline;
begin
if not eq(t1,t2) then begin
em:= ptype(t1)+' not compatible with ' +ptype(t2);
error(em );
end;
end;
------------------------------------------------------------------
COERCE - verify representaional equality
------------------------------------------------------------------
procedure coerce(var t1:typerec;var t2:typerec);
------------------------------------------------------------------
BALANCE
------------------------------------------------------------------
procedure balance(var t1:typerec; var t2:typerec);



CHAPTER 4. TYPES AND IDENTIFIERS 67

we have a combination of an integer and a real number. Balance is called in
arithmetic expressions to ensure that the two operands are of the same type. If
they are not, it tries to convert them to the same type by planting instructions
to convert numbers between representations.

The type checking procedures can be called by the syntax analyser for two
purposes:

a) to disambiguate a construct,
b) to validate a construct.
Diambiguation is needed if the same syntax can imply several di�erent se-

quences of machine code instructions have to be generated. Consider:
x+y

This can either be the addition of two integers or the addition of an integer to
a real or the addition of two reals. In each case di�erent machine instructions
are needed. It the types of all the identi�ers have been recorded then the
compiler can decide which instructions to use. Validation is required where
only a particular type is allowed in a context. A simple example would be an if
then else construct where we need a boolean to switch on.

if x then .. else ...

In this context the variable x must be a boolean. A similar situation arises with
procedure parameters. In a strongly typed language, each of the parameters
supplied to a procedure call must be chaecked o� against the parameters with
which the procedure was declared.

4.9 Representing Identi�ers

The lexical analyser will have converted all identi�ers into an internal represen-
tation in the compiler as numbers. The identi�er management software must
associate type information with these numbers. In the toolbox each identi�er
has an idrec associated with it. These are declared in the �le idtypes.pas. The
record gathers together information about the identi�er as shown in table 4.1.

A number of di�erent things can be given names in a program: types, vari-
ables, �elds of records. The variables may be classi�ed according to where in
the program they are declared. Global variables are those that are declared at
the outermost level of the program and are accessible to all procedures. Local
variables are accessible to the procedures in which they are declared. Parame-
ters are an intermediate category, accessible from two places. Suppose I call a
procedure:

p(1, 4, z)

then its parameters must be accessible at the point of call since the compiler
must arrange for them to be assigned the values given. From within the proce-
dure the parameters are also available:



CHAPTER 4. TYPES AND IDENTIFIERS 68

Field Type Use

name_type nametype Says if the identifer
is global, local,
a parameter a
static or a typename

identifier lextoken This holds the
numeric form of the
identifier output
by the lexical
analyser

offset integer This specifies the
address of the variable relative
to some base

block_level byte For block structured
languages it
specifies how far in
the variable is in
terms of blocks

lex_level byte This specifies how
far in the variable
is in terms of
procedures

typeinfo typeref A reference to the
type of the identifier

zone (variable,field) Says if the identifier is a field
of a record

Table 4.1: Attributes of an identi�er



CHAPTER 4. TYPES AND IDENTIFIERS 69

procedure p (int a,b,c)
begin
write (a+c)/b
end

Parameters share many of the properties of local variables, in that their names
are only accessible within a procedure but they also have the special property
of being initialisable from outside the procedure. Both parameters and local
variables vanish when the point of control moves outside the procedure in which
they were declared. In vanishing, they loose any information they originally
contained. Some languages allow an additional category of variables, termed
'static' in C that can be declared within a procedure, but which retain their
values between invocations of the procedure.

In a block structured language procedures and blocks may be nested within
one another.

let j= 3
procedure p (int a,b,c)
begin

procedure m
begin
let a = b+j
write (a+c)/b ! point 1
begin
let b = j
write (a+c)/b ! point 2

end
write (a+c)/b ! point 3

end
write (a+c)/b ! point 0
m()

end
p(1,2,3)

In the above there is a set of 8 identi�ers j, p, a, b, c, m, a, b. Of these, j, p
are globals. The identi�eres in the set a, b, c areparameters of p. The locals of
p are made up by the singleton set m andthe locals of m by a, b. Within the
example there are 4 write statements,each of which writes out the same lexical
expression (a+b)/c. Thisexpression will not always give the same value. The
program will write out the numbers:

2.0 4.0 2.66666 4.0
These di�erences arise from the fact that there are 2 versions of both a and

b in the program. At point 0 all that can be seen are the parameters a, b, c. At
point 1 the parameter a is hidden by the local variable a, and similarly with b
at point 2. Finally at point 3 the local b has vanished. The identi�er manager
handles this behaviour by using a compile time stack of pointers to identi�er
records. This is shown in �gure 4.1.



CHAPTER 4. TYPES AND IDENTIFIERS 70

Figure 4.1: handling identi�ers

Whenever a new variable is declared, the function newname is called to
allocate an identi�er record for the new id. This record is pushed onto the
identi�er stack. When an identi�er is encountered subsequently the function
lookup is called. This takes as its parameter the lexical symbol for the identi�er
and scans the identi�er stack from top to bottom to �nd the �rst identi�er record
with that symbol. The e�ect is to �nd the most recently declared identi�er of
that name. Whenever the syntax analyser encounters the start of a new scope,
either a procedure or a block, it calls the procedure enterscope to record the
value of the identi�er stack pointer when the scope was entered. On exit from
the procedure or block exitblock or exit_proc is called to restore the identi�er
stack to the state that it was in when the scope was entered.

