
Non-classical computing: feasible versus
infeasible.

Paul Cockshott, Lewis Mackenzie
Department of Computer Science

University of Glasgow
{wpc,lewis}@dcs.gla.ac.uk

Greg Michaelson
School of Mathematical and Computer Sciences

Heriot-Watt University
G.Michaelson@hw.ac.uk

Physics sets certain limits on what is and is not computable. These limits are very far from having been
reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible,
there are a number of non classical approaches that do hold considerable promise. There are a range
of possible architectures that could be implemented on silicon that are distinctly different from the
von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue
computers, may be constructable in the near future.

The Infinite Improbability Drive is a wonderful new
method of crossing vast interstellar distances in a mere
nothingth of a second, without all that tedious mucking
about in hyperspace.Adams & Stamp (1997)

1. INTRODUCTION

At the end of the first decade of the 21st century,
Computing has the hallmark of a mature discipline,
providing the intellectual and pedagogical foundations
for the key technology of just about all industrial,
commercial and social activity across our peculiar
planet. Computers truly are ubiquitous and pervasive:
there are probably more CPUs in a typical G20
household than in the whole of the world mid-20th
century. Quite apart from personal computers, laptops,
PDAs and smart phones, general purpose processors
are found in watches, white goods, televisions, media
players, games, toys and so on. All bear testament to the
enormous theoretical and practical legacy bequeathed
to us by the pioneering mathematicians and engineers
of that brief, yet astonishingly fertile, period spanning the
Second World War.

The mid-1930’s saw the serendipitous elaborations of
Turing’s machines, Church’s λ calculus and Kleene’s
recursive function theory. We can directly trace our
current formalisations of computing systems back
to these roots. Thus Turing machines underpin
contemporary information and compexity theory, while
λ calculus and recursive function theory underpin
language semantics, type systems, process calculi, cost
modelling, transformation, refinement, theorem proving
and automated reasoning. Indeed, the Church-Turing

thesis, that all systems purporting to capture common
sense notions of universal computation are mutually
equivalent, is validated with each new candidate.

Practical computing machines have even older roots.
The vision of Babbage’s analytic engine was clouded by
the technological limitations of its era. Nonetheless, we
can see all the abstractions of contemporary computers
in its imaginings. The heroic elaborations of mechanical
analogue computers, most effectively realised in
wartime naval and anti-aircraft gunnery systems,
again hit technological limitations with large scale
differential analysers. Post-war, after brief competition
from electronic based analogue computers, our familiar
digital computer emerged from the designs of von
Neumann and his contemporaries.

And the Church-Turing thesis applies also to physical
realisations of computing machines, allowing for poten-
tially infinite memory. In turn, the thesis applies to the
languages, or more properly to the abstract machines,
with which we construct computing systems. In partic-
ular, all the limitations identified by the undecidability
results for classic Church-Turing systems apply to our
software systems as well. From Turing’s initial proof that
the Halting Problem for Turing machines is undecidable,
it has been subsequently established that it is impossible
to tell if two arbitrary Turing machines are equivalent,
or how much time and memory a Turing machine will
require to complete a computation on an arbitrary initial
tape.

When applied to our systems, the practical implications
are stark. Thus, in general, we cannot tell:

c© The Authors. Published by the British
Informatics Society Ltd. 1
Proceedings of ACM-BCS Visions of Computer Science 2010

Cockshott and Mackenzie

• if one piece of software is a plagiarism of another;

• whether a computer has enough memory to solve
some instance of a problem;

• if formally tractable problem will complete in a time
we consider psychologically acceptable;

• for an arbitray pattern of use, how long the batteries
on a mobile device will last for.

Of course these limitations really do not impinge directly
on most everyday deployment and use of computers1.
By analogy with Physics, it would be nice to travel faster
than light or to go back in time or to exploit perpetual
motion, but we are generally comfortable accepting
these long established constraints.

Or are we? Every year, people, frustrated that they
cannot realise science fiction dreams, claim to have built
devices that can overcome such physical linitations. And
every year, engineers and physicists patiently establish
why the devices do not have the promised properties.

So too in Computing. Over the last several decades,
many schemes have been proposed for overcoming
the formal limitations on Computing deriving from
undecidability results and the Church-Turing thesis.
Such schemes typically challenge either the Halting
problem, the applicability of Church-Turing to new
formalisms or the limitations to computation deriving
from the physical realisations of computers.

In this paper, we briefly survey such challenges to the
Church-Turing orthodoxy, and then discuss in more detail
how Physics actually limits the computing devices we
can construct, and the promise of novel yet realisable
physical computing configurations.

2. RUMOURS OF HYPERCOMPUTATION

There have been many attempts to articulate new
systems for computability that are claimed to transcend
the limitations of Church-Turing systems, termed for
example hypercomputing or super-Turing. Copeland
(2002) provides a thorough summary. The alleged
hypercomputing systems are based, we contend, on
either a confusion of calculi with computing machines or
on unrealisable physics.

