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Abstract

Digital circuits with feedback loops can solve some instanc es of NP-hard problems
by relaxation: the circuit will either oscillate or settle d own to a stable state that
represents a solution to the problem instance. This approac h differs from using
hardware accelerators to speed up the execution of determin istic algorithms, as it
exploits stabilisation properties of circuits with feedba ck, and it allows a variety of
hardware techniques that do not have counterparts in softwa re. A feedback circuit
that solves many instances of Boolean satisfiability proble ms is described, with
experimental results from a preliminary simulation using a hardware accelerator.
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1. INTRODUCTION

NP-complete problems lie on the boundary of what is economically computable. They are
effectively computable on a Turing Machine, but their worst-case run times are believed to grow
exponentially with problem size. This can make large instances of NP-complete problems too
expensive for us to obtain solutions. It is suspected, but not proven, that no polynomial time
algorithm exists for NP-complete problems, and that if a deterministic algorithm rather than an
oracle is used to obtain the solution, then in the worst case the algorithm must perform an
exhaustive search through a solution space whose size is an exponential function of the input
size.

There have been numerous recent proposals to overcome the barrier of effective computability in
computation, and proposals [5, 6, 11, 15] have been put forward for hypercomputers that could
compute functions which are uncomputable on a Turing machine. The feasibility of building such
devices remains in dispute [7, 25, 33, 8].

A related question concerns the time complexity of computable functions. Many models of
computation are mathematical state machines that are provably equivalent to a Turing Machine,
but some physical systems that can perform computation have not been proven to be Turing
equivalent, either in terms of computability or time complexity. Do there exist physical systems
that can solve computable problems with a lower time order than a Turing Machine?

A particularly significant type of physical computation system is a circuit comprising Boolean
logic gates and (possibly) flip flops. Such circuits are normally designed according to a strongly
disciplined synchronous style in order to keep their behaviour simple, digital, and predictable.
Synchronous circuits behave like mathematical state machines. However, unconstrained Boolean
networks with feedback can exhibit a variety of complex behaviours, including non-digital
behaviour such as metastability [36]. Given constant inputs, a circuit may stabilise, it may settle
down into an oscillation among a set of states, or it may fluctuate chaotically.

Kauffman has shown [20] that random Boolean networks of size n have expected median state
cycle lengths of O(

√
n). Thus a system with a very large state space (e.g. 210000 ≈ 103000) may

settle down and cycle among a quite small number of states (e.g. 100).
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In this paper we investigate the computational complexity of Boolean networks with feedback for
solving instances of Boolean Satisfiability (SAT), a standard NP-complete problem. We show how
to compile (in polynomial time) an instance of SAT into a circuit whose fixed point (where the
signals remain stable) represents a solution to that problem instance. The circuit may not reach
a fixed point; oscillation among a set of states constitutes a failure to solve the problem instance.
Kauffman’s result suggests that there is a reasonable probability that such a circuit will indeed
solve the instance. We have experimented with a prototype of the system, using FPGA technology
to simulate the general class of circuit we define. Preliminary experimental results show that the
approach does indeed solve many SAT problem instances quickly.

In Section 2 we consider the problem of Boolean satisfiability, and Section 3 reviews existing
solvers. Section 4 outlines an ASIC (application-specific integrated circuit) design that can solve
problem instances by relaxation, and we show how to compile an arbitrary instance of SAT in
order to run on the circuit. Section 5 discusses initial results obtained by a hardware simulator,
and Section 6 concludes.

2. THE PROBLEM DOMAIN: BOOLEAN SATISFIABILITY (SAT)

The problem domain we consider is Boolean satisfiability. Given an arbitrary Boolean expression
over a set of variables, the problem is to determine whether there exists a set of variable settings
(to true or false) that makes the entire expression true. A specific Boolean expression is called
an instance of the general problem. We restrict the Boolean expressions to a canonical form: the
logical conjunction of clauses, where each clause is the logical disjunction of one or more literals,
and a literal is either a variable or the negation of a variable. This restricted version of Boolean
satisfiability is called SAT, and it is also NP-complete. For example, the following expression is an
instance of SAT:

(a ∨ ¬d ∨ e) ∧ (d ∨ e ∨ f) ∧ (b ∨ ¬c ∨ ¬d)

Although SAT is an NP complete problem, not all instances of it are hard to solve. Previous
research has shown that the set of SAT problems has an interesting structure, with a phase
change from a subset of problems with few solutions to a subset of problems with many solutions
[19, 18, 37]. The instances of SAT that are hard lie mostly near the phase change. This previous
research is experimental: large sets of problem instances are generated randomly and their
solution times measured.