.



Chapter 5

Code generation

5.1 Modi�cation of syntax analyser

Up to now we have described a parser that is capable of checking if a program is
valid in terms of the syntax and type rules of the language. It does not produce
any output other than error messages for incorrect programs.

We will now look at how to modify the parser to generate an equivalent
machine code program. The technique used in the Toolbox is to decorate the
parser procedures with calls to the code generator. This can be illustrated by
looking at a couple of simple examples.
{ -------------------------------------------------------------- }

{ WHILE CLAUSE }

{ recognises: while <bool> do <void> }

{ -------------------------------------------------------------- }

procedure while_clause;

var t:typerec;

begin

mustbe(while_sy); clause (t);

if have (do_sy) then

begin clause(t); match(t,VOID); end;

end;

71



CHAPTER 5. CODE GENERATION 72

Listing 9.1
{ -------------------------------------------------------------- }

{ WHILE CLAUSE }

{ recognises: while <bool> do <void> }

{ -------------------------------------------------------------- }

procedure while_clause;

var t:typerec;

l1,l2,l3:labl;

begin

l1:=newlab; l3:=newlab;l2:=newlab;

plant(l1);

mustbe(while_sy); clause (t); condify(t); jumpt(l3);jumpop(l2);

plant(l3);

if have (do_sy) then

begin clause(t); match(t,VOID); end;

bjump(l1);plant(l2);

end;

Listing 9.2
Listing 9.1 shows the original form of the parsing procedure for while clauses.

It simply checks the grammar of the clause. Listing 9.2 shows how this is
modi�ed to handle code generation. It has been augmented with calls to newlab,
plant, condify, jumpt, jumpop and bjump. As can be deduced from their names
these procedures are responsible for generating jump instructions and handling
labels. Suppose that we have the while statement:

while C1 do C2
with the Ci standing for clauses. The e�ect of the decorated parsing proce-

dure is to generate machine code that looks like listing 9.3.
l1:
C1 code



CHAPTER 5. CODE GENERATION 73

condify code
jumpt l3
jump l2
l3: C2 code
jump l1
l2:
Listing 9.3

5.2 Notion of an abstract machine

The code shown in listing 9.3 is not for any one particular type of CPU. It is
an abstract machine code. It abstracts from the details of particular machines.
The syntax analyser assumes it is producing instructions for this abstract ma-
chine. The abstract machine is a general purpose computer whose instruction
set includes all of the operations necessary to implement the semantics of the
language that is being translated. On some computers the operations of the ab-
stract machine can be implemented with single instructions. In others, several
real machine instructions may be needed to achieve the same e�ect as the ab-
stract machine instructions. What is shown in listing 9.3 is a fairly simple set of
abstract machine instructions that are likely to be available to most machines.
A full listing of the instructions executed by the abstract machine is given in

Appendix G, but we will give a brief outline of the machine here. The
machine is assumed to have four registers:

PC Program Counter points at current instruction.
GP Globals Pointer, points at the start of the global variables
FP Frame pointer, points at the local variables of a procedure
SP Stack Pointer points at the top of the stack.
There are three areas of store:
CS The Code Store holds instructions
STACK This holds variables and temporary results
HEAP This holds objects like arrays, strings or structures.
All instructions are de�ned in terms of the e�ect that they produce on the

registers and the stores.

5.3 Expressions and reverse polish notation

The S abstract machine is a stack machine. That is to say arithmetic instruc-
tions operate on the top two words on stack. Consider the following expression:

2+4
This works by placing two words on the stack and then adding them. The

abstract machine instructions that do this would be:
llint(2)
llint(4)
add



CHAPTER 5. CODE GENERATION 74

This form of arithmetic in which the operator comes after its operands is
termed reverse polish notation. It is a particularly easy notation to compile
into. The general rule for generating code for any binary expression

e1 op e2

becomes :
generate code for e1

generate code for e2

generate code for op
Reverse polish notation combined with a recursive descent compiler will

automatically generate the right code for expressions with operators of mixed
priorities. The expression:

4+2*3
should yield 10. Given the syntax:
<exp3>::=<exp4>[<addop><exp4>]*
<exp4>::=<exp5>[<multop><exp5>]*
<exp5>::=<int-literal>
we obain the parse
Parse Code produced Stack
exp3 ...
exp4 addop exp4 ...
exp5 addop exp4 ...
4 addop exp4 llint(4) ... 4
4 addop exp5 multop exp5 ... 4
4 addop 2 multop exp5 llint(2) ... 4 2
4 addop 2 multop 3 llint(3) ... 4 2 3
4 addop 2 * 3 mult ... 4 6
4 + 2 * 3 add ... 10

It is easy to translate these abstract instructions into concrete 8x86 instructions
since the 8x86 supports a hardware stack. The previous sequence of instructions
would generate:

push 4
push 2
push 3
pop ecx
pop eax
imul ecx
x:push eax
pop ecx
y:pop eax
add eax,cx
push eax

The instructions labeled x and y in the above sequence are strictly speaking
redundant, and if the compiler has an optimising phase they should be deleted.