Proponents of hypercomputation require the existence
of actual as opposed to potential infinities. Aristotle
(1983) made a distinction between potential and
actualised infinities. A potential infinity is one that
corresponds to a process that could go on for ever
but which can necessarily never be completed. In
contrast, an actualised infinity must be concretely
1Though delimiting the carbon footprints of computers and computa-
tions may well soon become a significant practical concern

realised at some time and place - an inherently
contradictory notion. Some hypercomputing schemes
involve an actually infinite physical computing resource
(Wegner & Eberbach (2004); Beggs & Tucker (2006))
others infinite amounts of time in which to perform
computations (Etesi & Németi (2002); Hamkins (2002)).
They may also require instantaneous communication
between computing devices or the components of
these devices (Copeland (2002)), or they invoke
infinitely small periods of time for information to pass
between separatated communicators. Or they may
involve several such infinities at once. For example
the proposal by Wegner & Eberbach (2004) that the
πcalculus is hypercomputational requires both an infinite
number of processes, and that information can be
transmitted between processes in zero time (Cockshott
& Michaelson (2007)).

The models of physics used by many of the
hypercomputing proposals(Beggs & Tucker (2007,
2006); Bournez & Cosnard (1995)) are classical rather
than quantum. Smith (2006a) has shown that in a world
of point masses and Newtonian physics, the Church
Turing thesis would be invalid, but with more realistic
laws of motion, it holds. The proposal to use time
dilation effects of rotating black holes to allow infinite
computations (Németi & David (2006); Etesi & Németi
(2002)) is at least relativistic but, among many other
difficulties (Cockshott et al. (2008b)), ignores the finite
lifetime of black holes according to quantum theory. Kieu
(2003) proposed a quantum process whereby a Turing
in-computable problem could be solved by adiabatic
relaxation to a ground state. This has been subsequently
criticised by Smith (2006b) and Hagar & Korolev (2006)
as involving arbitrarily small energy measurements or
uncomputably long relaxation times.

3. PHYSICS SUGGESTS PHYSICAL LIMITS TO
COMPUTING

Any real-world computing device is governed, and
therefore limited, by the laws of physics. Electronic digital
systems have evolved rapidly in the last half century
and will undoubtedly continue to do so for some time to
come, but beyond the near term, we can only guess at
the future path of computing technologies, their potential
capabilities and how these will be achieved. Although the
machines of the distant future may harness physics that
has yet to be discovered, such as the anticipated theory
of quantum gravity, if we accept that the currently known
laws of nature are universal, we can still place bounds
on what these systems will be able to do.

In what follows it must be borne in mind that any
computer is a physical system; conversely, any physical
system governed by mathematical laws that determine
its evolution in time, is potentially a computer, albeit one
that may be of no practical use in solving problems of

2

Non-classical computing: feasible versus infeasible.

concern to humans. The bounds that we can place on
such systems are completely general but, in reality, may
only be closely approached in what would currently be
seen as highly “exotic” scenarios. For example Lloyd &
Ng (2007)suggests the use of black holes as extreme
quantum computing devices, even though no theory
governing the temporal evolution of such objects is
currently known and the hypothetical technology that
might be required to “program” them and read the results
has not been and, indeed, may never be, invented

The final limits to what can ever be computed physically,
are constrained by the laws of nature and, ultimately, by
the total amount of resource (including time) available
in the physical universe. Here we will look at two
crucial issues: the maximum rate at which elementary
operations can ever be performed and the maximum
amount of information that can ever be stored. Quantum
mechanics limits the speed at which elementary
operations can be performed and, as shown by Margolus
& Levitin (1998)this limit is related to the total energy
available to the computational system. In this context,
an elementary operation is one which moves a system
from one quantum state to an orthogonal one (for
example flipping a qubit). The so-called Margolus-
Levetin Theorem is derived by appealing to the energy-
time uncertainty relation and shows that a system with
total available energy, E, can perform at most 2E

πh̄
elementary operations/second. If the system performs
multiple operations concurrently, the available energy is
simply subdivided and each operation accordingly takes
longer. Parallelism ultimately gains nothing in terms of
speed at this limit and the degree to which it makes
sense to use concurrency will depend on the actual
physical extent of the system: the more extensive the
system the greater the parallelism required to exploit
its resources, due to the communication constraints
imposed by the finite speed of light .

At the same time, theoretical physics places bounds
with varying degrees of strictness on the maximum
information content that can be stored in a region of
space. Some of these bounds, such as that established
by Gour (2001), are restricted to systems of certain types
(in this case thermodynamically extensive ones) but are
relatively exacting, while others are more general, but
laxer. One of the most interesting such limits is the
holographic bound, first deduced by Susskind (1995),
which shows that no object can have higher entropy than
the black hole that would result if the object were to
undergo collapse. Since the information entropy, S, of
a black hole is given by,

S =
A

4l2p ln 2
bits

, where A is the surface area of its event horizon and lp
is the Planck length (1.6 x 10-35 m), this is also an upper
limit for the entropy of the original object. The curiosity

here is that the absolute limit on information storage
appears to be proportional not to the volume of space
which the object takes up, but rather the surface area
enclosing that volume.