Cheeseman, Kanefsky and Taylor observed an abrupt phase transition from solubility to
insolubility in graph colouring problems as average degree was increased [4]. A complexity peak
was observed at this transition, and it was conjectured that this would be algorithm independent
and common to all NP-complete problems. Graph colouring problems were mapped to SAT
and the same phenomenon was observed, i.e. an abrupt phase transition with a corresponding
complexity peak. Later studies showed that incomplete algorithms also experience the complexity
peak when applied to satisfiable instances: easy solvable instances are easy, hard soluble
instances are hard, and rare soluble instances found within the easy insoluble region are also
easy. Much research has been done to pin down the location of the SAT phase transition and
to develop theories about the location of this phase transition for problems that are NP-complete
[13] or in higher complexity classes (such as quantifies SAT (QSAT)). Research to date appears
to confirm that the complexity peak is indeed independent of the algorithm, and it is an open
question whether physical systems that do not implement mathematical state machines have the
same properties.

3. RELATED WORK ON SAT SOLVERS

Because of its theoretical interest and its practical importance, there has been extensive work on
solvers for SAT.
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3.1. Software solvers

There are two broad classes of SAT solvers: complete and incomplete. Complete solvers are
guaranteed to find a solution if one exists and to terminate on unsatisfiable instances. They
typically use a backtracking search based on the DPLL (Davis, Putnam, Logemann, and Loveland)
algorithm. State of the art solvers, such as Zchaff2004 [24], MiniSAT [10, 12, 34] and BerkMin
[14] employ relevance bounded learning, intelligent backjumping, and dynamic variable ordering
heuristics along with smart data structures such as watched literals.

Incomplete solvers typically use a neighbourhood search algorithm, and often operate as hill
climbers (or descenders). Given complete or partial setting of the variables, the settings are
improved by making local changes. Solvers such as WalkSat [21] (and its predecessor GSAT)
have features that are similar to Tabu search. Heuristics for optimisation strategies are discussed
in [9], and runtime distributions of SAT solvers are reviewed in [16]. The algorithms for WalkSat
and GSAT are shown below:

procedure WalkSat

input f: array[1..c] of clauses {in CNF}

output v:array[1..n] of boolean {a variable assignment that satisfies f}

begin

for a := 1 to MaxTries do

v := random truth assignment;

for b := 1 to MaxFlips do

if all f are true given v then return Success;

choose a random clause cl in f such that cl=false;

if random(0..1)<p then

j := a random variable that appears in cl

else

j:= the variable in cl that will produce the biggest

increase in satisfied clauses when flipped

v[j] := not v[j];

return Fail;

end;

Procedure GSAT

input f: array[1..c] of clauses {in CNF}

output v:array[1..n] of boolean {a variable assignment that satisfies f}

begin

for a := 1 to MaxTries do

v := random truth assignment;

for b := 1 to MaxTries do

if all f are true given v then return Success;

else

PossFlips := set of vars which increase SAT most

j := a random element of PossFlips

v[j] := not v[j]

return Fail;

end;

State of the art SAT solvers are highly optimised pieces of code. Practical applications of SAT
solvers include scheduling problems, planning (for example, in interplanetary space within Deep
Space 1), configuration problems, hardware design and verification, and cryptanalysis of hash
functions. SAT instances solved to date contain some hundreds of thousands of variables and
millions of clauses, typically taking a handful of hours to solve.
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FIGURE 1: We can consider each variable to be subject to a local potential which varies according to whether
the variable is true or false. To transition between Boolean values the variable has to use thermal noise to
overcome a potential barrier separating the two states.

3.2. Hardware acceleration of SAT solvers with FPGAs

There has also been extensive work on using FPGAs to accelerate satisfiability algorithms. Many
of these projects use FPGAs to accelerate components of the Davis-Putnam algorithm. Skliarova
and Ferrari give a survey [32]; specific projects include [3] [38] [27] [1] [39] [2] [26] [31] [28] [35]
[29] [40] [30].

Our approach differs from previous work in several key respects. It has an efficient polynomial time
compilation of a problem instance onto the circuit; it uses relaxation rather than an algorithmic
state machine to attempt to solve the instance; it uses a parallel randomised approach rather than
the Davis-Putnam algorithm; it uses hardware techniques that have no counterpart in software,
including pulse logic, asynchronous timing, and the use of noise to generate random numbers.