CHAPTER 5. CODE GENERATION 75

5.4 Handling of conditionals

The generation of arithmetic instructions is fairly straight forward since comput-
ers always have a set of arithmetic machine codes. Handling boolean operations
is more problematic. Consider the operation < which takes two numbers and
returns a truth value. In a high level language like S-algol or Pascal truth values
have the type boolean, and are represented in memory by a word which contains
some non zero value for true and zero for false. Some modern CPUs like the
AMD 29000 have opcodes that directly compute this operation, but older ones
like the 80x86 series do not. Instead they have comparison instructions which
compare two values and set some CPU �ags on the result. In particular the sign
and carry �ags are set according to the result of comparison. The 80x86 series
then provide jump instructions that will conditionally jump on the �ags : JL
for Jump Lessthan, JG for Jump Greater than etc.

Suppose we have the source code
if a<b do X

we want to generate code something like
push a
push b
pop ecx
pop eax
cmp eax,ecx
jl label1
jump label2
label1: ... code for X
label2:

For this sort of construct the setting of CPU �ags is quite e�cient as a control
mechanism. For boolean assignment this is not so suitable. For the statement

p:= a<b

we need something like
push a
push b
pop ecx
pop eax
cmp eax,ecx
; code to generate a boolean on the stack
jl label1
push 0 ;*
jump label2
label1:push 1 ;*
; code to perform the assignment
label2:pop p



CHAPTER 5. CODE GENERATION 76

The instructions marked with * have to be inserted to convert the values in the
�ags into a boolean value on the stack. With a recursive descent compiler the
syntax analyser procedure that looks for comparison operations does not know
if this comparison is to be called in an if statement or in a boolean assignment
or any one of a number of other contexts. What the procedure that analyses
comparison expressions does is plant code for a compare instruction and re-
turn 'conditional' rather than 'boolean' as the type produced by the expression.
When the code generator is asked to perform a conditional operation it remem-
bers what comparison it was: less than, greater than etc. If at a later stage the
syntax analyser discovers that it has a conditional and needs a boolean it calls
the code generator to convert the conditional into a boolean by planting code
that will plant the appropriate truth value on the stack.

5.4.1 If clauses

If clauses provide an illustration of how conditionals are handled. The syntax
analysis procedure for an if clause is given in listing 30. Note how the procedure
condify is called to ensure that the condition codes have been set. This is
necessary to deal with examples like:

a:= z>y
if a do write "z > y"

The if clause tests the boolean variable a. After the compilet has matched the
if it calls the procedure clause to parse the condition. This returns to indicate
that the result on the stack is a boolean. The condify procedure �nds that the
top of the stack is a boolean so it plants code to compare the top of stack with
zero. This sets the condition codes and allows the jump to be made. If on the
other hand the source had been:

if x<y do write "x < y "
then the call on clause would have set the variable t to condition. Find-

ing that the condition codes were already set, the condify procedure would do
nothing.

Listing 9.7

5.4.2 For loops

For loops in programming languages come in two main forms. The simples is
the Pascal variant where you write something like for i:=x to y do ... . Within
the body of the loop, i will take on all the values in the range x to y in turn.
Other languages, including S-algol allow a more general variant of the for loop
: for i=x to y by z do ... . In this case z provides the step by which i is to be
incremented. It is necessary to evaluate the expressions for the start, �nish and
the step at the top of the loop. Consider the following discriminating example:

let x:=1
let y:=3



CHAPTER 5. CODE GENERATION 77

Algorithm 30 If clauses
{ -------------------------------------------------------------- }

{ IF_CLAUSE

this parses the rule
<ifclause> ::= if <clause> do <clause> |

if <clause> then <clause> else <clause>
}

{ -------------------------------------------------------------- }
procedure if_clause ;
var t1:typerec;l,l1,l3:labl;
begin

l1:=newlab; l:=newlab;l3:=newlab;
next_symbol;
clause(t); condify(t);
jumpt(l);jumpop(l3);plant(l);
if have(do_sy) then begin clause(t);plant(l3); match(t,VOID) end

else

begin
mustbe(then_sy);
clause(t1);jumpop(l1);decsp(t1);
mustbe(else_sy);
plant(l3);
clause(t);balance(t,t1); plant(l1); release_label(l1);

end;
release_label(l3);

end;



CHAPTER 5. CODE GENERATION 78

for i=x to y do begin
write i
y:=y+i
end
write y
--> 1 2 3 9

If the expression y were evaluated each time round the loop, then the program
would never terminate. In S-algol the loop variable ( i in the above example )
is implicitly declared as a cint for the duration of the for loop. Knowing this we
can see thatthe above is equivalent to the code:

let x:=1
let y:=3
let induction:=x
let finish=y
while induction <= finish do begin
let i=induction
write i
y:=y+i
induction:=induction+1
end
write y

Note :
1) The induction variable and the end point are computed before the loop

starts
2) That i is declared as a cint each time round the loop
The semantics of the generalised for loop with a variable step size are more

complex.
for i=x to y by z do begin
write i
y:=y+i
end
write y

is equivalent to
let induction:=x
let finish=y
let step=z
while if step>0 then induction <= finish else induction>= finish do begin
let i=induction
write i
y:=y+i
induction:=induction+step
end
write y



CHAPTER 5. CODE GENERATION 79

In this general case, the direction in which the loop is going is must be deter-
mined at run time. We can not assume that the direction will be upwards. If
z was -1 the direction of the loop has to be downwards in which case we have
to check whether the induction variable is greater than the �nish. What the
compiler actually does is similar to translating the for loop into a while loop
and then compiling this into machine code. What is done is shown in listing 31.