The holographic bound applies (with equality) to black
holes but is not attainable by ordinary objects. However,
in the case of such objects, we can, in fact, find a
more demanding limit by applying a principle known
as the generalised second law of thermodynamics
(“generalised” in the sense that it includes the concept of
black hole entropy). This latter limit was first established
by Beckenstein (1981)and is known as the universal
entropy or Beckenstein bound. It states that any system
of rest energy, E, contained within a volume of space of
radius R has an information capacity no greater than

2πRE
h̄c ln 2

bits

. The Beckenstein and holographic bounds coincide for
a black hole but the former is lower, and therefore more
informative, for ordinary systems. A system of volume
1 litre and a mass of 1kg, for example, according to
the Beckenstein bound, could store no more than 1043

bits. Although this is significantly lower than the system’s
holographic bound (˜1070 bits), Gour’s limit

(
ER

h̄c

) 3
4

is more exacting still and shows that with these
parameters the capacity is no more than about 1032 bits
(almost 40 orders of magnitude below the holographic
limit) Gour (2003).

Again it should be emphasised that these limits on
processing speed and storage are absolute maxima
and apply regardless of technology or physical scenario.
Lloyd (2000, 2002)has speculated about what types of
macroscopic systems might actually attain these limits.
In Lloyd (2000)he discusses how a 1 kg system might
attain the Margolus-Levetin limit dictated by a near
complete conversion of its rest mass into energy: he calls
this device, capable of up to 1051 ops/sec the “ultimate
laptop” although its nature (running at a temperature
of about 109K) would make it a rather uncomfortable
travelling companion! Its speed is not affected by the
volume it occupies but the storage capacity and degree
of parallelism is. The bit flip time (operations per bit per
second) is reduced to its ultimate limit by collapsing the
1kg mass inside its Schwarzschild radius. This causes
the storage capacity to reduce to the holographic bound
of a 1kg black hole but reduces the time for a signal to
cross the system and thus its level of parallelism.

Lloyd (2002)carries the reasoning further to estimate the
total computational capacity of the entire universe. On
the basis of some, admittedly uncertain, assumptions
about the resources available, he estimates the Universe

3

Cockshott and Mackenzie

to have entropy of about 1090 bits. This rises to
about 10120 if the dark energy postulated by current
cosmological theories is taken into account but, as
pointed out inLloyd & Ng (2007), these extra bits can
have taken no real part in the universal computing
process as their bit flip times are too long. Applying
Margolus-Levitin, he calculates that the universe is
capable of the equivalent of no more than 10106 single
bit operations per second and that it has performed the
equivalent of 10123 such operations since its creation,
assumed to be about 1010 years ago.

An interesting question relates to why these processing
and storage limits manifest themselves at all and what
they imply for computation. The answer seems to lie with
the relationship between the observer and the observed
world, a relationship mediated by the fundamental
impossibility of measurement of infinite precision. We
can conceptualise systems capable of computing with
real number quantities (for example a quantum computer
is modelled with qubits which are parameterised by
unconstrained real values and evolve continuously in
time) but, even if physical systems do in fact function
“objectively” in this way (this is a metaphysical question
given that we are, by definition, incapable of escaping
from our status as observers), we can only exchange
information with them according to the principles of
quantum mechanical measurement theory and these
principles lead inexorably to the constraints outlined
above. It should be said here that, carrying this
reasoning further, it is possible to question whether it
is valid to apply the Margolis-Levetin and holographic
bounds, both explicitly derived from a fundamentally
epistemological theory like quantum mechanics, to a
system like the universe which (it is assumed) contains
any observer. However, the conclusion is undoubtedly
interesting and, unimaginably huge though the numbers
arrived at may be, the fact remains that they are
undeniably finite. In short, material systems, as far as we
can ever know them, are subject to finite computational
limits and while these limits may seem far off when
compared to today’s technologies, they place an ultimate
ceiling on what can ever be achieved using computers.

4. WHAT IS FEASIBLE

A reader of the previous sections could be forgiven for
thinking we were hostile to the idea of non-classical
computation. This is not the case. We think that once
the mirage of hyper-computation is ignored, there are
several real paths that the computer science community
could profitably explore. We will look at some of these
below, but first, it is worth examining some of the
economic constraints that impinge on the development
of new computing techiques.

Computing took off as an industry in the 1950s
because Turing and von Neumann had shown that

you could build one general purpose machine which
could then be applied to a large class of problems.
This universality justified the very high capital cost of
developing the machine. In the computer industry, we
see a very clear example of Babbages old principle that
copying technologies lie at the heart of mass production
(Babbage (1832)). Once a computer has been designed,
and once these designs have been materialised in
photo-lithography masks, subsequent copies can be
turned out cheaply. The design is very expensive but
the marginal copies are cheap. The same principle is
evident here as was exhibited with the invention of
the printing press. The printing press is a universal
machine for producing any book, the UV litho plant is
a universal system for producing any computer chip.
The plant is increasingly expensive; a new factory at
90nm technology on 300mm wafers, has a capital cost
of $2-3Billion (Polcari (2005)). It is thus essential that the
market for the product be as large as possible. The von
Neumann design achieves a large market by virtue of its
universality. If new, non-classical computing is to achieve
a significant impact it must either:

1. Offer a superior form of universal computing, in
terms of speed or power consumption.

2. Address some different mass market for which
economies of scale are possible.

3. Address some niche application for which large
sums of money are available.

We will examine technical options in the light of the
above principles. We argue that the greatest gain from
non-classical computation will occur in applications that
are related to simulating physical systems on some
sort of grid. These are inherently highly parallel, and
on a conventional machine the simulation is done by
mapping the spatial grid of the physical system onto the
one dimensional structure of machine addresses, using
various forms of multi-dimensional arrays. The limited
bandwidth to memory inevitably slows this down.