4. A HARDWARE RELAXATION PARADIGM FOR A FAST INCOMPLETE SOLV ER

We now describe a new form of circuit that is capable of implementing an incomplete solver for
an arbitrary instance of SAT, provided that the instance is not too large to fit on the chip. The
circuit is structured as a programmable regular array of logic elements, related to but distinct from
PLA, PAL, and FPGA logic, and it is suitable for implementation on an ASIC (application specific
integrated circuit). In addition to the generic circuit, we describe a simple polynomial time method
for compiling an arbitrary SAT instance instance to run on the circuit.

The approach is similar to simulated annealing [22] with a local potential energy function for each
variable (Figure 1). The energy for the 0 or 1 states of a variable will be a function of the number
of unsatisfied Boolean terms in which the variable participates. Since the number of unsatisfied
terms depends on the states of other variables, the flipping of one variable will shift the energies
of other variables.

A potential barrier separates the energies associated with the 0 and 1 states of a variable. At
indeterminate moments, thermal noise will cause variables to flip state, and the probability that
a flip will occur is an inverse function of the potential barrier. We can arrange the potentials so
that the probability of a flip occurring to a variable will be zero if all the terms which contain that
variable are satisfied. Once all terms have been satisfied, the system will be in a global energy
minimum.

Our aim is to design an electronic circuit that can, in polynomial time, be configured to exhibit
these dynamical properties for any SAT instance (up to some given size). Since chips are two
dimensional and since SAT problems have two characteristic dimensions : t Boolean terms and n

variables, there is in principle a good match between the two. An obvious approach is to arrange
the chip as an array with each of the t terms constituting a row and each of the n variables a
column (Figure 2). Each row must be able to represent an arbitrary Boolean term that has to be
satisfied.

In order to configure a row as a particular Boolean term we select which variables participate
in the term, and also whether the the variable is complemented. Therefore an arbitrary term in
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FIGURE 2: The layout is a regular two dimensional array with t terms (corresponding to the rows) and n

variables (corresponding to the columns)

n variables could be encoded in 2n bits. Each of the t terms is represented by a shift register of
length 2n bits. A simple option would be to concatenate these configuration shift registers into one
long shift register of length 2nt. Given a SAT problem instance in the form of a product of sums,
then generating a two dimensional array of configuration bits can be computed in polynomial time
on a standard computer. The computer can then shift the configuration array onto the chip, also
in polynomial time.

The flip columns can be implemented as wired ORs, and ensure that the flip probability is an
increasing function of the number of unsatisfied terms into which a variable enters. This models
our original requirement that the flip probability should be an inverse function of a potential barrier,
which is itself an inverse function of the number of unsatisfied terms using a variable. A t input
AND gate along one side of the chip can detect when all terms are satisfied. Judicious design of
the thermal noise source can mimic the effect of cooling a required by simulated annealing.

4.1. Structure of the programmable array circuit

Figure 3 gives an overview of the circuit. The current value of each of the Boolean variables is
carried on two vertical lines (one giving the variable’s value, the other its complement). There is
a horizontal line that calculates the value of each term (these are the horizontal lines that have
× at some of the intersections, and which terminate at an or gate symbol). This line calculates
the logical disjunction of the values carried by vertical lines that have a × at the intersection; if
its value is true, then the term is satisfied by the current variable settings. That signal is inverted,
producing a signal whose meaning is “this term is not satisfied”, which is then transmitted to the
left on a second horizontal line. If the “not satisfied” signal is true, one or more of the variables
appearing in the term must be wrong. The circuit labelled “?” controls the probability that one of
these variables will be changed, and the result is carried up to the top of the circuit on another
vertical signal. For example, the variable a is carried downwards on two signals (one for a, one
for ¬a, and the “a may be wrong” signal aW is carried back up. The circuit labelled fix takes the
current variable value, and flips it if the variable is “wrong”. The circuit is programmed to solve
a specific instance of SAT by determining where the × and “?” connections are made. Those
connections are controlled by flip flops, enabling the circuit to be reconfigured rapidly.