Algorithm 31 for loop code generation
procedure for_clause;

var t:typerec;l1,l2:labl;id:lextoken; os, n:namedesc;
complex:boolean;

begin
enterscope(os);
l1:=newlab;l2:=newlab;
next_symbol;
id:=symbol;
mustbe(identifier);
mustbe(eq_sy);
clause(t);match(t,int_type);
n:=newid(id,cint_type);
mustbe(to_sy);
clause(t);match(t,int_type);
if have(by_sy) then begin complex:=true; clause(t);match(t,int_type);end
else complex:=false;
mustbe(do_sy); if not complex then forprepop;
plant(l1);fortestop(complex,l2);
clause(t);match(t,VOID);
forstepop(complex,l1);plant(l2);
exitblock(os,VOID);

end;

This looks at the for loop to see if the loop is a simple one or a complex
one. It calls the code generator to output either a forprep sequence if it is a
simple loop. The code generator routines fortest and forpstep are then called
with a parameter to indicate if the loop is complex or simple.We can see the
code generated for the simple loop:

for i=1 to 10 do ...

in listing 32.
Note that this takes advantage of special instructions included in the x86

instruction set to handle simple loops. The loop instruction, expects the counter
register ECX to hold the number of times it is to go round a loop.



CHAPTER 5. CODE GENERATION 80

Algorithm 32 code generated for a for loop
push 1 ; this location on the stack will be the variable i
push 10
; forprep sequence
pop ecx
pop eax
push eax
sub ecx,eax
add ecx,2 ; precompute the number of times round loop
;minfortest sequence
l1: loop m1 ; this is a machine code instruction which
; tests the CX register
; if non zero it goes to m1 and decrements CX
pop eax
jmp l2
m1: push ecx ; CX held induction variable
;--------------------- Main body of loop goes here
; minforstep sequence
pop ecx ; induction variable back in CX register
pop eax ; increment i
inc eax
push eax
jmp l1 ; go back to the top of the loop
l2:



CHAPTER 5. CODE GENERATION 81

We precompute this and load it into CX before the loop starts. During the
body of the loop, CX is pushed onto the stack to prevent it being corrupted by
a nested loop.

5.5 Variable access

An abstract machine speci�es a set of stores and a set of operations on these
stores. These stores can have a number of possible types. One class of store
is predesignated variables capable of holding an individual word of data. We
generally call these registers. In an actual hardware machine the registers will
often be implemented by using particularly fast memory chips, or in a micropro-
cessor, by using on chip memory cells. From the standpoint of abstract machine
design this is not important, since an abstract machine is concerned only with
the functional speci�cation of a computer. The speed of access to di�erent parts
of the store is an implementation optimization.

Some abstract machines support a random access memory. The PS-algol
machine does not. Instead it uses forms of structured memory: stack and heap.
On a given implementation these may actually be implemented in a common
random access store, but this is not necessary. Indeed it might be advanta-
geous from a performance point of view to implement the heaps and stacks as
physically distinct memories.

The areas of memory de�ned by the PS-algol abstract machine are the reg-
isters, the code store, the stack, and the heap.

5.5.1 Stack variables

PS-algol, like all Algols is a recursive language. It is recursive in two senses. It
is de�ned by a recursive grammar and it allows the recursive calling of proce-
dures. This imposes special constraints on the store of the language that are
best satis�ed by a stack structured memory. Consider the fragment of code in
algorithm 33.

In this example four variables are de�ne a,i,x,y, but at no point are more than
3 of the variables in scope at once. At position 2 the variables x, y,a are in
scope and at position 3 the variables x,y,i are in scope. In other words, di�erent
variables persist for di�erent periods of time. Variables are only in scope between
the point at which they are declared and the end of the block. Because the
grammar of Algol allows blocks to be nested it generates a Last In First Out
discipline on the scope rules. The variables in the outermost block remain
in scope for the entire program whereas the variables in innermost blocks are
discarded �rst. This lends itself naturally to a stack implementation in algorithm
34.