Higher performance can be obtained by machines that
are specifically designed to act as simulators and which
map each locality in the physical system being studied
onto a spatial locality on the hardware. The dynamical
laws governing the evolution of the physical system
are then modeled by tailored dynamical laws which the
hardware evolves under.

We can envisage a classification of such systems as
follows

Analogue Digital
Classical general purpose cellular automata

analogue simulators machines
Quantum analogue quantum digital quantum

simulators simulators

4

Non-classical computing: feasible versus infeasible.

Classical systems are those in which the state variables
take on definite values. Quantum systems are those
where the state variables can exist in superposed
states. In analogue systems the state variables take on
approximate values from a continuous range, in Digital
systems the state variables take on exact values from a
discrete range.

Below we will look at some possible technologies.

4.1. Special purpose silicon hardware

Existing CMOS processes are the result of a long
and costly technical evolution. They thus offer the
most likely starting point for new computing paradigms,
since a paradigm that uses silicon technology can be
manufactured on existing plant and equipment.

4.1.1. Computing with FPGAs and how this differs from
von Neumann computing
Field Programmable Logic Arrays have been a mass
market application of silicon technology for over 20
years. They address universality in several ways. For a
start, they can be fabricated using the same processes
as are needed for standard components like CPUs and
DRAMs. Next, the individual chip as it comes out of
the factory can be applied to a multiplicity of potential
uses. It can be configured to implement any logic circuit
up to some bound set by the number of gates on
the chip. Usually this universality is applied to some
specific use or algorithm for which the individual chip
will subsequently be dedicated (Gokhale & Graham
(2005)). But it is quite feasible to configure part of the
array as a conventional instructionset processor like
the NIOS from Altera (Plavec et al. (2005)), or the
PicoBlaze from Xilinix. But such ’soft’ cores typically
are slower and use more power than conventional ones
(Lysecky & Vahid (2005)). This is because the indirect
implementation of logic gates via lookup tables, as
is done on FPGAs is less efficient than their direct
implementation in transitors. Thus to gain an advantage
with FPGAs one must find a problem domain where
direct implementation of an algorithm in hardware still
pays off despite the fact that you will be using slower
basic gates than on a conventional processor.

For integrated circuit processors, the von Neumann
bottleneck is an abstract reflection of the fact that the
processor must communicate with main memory via a
limited number of pins on the data bus. Because they
face similar pin constraints, FPGAs suffer from their own
version of the von Neumann bottleneck. They work best
for algorithms that have a naturally limited input output
rate. They are particularly suited to stream processing.
Video stream processing for example, where the data
rate is set by the camera. Another example is those SAT
solvers where the entire computational search is done
using onboard resources (Cockshott et al. (2008a)).

4.1.2. Cellular automata machines
An earlier generation of FPGAs allowed a different
form universal computation : two dimensional cellular
automata (Gray & Kean (1989)). The latter are well
known to be universal computers (Wolfram (1984,
2002)). Cellular automata can be used to model any
physical process with local interaction defined on a
manifold with dimensionality equivalent to that of the
cellular automaton. For silicon based systems we are
effectively limited to 2D automata, and simulating 2D
processes (Dunn & Milne (2004); Fu & Milne (2003);
Milne et al. (1993)). When an FPGA or array of
FPGAs is configured as a general cellular automaton,
very high computational rates can be achieved (Shaw
& Milne (1993)) relative those achievable on a von
Neumann computer of the same physical size using
contemporaneous chip technology. The key features of
this approach are to map each region of the manifold
under simulation to a locality of the silicon, and to store
all state associated with that region in local registers. The
state transition rules can then be implemented in fast
combinational logic. Since storage is in local registers,
state updates for all regions of the manifold can be
simultaneous.

This approach was once synchronously scalable by
adding additional FPGAs to the array, but in recent years
the grid of automata that can be implemented on a
chip has outgrown the available pinout, necessitating the
use of multiplexing. This makes the approach slightly
less promising. It is also notable that when working
with current FPGAs the tool chain, starting as it does
with an abstract language VHDL, does not give the
ready control over layout geometry that one really
wants for cellular automata work. Because the layout
is done automatically, and because automated layout is
potentially NP hard, the layout phase of compiling the
design to the chip can be rather slow.

4.1.3. Possible analogue FPGAs
During the 1950s and 1960s electronic

and hybrid analogue computers were at
the heart of modelling such technological
systems as aerospace and industrial plant
control. Heated debates took place about
the relative virtues of analogue and digital
computers. (Bissell (2004))

For certain application areas economic modelling for
example (Velupillai (2003)), even hydraulic analogue
machines proved useful right down till the early 1970s.
Analogue computers had, for a considerable period, a
marked advantage in terms of speed.