Figure 4 shows in more detail a portion of a possible term-line design, including the intersection
between the horizontal term-line and two variables A and B on vertical lines. A 4 bit register (shown
as 1) selects whether each variable or its complement enters into the term. This is organised
as a shift register, so that the settings can be loaded efficiently into the chip. Each variable is
represented by true (2) and complement (3) columns. Associated with each variable is a ‘flip’
column (5), which when activated will cause a set/reset latch at the top of the column to flip,
changing the current state of the variable. Three input and gates (4) act to pull up the flip column
if all of the following hold:
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FIGURE 3: A circuit with feedback that attempts to satisfy (a∨¬b∨c)∧ (a∨b∨¬c)∧ (b∨c∨¬d). The circuit’s
behaviour is parameterised by three black box circuits, labeled fix, ×, and ?. The output S is 1 if the current
values of the variables satisfy the expression. If the expression is not satisfied, the feedback loop changes
values and continues trying. The behaviour of the circuit depends on the black box fix circuit.

1. the term (7) is currently unsatisfied;
2. the variable is selected as part of the term by the shift register;
3. a thermal noise output (6) is true.

4.2. A tunable digital noise-based random generator

Rather than using traditional pseudo-random numbers, several hardware techniques are available
to improve the efficiency of the randomisation. A train of random pulses can be used instead
of random integers to control the toggling. The pulse train can be generated using noise, and
probabilities can be combined using a logical and-gate. The generator must produce a spike train
with a random delay between subsequent spikes, and the spikes must be wide enough to toggle
a latch. The average delay between subsequent spikes (called the ”period”) must be controllable.
Ideally, the period will grow exponentially longer over the duration of a 3SAT search. We propose
to vary the supply voltage of the circuit over time along a negative exponential:

VDD = VDDmin
+

(

VDDmax
− VDDmin

)

× e−
t

τ

where τ is the time constant of the system. This behaviour is easily obtained as the response of
a step function to an RC filter. The actual random generator is based on a ring oscillator circuit.
We exploit the well-known high-jitter behaviour of this type of oscillator to create random pulses,
simply by XOR-ing two subsequent nets (Figure 4.3).

Because of the jitter, the XOR output will be a pulse of varying width, including zero-width. By low
pass-filtering this signal and then recovering it, we obtain a random pulse train. The frequency of
a ring oscillator is proportional to the VDD. An accurate model for the jitter of a ring oscillator is
presented in [17]. Using this model it is possible to design a circuit that will generate a pulse with
a probability p at a frequency governed by the VDD of the oscillator.
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FIGURE 4: This diagram shows the intersection between two variables (labeled A,B) and a Boolean term.
Corresponding to each variable are two vertical lines for the true and complement values of the variable.
Configuration information in shift register cells records whether the true or complement of the variables or
neither are to be included in the term. The term is implemented by a wired OR. Noise anded with the value
of the term anded with the output of the configuration bit determines whether a vertical wired-OR causes the
value of each variable to flip.

FIGURE 5: Generating random numbers using noise

4.3. Algorithmic description of the hardware solver

The hardware solver can be executed in several modes: fully synchronous, asynchronous, or
partially synchronous.

A fully synchronous version of the circuit would use a flip flop to hold the value of each variable,
the flip flops would be clocked so that they change states simultaneously, and the clock would
run slowly enough to allow the long paths through the logic array to settle down completely. This
would cause the circuit to act as a large state machine, and its behaviour would correspond to
an algorithm. However, it is costly to propagate a clock through a large circuit, and this approach
would use a lot of chip area (reducing the size of problem instance that could be handled) and
time (reducing the speed of the search).

A fully asynchronous version of the circuit would allow a variable to change any time a ‘wrong’
signal is received. Different variables would change their values at different times, and the
horizontal lines could be calculating results based on variable values that are about to be toggled.
The behaviour of the circuit may depend on infinitesimal variations in timing; indeed the results of
running the circuit may not be repeatable.

There are also intermediate approaches, where the variables are clocked but the circuit is not
completely synchronous.

If the hardware solver were to run in synchronous mode, its behaviour would correspond to a
highly parallel randomised algorithm ProbSat:
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procedure ProbSat;

input f: array[1..c] of clauses {in CNF}

output v: array[1..n] of boolean {a variable assignment that satisfies f}

begin

v:= random truth assignment;

while true do

if all f are true given v then return Success;

parfor i in [1..n] do

toggle v[i] with a probability proportional to the number of

unsatisfied clauses that contain the variable

end;

The hardware solver is an unbounded loop that performs a generate and test strategy. In practice,
the circuit is stopped after a fixed number of clock cycles if it has failed to find a solution.