Variables are accessed by specifying their address relative to the current base
of the stack. The variable x is accessed using the operator global(0) since it is
at the base of the stack, y is addressed as global(1) as it is at position 1 on the



CHAPTER 5. CODE GENERATION 82

Algorithm 33 example of nested scopes
begin

let x:=3
let y:=x*readi
! position 1
begin
let a = x
x:=y; y:=a
! position 2

end
begin
let i:=9+x
if i>y do y:=x
! position 3

end
end

Algorithm 34 Code generated for the nested scopes in algorigthm33
1 ll.int(3) ! let x:=3
2 global(0) ! x -> top of stack
3 readi ! readi -> top of stack
4 times ! let y:= x*readi
! position 1
5 global(0) ! let a=x
6 global(1) ! y -> top of stack
7 globalassign(0) ! x:=y
9 global(2) ! a-> top of stack
10 gloabalassign(1) ! y:=a
! position 2
11 retract(1) ! get rid of a
12 ll.int(9) ! 9 -> top of stack
13 global(0) ! x-> top of stack
14 plus ! let i:=9+x
15 global(2) ! i->top of stack
16 global(1) ! y->top of stack
17 le.i ! i<y -> top of stack
18 jumpf(23) ! if top of stack

! false goto 23
19 global(1) ! y -> top of stack
20 globalassign(0) ! x:=y
! position 3
21 retract(1) ! get rid of i
22 retract(2) ! get rid of x and y



CHAPTER 5. CODE GENERATION 83

stack etc. It is worth noting that the combination of the PS-algol initializing
assignment statement

let <variable>:= <expression>
with the stack allocation discipline means that many of the store instructions

that would be required in a conventional machine architecture are dispensed
with. The initial value is simply calculated and then left on the stack. The
compiler then just remembers where on the stack it was left.

If the variable was declared at the outer most level the address associated
with the variable is given relative to the GP or global pointer register 1. If a
variable is declared in a procedure, then its address is speci�ed relative to the
FP or frame pointer register 2. When generating code, variables are consistently
dealt with in terms of their addresses relative to some base register.

5.6 Procedure calls

The most complicated useof the stack in an Algol-based language is the way
in which it is used to implement procedure calls. We will start by looking at
how to implement procedure calls in languages like C that do not allow nested
procedures.

5.6.1 Simple procedures

Global variables are accessed by o�set from some global base register.
Local variables are accessed by an o�set from the frame pointer. Suppose

we have the following C procedure:
swap(a,b)int *a,*b;
{int temp;temp= *a; *a= *b; *b = temp; ]

This might generate the folowing abstract machine code:
49 push(fp) ! tos <- fp
49 copy(fp,sp) ! fp <- sp
50 retract(-1) ! reserve space for temp
51 local.i(-3) ! push a, tos<- [FP-3]
52 deref ! change to *a tos<-[tos]
53 localass(1) ! store in temp [FP+1]<-tos
54 local.i(-3) ! a to top of stack
55 local.i(-2) ! b to top of stack
56 deref ! change to *b
57 store ! store in *a [tos]<-tos
58 locali(-2) ! push b
59 local(1) ! push temp
60 store ! *b <-temp

1Typically the DS register on an intel machine.
2This would typically be the EBP register on an intel machine.



CHAPTER 5. CODE GENERATION 84

Figure 5.1: Local variable and parameter access
+----------------+ <-----------SP
| work space |
+----------------+
| temp |
+----------------+

+-| old FP | <-----------FP
| +----------------+
| | return address |
| +----------------+
| | b |
| +----------------+
| | a +
V +----------------+

61 retract(1) ! get rid of temp
62 pop(fp)
63 return

The important thing to note about this is the procedure entry and exit code.
When the procedure is entered the FP is saved on the stack and reset to point at
the current top of stack. The stack pointer is then advanced to create su�cient
space for the local variables (only one in this case). On exit from the procedure
the space is released and the FP restored to its previous value before returning.
The stored copy of FP on the stack is termed the dynamic link . It links a
procedure to the environment in which it was called.

The meaning of the code is made clearer by �gure 5.1. The local variables
are accessed by a positive o�set from the FP and the parameters by a negative
one. A procedure call to swap might go as follows:

swap(&x,&y)

translating into
100 local.addr(4) ! tos <- &x means tos<- FP+4
101 local.addr(5) ! tos <- &y means tox<- FP+5
102 call(49) ! call swap
103 retract(2) ! get rid of parameters

The parameters are pushed onto the stack followed immediately by a call to the
start address of the procedure. The call itself pushes the return address onto
the stack so that when the procedure has been entered and the last parameter
(b in this case) will be at a local address of -2 relative to the FP.



CHAPTER 5. CODE GENERATION 85

Stack direction

In the abstract machine examples given above it is assumed that the stack grows
upwards from low addresses to high addresses. This is true on some hardware
but not on all. On intel machines like the 8086, the stack grows downwards
from high addresses to low addresses. The actual machine code generated by
the toolbox must take into account which direction the stack grows in. On a
machine with a downward growing stack the addresses of parameters will be a
positive o�set from the FP and the addresses of local variables a negative o�set
from the FP.

5.6.2 Nested procedures

Algol like languages allow procedures to be nested within one another. The
problem is to devise a calling mechanism that will:

a) Enable procedures to have space for local variables
b) Allow these to be called recursively
c) Allow procedures to access variables that are in a surrounding scope
We will consider the example shown in listing 35. Here we have 3 procedures

A, B and C with procedures B and C within procedure A. B must have access
to the variables of A , to its own variables and to the global variables. Access
to the globals is no problem, since the global pointer register can beused for
this. Access to the locals can be handled as shown in the previous example.
The di�culty comes with access to intermediate level variables, those of A. In
our example X is a global, and M and P are intermediate level variables with
respect to B. B is called by C. How is B to access M?