At Project Cyclone digital computers were
[...] used to verify the accuracy of results from
the analog computer. [...] In the simulation
of a guided missile in three dimensions, the

5

Cockshott and Mackenzie

fixed connections

Programably weighted connection

Row of OP amps

Figure 1: A fully interconnected array.

average runtime on the analog computer
facility was approximately one minute. The
check solution by numerical methods [...]
took from 60 to 130 hours to solve the same
problem. (Small (1993), p. 11)

The accuracy attainable by an analogue machine is
inherently limited, but in many classes of applications
this was not a serious issue, since the raw observations
on which the computation was based had significant
uncertainty.

The computers were programmably by rewiring op amps
and other components using plug boards. In many ways
this is analogous to the rewiring that one now does
on FPGAs. The latter are universal digital circuits. One
could in principle design classes of universal analogue
circuits that would span the equivalent analogue
computing space. One could envisage an architecture
like that shown in Figure 1 being used to implemement
a general analogue computer on a chip. Because a fully
general machine requires a potentially full interconnect
network, the area of such a chip is dominated by the
programmable interconnect and grows as n2 in the
number of variables handled n.

At the other extreme one can envisage a network
of analogue components in a square grid, each of
which communicates a few analogue state variables with
its 4 or 6 nearest neighbours (square or hexagonal
tessellation). Internally the cell might have two or three
analogue state variables which could be controlled by
some programmable differential equation driven by the
states of its neighbours. This configuration, would be a
universal analogue cellular automaton.

These sorts of architectures could certainly be built,
and would to a large extent capitalise on the existing
infrastructure for the construction of digital circuits.
Because the latest processes are always reserved
for the newest designs of the main semi-conductor

analogue
automaton

Figure 2: Analogue automata on a hexagonal lattice on a chip

companies, any such analogue machine would be made
using older processes. Like any experimental chip it
would have larger feature sizes and lower integration
than the most advanced digital products. The questions
then are:

1. Whether a convincing case could be made that
there exist applications areas where analogue
computers are again applicable. One could
imagine applications for configurations like Figure
2 in areas like spin-glass models, fluid dynamics,
diffusion modelling and the like.

2. Whether programming tools could be developed
that would enable very large analogue circuits to
be effectively used. In this context Bissell (2004)
points out that modern interactive tools like Matlabs
Simulink present a model very close to that of
analogue computers. One would have to combine
this with some sort of tesselation and tiling tool for
models like that in Figure 2.

4.2. Quantum computing

The idea of quantum computing originates with
the observation by Feynmann (1999) that quantum
mechanics was inherently hard to simulate on digital
computers because the digital representation of a
quantum system grows as the tensor product of the basis
states of its component parts. Thus for n subsystems
each with two basis states, we have a state space
of 2n. The evolution of the system, if represented
by a matrix operator, then requires a storage space
of 22n and each evolution step is also of order 22n.
He proposed therefore, that it would be better to try
to simulate a given quantum system A with another
quantum system B. Provided that a one to one mapping
can be established between the states and dynamics
of the the two quantum systems, the superposition of
states in B can then directly simulate the superposition
of states in A without the exponential explosion that
we experience when applying classical techniques of
computation. From this suggestion he went on to derive

6

Non-classical computing: feasible versus infeasible.

a set of reversible logic gates that could in principle
operate according to quantum mechanics. The potential
computational universality of such machines was soon
established (Deutsch (1985)).

4.2.1. Quantum digital computers
In over two decades since Deutsch’s key paper, a sig-
nificant effort has gone into investigating both potential
physical implementations of quantum computers and
algorithms that might run on them. Most practical effort
has concentrated on the quantum circuit model which
is computationally equivalent to Deutsch’s Quantum Tur-
ing Machine (Deutsch (1985)). More recent alternative
models such as the quantum adiabatic computer have
also been shown to be computationally equivalent to
the circuit model (Aharonov et al. (2008)) to within
polynomial overhead.

The circuit model relies on the application of a sequence
of unitary transformations, called quantum gates, to
a register of n qubits, the quantum generalisation
of the one bit store, capable of being in general
superpositions (parameterised by real values) of the two
basis states, 0 and 1. The sequence of transformations
can be conceptualised as being ordered by ‘quantum
wires’, although these are not real wires and, in fact,
correspond physically, to particle transfers or just unitary
time evolution (as determined by the time-dependent
Schrodinger equation). Multiple input gates cause the
qubits to become entangled and eventually the quantum
circuit (gates plus wires) produces an output which can
then be subjected to a quantum measurement relative to
some chosen basis. The idea is to design the circuit so
as to implement the logic of some desired computation.
It is easy to show that any classical logic operation
can be implemented in this way; however, although this
implies that any classical algorithm can be simulated on
a quantum computer, in general no speed-up will be
observed. It is also possible to demonstrate that any
classical probabilistic algorithm can be simulated on a
quantum computer.