The hardware algorithm differs from WalkSat and GSAT in several respects:

• WalkSat and GSAT toggle a single variable at a time, while the circuit toggles many.
• WalkSat chooses the variable to toggle randomly from a set of clauses where that variable

appears, while the circuit bases the decision to toggle a variable on the number of unsatisfied
clauses it occurs in. This has something in common with GSAT.

• The hardware solver is highly parallel, speeding up the evaluation of the formula and the
selection of variables to toggle.

• The hardware solver can be implemented asynchronously (the pseudo-algorithm shown
above is synchronous). An asynchronous circuit may be faster, and it may find a solution
more quickly.

5. EXPERIMENTAL RESULTS

We have completed a successful simulation [23] of the hardware SAT solver using FPGA
technology (with an Altera Cyclone chip) . An FPGA is a two-dimensional array of programmable
components, which are connected by a programmable interconnection network. The circuits
used were fully synchronous, but made essential use of randomisation and thus constituted an
intermediate point between conventional synchronous circuits, and fully asynchronous circuits.
Our circuits are highly parallel. We performed a number of experiments based on a simulation of
the circuit using an FPGA chip. As the circuit runs, it may stabilise with a solution for the problem
instance, or it may oscillate indefinitely. Thus the circuit corresponds to incomplete software
solvers, which may terminate or loop forever.

We developed a prototype compiler that reads an arbitrary instance of 3SAT, and then (in
polynomial time) outputs a VHDL specification that describes a circuit specialised to solve that
3SAT instance. The circuit has the structure described above. Altera software tools compile the
VHDL specification into the specific machine language programming needed for the Cyclone
FPGA. The compilation and control of the FPGA are performed on a host PC.

After the circuit for the problem instance is loaded onto the FPGA, the chip is given a fixed interval
of time to run. If it attains a fixed point within this time, the problem instance has been solved, and
the exact solution time is measured by an accurate clocked counter on the FPGA. If the circuit
does not reach a fixed point, the attempt is abandoned as a failure.

Our experiments compared the performance of the hardware solver with WalkSat, described
above. Marked performance gains were observed for the hardware solver in comparison with
WalkSat.

According to our preliminary results, the hardware solver gives good results on problem instances
that are not too close to the phase change boundary. To achieve this, the solution requires
randomisation to determine when variables are changed, and the performance is sensitive to
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the toggling probability. The best toggling probability depends slightly on the ratio of clauses to
variables; there is not one fixed probability that is always best.

There is wide variation in solution times; sometimes the hardware solver is much faster than
software, and sometimes much slower. However, for problem instances that are relatively easy
(i.e. which have a solution which is not near the phase boundary) the hardware solver is on
average significantly faster, and there are many such cases.

6. CONCLUSION

We have presented a design paradigm that exploits some of the capabilities of physical systems
comprising networks of Boolean logic gates in order to solve instances of an NP-complete
problem. The feasibility of this approach has been demonstrated by parallel hardware simulation
using FPGA technology. However, FPGAs cannot achieve the full performance inherent in our
technique, so future research will require the design of suitable programmable array circuits using
ASIC (application-specific integrated circuit) technology.
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[28] N. A. Reis and José T. de Sousa. On implementing a configware/software sat solver. In
FCCM, pages 282–283, 2002.

[29] Mona Safar, M. Watheq El-Kharashi, and Ashraf Salem. Fpga based accelerator for 3-sat
conflict analysis in sat solvers. In CHARME, pages 384–387, 2005.

[30] Mona Safar, Mohamed Shalan, M. Watheq El-Kharashi, and Ashraf Salem. Interactive
presentation: A shift register based clause evaluator for reconfigurable sat solver. In DATE,
pages 153–158, 2007.

[31] Iouliia Skliarova and António de Brito Ferrari. Design and implementation of reconfigurable
processor for problems of combinatorial computations. In DSD, pages 112–119, 2001.

[32] Iouliia Skliarova and António de Brito Ferrari. Reconfigurable hardware sat solvers: A survey
of systems. IEEE Trans. Computers, 53(11):1449–1461, 2004.

[33] Warren D. Smith. Three counterexamples refuting Kieu’s plan for “quantum adiabatic
hypercomputation” and some uncomputable quantum mechanical tasks. J.Applied
Mathematics and Computation, 187(1):184–193, 2006.

[34] Niklas Srensson and Niklas En. Minisat v1.13 - a sat solver with conflict-clause minimization.
Technical report, Chalmers University of Technology, Sweden, 2005.

[35] C. J. Tavares, C. Bungardean, G. M. Matos, and José T. de Sousa. Solving sat with a context-
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