Algorithm 35
let X:=3 ! a global variable
procedure A(int P)
begin
let M=P+X ! an intermediate variable

procedure B
begin
write M

end
procedure C
begin
B; ! call B

end
if P>0 then A(P-1) else C

end

The technique used to handle this problem is called a display. In an algol like
langauge variables can be accessed using a 2 component addressing technique.



CHAPTER 5. CODE GENERATION 86

Figure 5.2: Formation of a display
address contents comment

135 132 display 2
134 122 display 1
133 100 display 0
132 127 dynamic link
131 return address for b
130 127 display 2
129 122 display 1
128 100 display 0
127 122 dynamic link
126 return address for c
125 M
124 122 display 1
123 100 display 0
121 return address for a
120 P

For the global context we have
address contents comment

101 X
100 100 global base

Each variable is identi�ed by the combination of what is called its lexical level
with an o�set. Variables at the global level are said to be at lexical level 0.
Variables in global procedures like A are said to be at lexical level 1. Variables
in a nested procedure like B would be at lexical level 2 etc. If we write down
the addresses of the variables in the example in this way we get the following:

Variable Address
X 0,1
P 1,-2
M 1,3

A display is an array of pointers that points at the start of the store for di�erent
lexical levels. If the display is indexed using the lexical level portion of the
address, then it is possible to �nd a variable at any lexical level in two stages.
If an address is given in the form (ll,o�set) then the variable will be at location:

display[ll]+o�set
Whenever a procedure is entered a display is created pointing at the enclosing

lexical levels. This is done using the abstract machine instruction prologop.
The semantics of the prolog operation are given below.
prologop(ll:integer);
FP->S[++SP]; SP->FP;



CHAPTER 5. CODE GENERATION 87

S[S[FP]:S[FP]+ll-1]->S[SP+1:SP+ll]; SP+ll->SP;
FP->S[++SP]

Prologop takes one parameter: ll, the lexical level of the procedure that is being
entered. The �rst thing it does is to push the dynamic link just as we did for
a C procedure. It then copies ll elements of the previous display onto the stack
and follows that by pushing the frame pointer onto the stack. What happens
in practice is shown in �gure5.2 .

The display of A is the array [ 100, 122], where 100 is the base address for
globals, and 122 is the address of the current frame.

The display of C is [100, 122, 127]. That is a copy of the display of A followed
by the address of the frame for C = 127.

The display of B is [100, 122, 132]. It shares elements 0 and 1 with the display
of C, since both of these procedures are nested at the same lexical level. On the
other hand it has a new element 2, since the new lexical level 2 is the frame of
B. This dynamically constructed display gives access to all of the variables in
scope from B. Thus

X = (0,1) = display[0]+1 = 100 +1 = 101
P = (1,-2) = display[1]-2 = 122 -2 = 120
M = (1,3) = display[1]+3 = 122 +3 = 125
The abstract machine instructions that access intermediate variables take

two parameters lexical level and o�set. The compiler translates these into a
series of instructions that access the display and �nd the variable. For instance
on an x86 the abstract instruction to assign an integer to a variable could be
translated into:

assi macro
; Assign an integer
; invoke with first parameter lexical level
; second parameter the offset of the variable within frame

mov esi,[ebp+#1] ; ebp points at the display
;esi<-display[lexlevel]

pop dword[esi+#2] ; esi now points at the desired frame
; esi[offset]<- tos

#em

At the end of a procedure an epilog sequence has to be generated to return to
the context the procedure came from. Unlike C, S-algol procedures discard their
parameters before they return from the stack. This is done by epilogop.

epilogop (Discard:integer)
FP->SP; S[SP--]->FP; S[SP--]->PC; SP-Discard ->SP

5.7 Structure of the code generator

For the PS-algol compiler the code generator is a collection of procedures in the
module SAGEN.PAS.



CHAPTER 5. CODE GENERATION 88

These are organised one per abstract machine instruction. Each procedure
has the the name of an abstract machine instruction and when called places this
abstract machine instruction into the compiled binary program.

It actually implements the abstract machine instructions by calling the
macro assembler module ASSEMBLE.PAS, to output one or more 8086 in-
structions.

We will examine how the assembler works in the next chapter. We will
now examine how the abstract machine instructions are implemented using the
physical resources made available to us by the x86.

5.7.1 Register use

The abstract machine has a small collection of registers that have to be imple-
mented on the physical register set of the intel x86 series machines. A descrip-
tion of the Intel processor architecture is not provided here. Those who are
unfamiliar with it are advised to consult a reference book 3.

On the x86 the following conventions are used for register allocation in the
compiler toolbox. The frame pointer is implemented using the intel EBP reg-
ister. The global pointer is the intel EBX register. Since the stack grows
downwards variables are accessed with negative o�sets from these registers.