The power of quantum computation comes from the
parallelism inherent in entanglement. In general the
output is a superposition, |ψ〉 of basis states, |φi〉
from the selected measurement basis (often the tensor
product of the single qubit basis); however, a quantum
measurement, when conducted, will obtain only one
result, at random, with a probability equal to the square
of the amplitude of |φi〉 in |ψ〉 (namely 〈φi|ψ〉). The key
to a successful quantum algorithm is to ensure that the
result of the computation is encoded in these amplitudes.
It follows, however, that a quantum computer will yield a
correct answer only with a certain probability and that to
retrieve it will, in general, require multiple runs.

As might be suspected from this, successful quantum
algorithms are hard to design. To be useful, obviously,
a quantum algorithm must offer some significant

advantage over an equivalent on a classical machine
and to engineer this is not a trivial exercise. The
most celebrated example is undoubtedly Shors quantum
factoring algorithm (Shor (1999)) which can find
the prime factors of an integer in polynomial time,
exponentially faster than any known classical technique.
Other important quantum algorithms, like Grovers
search algorithm (Grover (1997)), are faster than any
classical equivalent, although not exponentially so, but
notable examples like these are still relatively few. In
fact Shor himself has expressed disappointment at the
limited success so far and examines possible reasons in
Shor (2004)

In terms of computational complexity, factoring is
in complexity class NP but it is not NP complete
and, despite much effort, nobody has be en able
to demonstrate that quantum computers can solve
problems in the latter category in polynomial time. Shor
(2004) is pessimistic, pointing out that there is a proof
that a quantum computer cannot search a space of size
N in less than O(

√
N) time. As for hypercomputation,

attempts have been made to use quantum computing (in
adiabatic guise) to solve Hilbert’s Tenth Problem (Kieu
2004), a famous challenge to construct a general method
for deciding whether a given Diophantine equation has
an integer solution. It is known that this problem can
be solved if and only if the Halting problem can be
solved, so success would herald the potential creation
of a hypercomputer. However Kieu’s solution, which
harnesses the quantum adiabatic theorem, has been
convincingly challenged by various authors (see e.g.
Hagar & Korolev (2006)).

Quantum digital computers can potentially significantly
outperform classical equivalents in some problems.
However this superiority depends on the controllable
entanglement of many qubits and, as is well-known,
quantum theory shows that such control can only be
achieved if the entire system can be prevented from
experiencing decoherence. Yet all quantum systems are
subject to interaction with the environment and it is a
significant challenge to minimise such interaction for long
enough to allow a computation to complete. Inevitably
some decoherence will occur and this has the effect
of introducing noise and thus error into the process.
Bounding this error is one of the key issues that must
be confronted if quantum computing is to become a
practical proposition. Several technologies are being
extensively researched as potential candidates for such
practical implementation and it is not yet clear which
will prove the most successful. DiVincenzo (2000) lists
the requirements any such technology must meet: a
scalable physical system with well characterised qubits;
the ability to initialise qubits; long decoherence times;
a universal set of implementable quantum gates; and a
qubit-specific measuring capability.

7

Cockshott and Mackenzie

Other (computationally equivalent) approaches to quan-
tum computing have been suggested which attempt to
circumvent the problem of decoherence. The adiabatic
approach (Farhi et al. (2000)), based on controlled
adiabatic Hamiltonian evolution, has already been men-
tioned, and has been the subject of some effort. It is
the basis not only for Kieu’s hypercomputation claim
but also for the technology behind the controversial
announcements of quantum computer implementations
by the Canadian company D-wave. More speculative
still is topological quantum computing (Freedman et al.
(2003)) which is based on the use of anyons (Wilczek
1982), 2-dimensional quasi-particles channelled through
gates which are formed from braids of world-lines in a
3-dimensional space-time. Quasi-particles are pseudo-
physical mathematical constructs of which the common-
est examples are the holes of semiconductor physics
and the phonons of solid-state physics; braids are a
topological generalisation of the familiar twisted-string
forms of the same name. Theoretically a topological
quantum computer would be much more resistant to
decoherence than one based on quantum circuits. How-
ever, at present this line of investigation remains at an
even more hypothetical level of development than the
rest of what is still a discipline some way from bearing
practical fruit.

4.2.2. Quantum simulators
As we said above, the simulation of quantum systems
was the first use proposed for quantum computers. Lloyd
(1996) demonstrated that a digital quantum computer
can in principle simulate any quantum system that
evolves by means of local interactions. More significantly
he showed that if we wish to simulate a quantum system
operating for time t the simulation time on a quantum
computer will be linear in t.

A quantum computer can thus act as a universal
quantum simulator. When operated in this mode, the
requirements for error resilience and resistence to
decoherence are less than for numerical applications
of quantum computers since the decoherence in the
simulator can be used to model real decoherence in the
system under study. This potentially allows techniques
with a shorter decoherence time to be used than would
otherwise be required. Llloyd showed that simulation of a
quantum system with N variables that evolves according
to a local Hamiltonian requires a number of steps that is
linear in N. This is obviously a huge improvement on the
classical process which involves the exponentiation of a
matrix of size 22N .

As we said above the process of actually developing
a viable quantum computer technology has been slow.
General purpose quantum computers are reminiscent
of thermonuclear power: feasible in principle, always
promised some time in the next 20 years. But as Buluta
& Nori (2009) report, the less exacting requirements
of simulation are more permisssive. They report arrays

of quantum dots and superconducting circuits as being
among the technologies under active development.
Perhaps the most promising lines of development are
quantum devices using superconducting circuits. In
these large numbers of pairs of electrons can condense
into a single state. Because the superconducting state
exhibits macroscopic degrees of freedom it exhibits
better coherence than qubit systems using individual
atoms which have only microscopic degrees of freedom.

It is possible to construct artificial ’atoms’ with precisely
tuned characteristics (You & Nori (2006)). The advantage
of such solid state systems from a production standpoint
is that they can take advantage of a well established
engineering capability for microfabrication developed for
the semi-conductor industry. It seems likely at present
that such supercomputing quantum simulators will be the
first devices to be put to practical use.

5. CONCLUSIONS
Another thing they couldn’t stand was the perpetual
failure they encountered in trying to construct a machine
which could generate the infinite improbability field
needed to flip a spaceship across the mind-paralysing
distances between the furthest stars, and in the end they
grumpily announced that such a machine was virtually
impossible.Adams & Stamp (1997)

We have surveyed fundamental limits to information
processing in physics and, by implication, to computa-
tional machinery. Of course, a paradigm shift as pro-
found as relativity theory and quantum mechanics might
well make these limits seem as mundane as those of
Newtonian mechanics and 19th century engineering.
Speculation as to where such a shift might come from
is a fundamental scientific perogative. But right now we
are where we are.

Nonetheless, even in the absence of some new Physics
offering warp drives and infinite improbability devices, we
should not be discouraged by limitations dictated by our
prevailing paradigms, either theoretically or practically.
While the elaboration of new models of computatability
appears to confirm the Church-Turing thesis, they offer
new understandings of how we may more efficaciously
express, manipulate and realise computations. And
while new physical models of computation are ultimately
constrained by established limits to the characteristics
of physical systems, and the accuracy to which those
characteristics can be measured, we are still a very
long way from being restricted by them in any practical
sense. We can see already that special silicon purpose
hardware and quantum devices, while still very much in
their infancy, offer profound changes in how we currently
conceive computing, and in the scale and accuracy to
which we can model and control the world. And, in
the longer term, new substances and devices, even if
based solely on greater understanding of current physics

8

Non-classical computing: feasible versus infeasible.

and engineering principles, will undoubtedly prove as
revolutionary as the now common place chip. We should
view the limits to computation and physics, not as
sources of frustration or despair, but as challenges to
our ingenuity in how to best exploit the vast space of
possibilities they bound.

6. REFERENCES

D. Adams & R. Stamp (1997). The hitchhiker’s guide to
the galaxy. Del Rey.
D. Aharonov, et al. (2008). ‘Adiabatic quantum compu-
tation is equivalent to standard quantum computation’.
SIAM Journal on Computing 37(1):166–194.
Aristotle (1983). Aristotle’s Physics. Clarendon, Oxford.
C. Babbage (1832). The Economy of Machinery and
Manufactures. London.
J. Beckenstein (1981). ‘Universal upper bound on the
entropy-to-energy ratio for bounded systems’. Phys.
Rev. D. 23:287 – 298.
E. Beggs & J. Tucker (2006). ‘Embedding infinitely
parallel computation in Newtonian kinematics’. Applied
mathematics and computation 178(1):25–43.
E. Beggs & J. Tucker (2007). ‘Can Newtonian systems
bounded in space, time, mass and energy compute all
functions?’. Theoretical Computer Science 371(1):4–19.
C. Bissell (2004). ‘A great disappearing act: the
electronic analogue computer’. In IEEE Conference on
the History of Electronics Conference Proceedings, pp.
28–30.
O. Bournez & M. Cosnard (1995). ‘On the computational
power and super-Turing capabilities of dynamical
systems’. Tech. Rep. 95-30, Ecole Normal Superior de
Lyons.
I. Buluta & F. Nori (2009). ‘Quantum Simulators’.
Science 326(5949):108.
P. Cockshott, et al. (2008a). ‘A Hardware Relaxation
Paradigm for Solving NP-Hard Problems’. In Interna-
tional Academic Conference Visions of Computer Sci-
ence. BCS.
P. Cockshott, et al. (2008b). ‘Physical constraints
on hypercomputation’. Theoretical Computer Science
394(3):159–174.
P. Cockshott & G. Michaelson (2007). ‘Are There
New Models of Computation? Reply to Wegner and
Eberbach’. The Computer Journal 50(2):232.
J. Copeland (2002). ‘Accelerated Turing Machines’.
Minds and Machines 12:281–301.
D. Deutsch (1985). ‘Quantum theory, the Church-
Turing principle and the universal quantum computer’.
Proceedings of the Royal Society of London A p. 97..117.
D. DiVincenzo (2000). ‘The Physical Implementation
of Quantum Computation’. Arxiv preprint quant-
ph/0002077 .