The display mechanism is directly supported in the intel hardware for pro-
cessor models iAPX 186 and upwards and on the NEC V series processors. On
these machines there is a single instruction ENTER that implements prologop.

The assignment of abstract machine registers to physical registers is
sumarised below
Abstract Real
PC PC
GP EBX
FP EBP
SP ESP

Arithmetic is done using the EAX register as the destination. The ECX register
is used as a loop counter.

Note that this contrasts with the exercise for PLDI3 which uses the �oating
point stack for all arithmetic.

5.7.2 Keeping track of the stack

The code generator maintains an internal variable called stack_ptr which is used
to keep track current displacement between the SP and FP registers. The pro-

3A particularly clear explanation of the original 8086 is given in chapter 5 of 'Os-
borne 16 bit Microprocessor Handbook' by Adam Osborne from McGraw-Hill. Alterna-
tively one can consult the processor manuals published by Intel, AMD or NEC for their
CPU chips. It should be born in mind that the register naming conventions used in
NEC literature di�er slightly from that used by Intel and AMD. In what follows, the In-
tel names will be used. For more recent machines the manuals can be downloaded from
http://developer.intel.com/design/pentium4/manuals/.



CHAPTER 5. CODE GENERATION 89

cedures which output abstract machine instructions should increment or decre-
ment stack_ptr to mimic the e�ects that will be produced at run time on the
real stack. To help in doing this a collection of utility routines are provided
to increment or decrement the stack by the space that would be taken up by
a value of a given type. The procedure incsp should be called when a value is
pushed onto the stack and decsp when a value is poped from the stack. These
procedures use information about the sizes of types that are expressed in strides.
Strides are the smallest amount by which the stack can be adjusted. On 80386
machines and above strides are 4 bytes long. It is important when making
any alterations to the codegenerator to ensure that these procedures are called
whenever an opcode is produced that will a�ect the real time stack.



Chapter 6

The Assembler

The assembler phase of a compiler is responsible for generating the binary ma-
chine code that will be executed by the cpu. As such it has to know about
the details of an individual machine code. A conventional assembler is a stand
alone program that takes in a �le of ascii text with an assembly language source
program in it and outputs either a linkable object �le or an executable binary
�le. Many compilation systems use a stand alone assembler as the last phase of
the compilation process. This has several advantages:

1. The compiler writers need not bother themselves with the binary formats
of the machine instructions, all they have to know about is how to generate the
assembler mnemonics, which is usually much easier.

2. Several compilers can share the same assembler which encourages software
reuse.

On Unix this use of a stand alone assembler for the back end of a compiler
seems to be standard practice. This is partly because an assembler is provided
with the C compiler on every Unix system. Since all Unix systems used for
software development are bound to have a C compiler, writers of other compilers
are free to use the same back end. On MSDOS, assemblers are not provided as
standard features of the operating system. Since each compiler writer then has
to provide their own version of the assembler, they have to consider whether
to make the assembler a stand alone program or a bound in module of their
compiler.

The disadvantage of using a stand alone program is obviously that it has to
communicate with the compiler via intermediate text �les. The output of these,
followed by their input and reanalysis by the assembler will be time consuming.
If you have to provide your own assembler it you might as well produce a fast one.
That is the strategy adopeted in the Toolbox. The assembler in the toolbox is a
pascal module assemble.pas that is bound into the main compiler program. We
can see the relationship between the two in �gure 6.1. In the left hand example
you see the arangement used in the toolbox. The compiler is a single program
containing several modules, of which only the assembler and the front end are
shown. These communicate via shared bu�ers. In the right hand example the

90



CHAPTER 6. THE ASSEMBLER 91

Figure 6.1: Two possible arrangements for the compiler and assembler

compiler and the assembler are stand alone programs which communicate via
intermediate �les.

The two main tasks that a conventional assembler has to deal with are
a) Converting mnemonics into binary code.
b) Keeping track of the addresses associated with labels.
Both of these become considerably easier when the assembler is a program

module and communicates with other modules using internal bu�ers. It is no
longer necessary for the mnemonics to be human readable. An assembly lan-
guage instruction would normally look something like:

operator parm1 parm2
ENTER 2, 20
There would be an opcode, followed by one or more operands. Each of these

�elds would be encoded as a sequence of ascii characters. Allowing for newline
characters and spaces, the whole line might take 15 to 20 bytes of �le space.
When we want to assemble code directly in memory, we do not want to waste
this much space. Instead of holding the assembly language source as lines of
text, we can hold it as records. These can be much more compact. Listing
36 shows the format of the pseudo instruction record used in the toolbox to
represent a line of assembler source. Like the textual source line it contains
three �elds: an operator and two parameters. The whole thing takes up only 5
bytes, 2 bytes for each integer and one for the operator.

Algorithm 36
type pseudo = record abstract instruction
operator:opcode;
parm2:integer;
parm1:integer;
end;

The operator belongs to the enumerated datatype opcode declared in the
opcodes.pas module. A partial listing of the type opcode is shown below.

type opcode = (
jl,
jle,
jg,
jge,
je,
jnz,
jump,
jumpt,
jumptt,



CHAPTER 6. THE ASSEMBLER 92

Figure 6.2: �nding the binary code for an opcode

cjump,
fortest,
forstep,
outbyte,
shrink,
enterframe,
exitframe,

It is an enumerated type whose members are opcode mnemonics. Since there
are fewer than 255 members of the enumerated type, the pascal compiler will
represent its members as byteintegers of 8 bits. This enables the opcode �eld of
the pseudo instruction to only take up one byte.