A. Dunn & G. Milne (2004). ‘Modelling wildfire dynamics
via interacting automata’. Lecture notes in computer
science 3305:395–404.
G. Etesi & I. Németi (2002). ‘Non-Turing Computations
Via Malament–Hogarth Space-Times’. International
Journal of Theoretical Physics 41(2):341–370.
E. Farhi, et al. (2000). ‘Quantum computation by
adiabatic evolution’. Arxiv preprint quant-ph/0001106 .
R. P. Feynmann (1999). ‘Simulating physics with com-
puters’. In A. Hey (ed.), Feynmann and computation:
exploring the limits of computers, pp. 133–153. Perseus
Books, Cambridge, MA, USA.
M. Freedman, et al. (2003). ‘Topological quantum
computation’. Bulletin of American Mathematical
Society 40(1):31–38.
S. Fu & G. Milne (2003). ‘Epidemic modelling using
cellular automata’. In Proc. of the Australian Conference
on Artificial Life.
M. Gokhale & P. Graham (2005). Reconfigurable
computing: accelerating computation with field-
programmable gate arrays. Springer Verlag.
G. Gour (2003). ‘Extensive entropy bounds’. Physical
Review D 67(12):127501.
J. Gray & T. Kean (1989). ‘Configurable hardware: A
new paradigm for computation’. In Decennial CalTech
Conference on VLSI, pp. 277–293.
L. Grover (1997). ‘Quantum mechanics helps in
searching for a needle in a haystack’. Physical Review
Letters 79(2):325–328.
A. Hagar & A. Korolev (2006). ‘Quantum hypercom-
putability?’. Minds and Machines 16(1):87–93.
J. Hamkins (2002). ‘Infinite Time Turing Machines’.
Minds and Machines 12(4):521–539.
T. D. Kieu (2003). ‘Quantum Algorithm for Hilbert’s
Tenth Problem’. International Journal of Theoretical
Physics 42:1461 – 1478.
S. Lloyd (1996). ‘Universal quantum simulators’.
Science 273(5278):1073–1078.
S. Lloyd (2002). ‘Computational capacity of the
universe’. Physical Review Letters 88(23):237901.
S. Lloyd & Y. Ng (2007). ‘Black hole computers’. Special
Editions 17(1):82–92.
ï. Lloyd (2000). ‘Ultimate physical limits to computation’.
Nature 406:1047–1054.
R. Lysecky & F. Vahid (2005). ‘A study of the
speedups and competitiveness of FPGA soft processor
cores using dynamic hardware/software partitioning’. In
Proceedings of the conference on Design, Automation
and Test in Europe-Volume 1, pp. 18–23. IEEE Computer
Society Washington, DC, USA.
N. Margolus & L. Levitin (1998). ‘The maximum speed of
dynamical evolution’. Physica D: Nonlinear Phenomena
120(1-2):188–195.

9

Cockshott and Mackenzie

G. Milne, et al. (1993). ‘Realising massively concurrent
systems on the SPACE machine’. In IEEE Workshop
on FPGAs for Custom Computing Machines, 1993.
Proceedings, pp. 26–32.
I. Németi & G. David (2006). ‘Relativistic computers
and the Turing barrier’. Applied Mathematics and
Computation 178(1):118–142.
F. Plavec, et al. (2005). ‘Experiences with soft-core
processor design’. In Proc. of the 19th IEEE Conference
on International Parallel and Distributed Processing
Symposium.
M. Polcari (2005). ‘Collaboration: The Semiconductor
Industry’s Path to Survival and Growth’. In AIP
Conference Proceedings, vol. 788, p. 3. IOP INSTITUTE
OF PHYSICS PUBLISHING LTD.
P. Shaw & G. Milne (1993). ‘A highly parallel FPGA-
based machine and its formal verification’. LECTURE
NOTES IN COMPUTER SCIENCE pp. 162–162.
P. Shor (1999). ‘Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer’. SIAM Review 41(2):303–332.
P. Shor (2004). ‘Progress in quantum algorithms’.
Quantum Information Processing 3(1):5–13.
J. Small (1993). ‘General-purpose electronic analog
computing: 1945-1965’. IEEE Annals of the History of
Computing 15(2):8–18.
W. Smith (2006a). ‘Church’s thesis meets the N-
body problem’. Applied mathematics and computation
178(1):154–183.
W. D. Smith (2006b). ‘Three counterexamples refuting
Kieu’s plan for “quantum adiabatic hypercomputation”
and some uncomputable quantum mechanical tasks’.
J.Applied Mathematics and Computation 187(1):184–
193.
L. Susskind (1995). ‘The world as a hologram’. Journal
of Mathematical Physics 36:6377.
K. Velupillai (2003). ‘Essays on Computable Economics,
Methodology and the Philosophy of Science’. Tech.
rep., Universita’ Degli Studi di Trento - Dipartimento Di
Economia.
P. Wegner & E. Eberbach (2004). ‘New Models of
Computation’. Computer Journal 47:4–9.
S. Wolfram (1984). ‘Computation theory of cellular
automata’. Communications in Mathematical Physics
96(1):15–57.
S. Wolfram (2002). A New Kind of Science. Wolfram
Media, Inc., Illinois.
J. You & F. Nori (2006). ‘Superconducting circuits and
quantum information’. Arxiv preprint quant-ph/0601121
.

10