The assembler strategy is for the code generator phase of the compiler to
deposit a sequence of these pseudo instructions into an array. At the end of the
code generation phase the assembler is then called to convert these into binary
code which can be output to a �le.

6.1 Converting the opcodes

The central task of the assembler is to expand out the opcode menmonics into
the series of bytes that implement the operations on an 80x86 processor. It does
this using the three arrays : codelen, codeo�set, codelib. The �st two of these
are mappings from opcodes to integers. Given an opcode mnemonic, codelen
will tell you how many bytes there are in the equivalent machine code. Codelib
is a big array of bytes that contains all of the binary opcodes. To obtain the
sequence of bytes equivalent to a particular opcode the process shown in �gure
6.2 is followed. The codeo�set array is indexed to �nd the start of the code
sequence in the codelib array, and the codelen array is used to determine how
many bytes to copy from the codelib to the binary �le.

The other task that the assembler has to achieve is to plant the parameter
�elds of the instructions into the outgoing code stream. If we consider the in-
structionset of the 80x86 we �nd that some of the opcodes take 2 parameters,
some take 1 and others take none. As against this the format of the pseudo in-
structions always contains two parameters whether they are needed or not. The
assembler has to �nd some way of determining how many parameters an instruc-
tion will really need. this information is encoded in an array codeparams, shown
in listing 10.3. This speci�es the di�erent types of parameters that instructions
can have, as follows:

nonadic The instruction has no parameters.



CHAPTER 6. THE ASSEMBLER 93

monadic The instruction has a single parameter, this will be the 16 bit num-
ber held in param 1.

dyadic The instruction has 2 parameter �eld each of 16 bits, to be obtained
from param1 and param 2 of the pseudo instruction.

byteadic The instruction has a single 8 bit parameter obtained from param1
of the pseudo instruction

relative The instruction has a single parameter which is a 16 bit relative o�set
from the current value of the program counter.

byterel The instruction has a single parameter which is an 8 bit relative o�set
from the current value of the program counter.

abslabel The instruction contains a single parameter which is a 16 bit absolute
address from the start of the code segment.

Algorithm 37
optype=(
nonadic,monadic,dyadic,stringadic,byteadic,relative,byterel,
abslabel);
const codeparams:array[opcode]of optype =(
{jl}byterel,
{jle}byterel,
{jg}byterel,
{jge}byterel,
{je}byterel,
{jnz}byterel,
{jump}relative,
...
{fortest}relative,
...
{outbyte}nonadic,
...
{prolog}byteadic,

6.2 Address handling

Several of the addressing modes require the assembler to generate addresses to
words in the code segment. These are usually the destinations of jump instruc-
tions. The address formats required in the �nal code will either be relative to the



CHAPTER 6. THE ASSEMBLER 94

start of the code segment or relative to the program counter. In the 'assembly
source', which in this case is a sequence of pseudo instructions, the destination
address will be indicated by a label. To understand how this works it is helpful
at �rst to think of what the assembler would have to do if it were taking its
input from a conventional source �le.

Consider the following example
mov ecx,10
l1: push ecx
call proc1
pop eax
dec ecx
jnz l1
...
proc1: ......
.....

The assembly language sequence will call procedure proc1 10 times. The assem-
bler needs to know what addresses correspond to these labels if it is to be able
to generate the correct binary code. What an assembler does is to maintain a
label table as shown below.

label address
l1 100

proc1 124
labn 230

This associates with each label its machine code address. Assemblers con-
ventionally have two passes over the source. During the �rst pass they calculate
what address is associated with each label and put it into the label table. Dur-
ing the second they use the addresses thus calculated to �ll in the address �elds
of the code.

With the ram resident assembler we are using the labels are simply numbers
that are used to index the label table. No lexical representation of the labels is
needed. A special pseudo instruction called PLANT is used to plant a label in
the code. The procedure FIXLABELS shown in listing 3810.3 calculates what
address is associated with each label.

6.3 The interface

The interface to the assembler is provided by 3 procedures :
procedure pass2(var comfile:codefile);
procedure assem(op:opcode;p1:integer;p2 : integer);
procedure initassem;



CHAPTER 6. THE ASSEMBLER 95

Algorithm 38
procedure fixlabels;

var i:word;

begin
machinepc:=start;
for i:=0 to pc do

with pseudocode^[i] do begin
if operator=plant_label then labels[parm1]:=machinepc;
machinepc:=machinepc+codelen[operator];

end
end;

Before anything else is called the assembler must be intialised using INITASM.
Then for each instruction to be assembled, the procedure ASSEM is called.
The arguments to this are an opcode and two parameters. These can be either
integer constants or indices into the label table. When all the instructions are
placed, PASS2 is called to output the machine code to the speci�ed �le.


