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Abstract 

 
Vector Pascal is an extension to the Pascal programming language which adds support for 
operating across arrays.  The Vector Pascal compiler can take a Vector Pascal program and 
compile it to the appropriate target system, taking advantage of the vector instructions in the 
processor in the target system to produce programs that perform faster than those compiled 

without support for the vector instructions. 
 
The Playstation 2 is a games console whose main processor has been coupled with vector 
processors which can very quickly perform operations common in games.  Sony has released 
a distribution of Linux for the Playstation 2 which turns their console into a cheap personal 
computer.  The aim of this project is to port the Vector Pascal Compiler to Linux on the 
Playstation 2 to produce programs that can take advantage of the vector processors in the 
Playstation 2. 
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1 Introduction 

 
Every few years, the number of transistors on a processor doubles.  Coupled with this increase 
in the number of transistors, the complexity of the processor also increases.  One problem 
facing processor designers is what to do with all the extra transistors they have available to 
them.  In recent years, they have been using some of these extra transistors to incorporate 

vector operations into modern micro-processors, such as Intel’s Pentium series [1], and the 
AMD Athlon [2].  These instructions allow operations to be applied to many pieces of data in 
parallel.  For example, the Pentium 4 can add together two groups of four single precision 
floating point numbers simultaneously.  Programmers who take advantage of these operations 
can greatly increase performance in their code, however, using these new features has tended 
to involve writing assembly code since typical programming languages and compilers do not 
have specific support for these features.  Most of these new instructions will only be used in 
programs that strive for the greatest performance level possible, for example, in scientific 
applications, and in computer games.  The instructions added to the processors lend 

themselves well to these applications, since, for example, the instructions to operate on four 
floating point numbers at a time translate directly into operations that are common in 3d 
applications, and especially games.  It is this substantial increase in performance that led Sony 
to include vector operations in their Playstation 2 games console. 
 

1.1 The Playstation 2 

The Playstation 2 was released in Japan on the 4th or Match 2000.  At the time of writing, this 
means it has been released for just over 5 years.  When it was first released it was arguably 

the most powerful games console on the market, with a theoretical performance level of 6.2 
billion floating point operations per second (6.2 GFLOPS) [3].  At the time, this led to news 
reports that Iraq had imported 4000 Playstation 2’s to use as computer systems [4], since at 
the time the UN had sanctions stopping Iraq from purchasing most personal computers, but 
not games consoles. 
 
Although the Playstation 2 was primarily designed for running games, Sony has released a 
version on Linux on the platform.  This behaves much like Linux on a PC, and includes all of 
the necessary tools to write and compile C programs.  It is possible to download web 

browsers and other common applications for the Playstation 2 and essentially use the 
Playstation 2 as if it were a desktop PC.  The Playstation 2 even comes with USB ports 
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allowing common PC peripherals such as printers and scanners to be connected to it, although 
drivers for these may not be available for Linux. 
 
The Playstation 2 has four main processors: the core processor; a floating point coprocessor; 
and two vector processors (which will be called the Vector Units from now on).  It will be 

possible to write a Vector Pascal program that uses just the core processor and the floating 
point coprocessor, however, considerable performance benefits should be possible if the 
Vector Units are also used for processing.  To give an example of the performance increases 
possible, a program that was compiled using Intel’s 486 instruction set executed at a level of 
80 million operations per second [5].  The same program compiled to the Pentium instruction 
set, taking advantage on the MMX vector instructions in the Pentium, executed 820 million 
operations per second.  With the possibility of executing instructions on the main Playstation 
2 processor, and simultaneously on both the Vector Units, the potential performance increase 
over just using the main Playstation 2 processor is considerable. 

 
There has already been some research into using the Playstation 2 for scientific purposes.  The 
Computation Chemistry Group at the University of Illinois used a single Playstation 2, 
operating on vectors using Vector Unit 0 to achieve a performance of 150 MFLOPS [6].The 
Computer Science Department, also at the University of Illinois and The National Center for 
Supercomputing Applications have used a network of 70 Playstation 2’s all running Linux to 
construct a supercomputer [7].  This same team also researched methods for producing high 
performance matrix multiplying code on the Vector Units, and using just Vector Unit 1, they 
achieved 1 GFLOP of performance.  This figure is still significantly lower than the 6.5 

GFLOPS of theoretical performance available, but taking into account that they are doing all 
of this using only one vector unit, on a system that is also running Linux at the same time, the 
performance achieved is considerable. 
 

1.2 Vector Pascal 

Vector Pascal is an extension to the Pascal programming language that adds support for 
operating on arrays.  It was designed by Dr Paul Cockshott, who continues to develop the 
language, and the associated Vector Pascal Compiler. It exploits the vector instructions in the 

platform it is operating on, while hiding the complexity of having to write assembly code 
from the programmer.  There are other compilers that can optimize code to use vector 
instructions, Intel’s C++ compiler [8], for example, but this has the disadvantage of only 
optimizing for Intel’s platform, while the Vector Pascal compiler can be ported to new 
systems. 
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1.3 The Vector Pascal Compiler 

The Vector Pascal Compiler includes all the code necessary to compile Vector Pascal 
programs to a number of different platforms, including the Pentium, Opteron, and PowerPC 

processors.  Machine specifications are written in a language called ILCG (Intermediate 
Language for Code Generation) [9] and are passed through a code-generator-generator to 
create a Java class of the code-generator for the required target platform.  The Vector Pascal 
Compiler included a partial machine specification for the Playstation 2, with many of the 
registers, instructions, and procedure call mechanisms already defined.  This project aims to 
build on this partial specification to produce a more complete port of the Vector Pascal 
compiler, with the hope of getting basic programs executing in Linux on the Playstation 2, 
and possibly programs running using vector operations. 
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2 Background 

2.1 Vector Pascal 

Vector Pascal is an extension of the popular Pascal programming language that was 
introduced to allow programmers to make use of data parallel operations.  These operate on 
arrays, so that where a programmer would have historically had to manually insert a loop into 

their code to iterate over the arrays in question, the language now allows the operation to be 
applied to the array in the same way as it would have been applied to the individual elements 
in the array.  This is very intuitive because the language allows any operator that could have 
been applied to the elements of the array, to be applied to the whole array, for example, the 
Vector Pascal program given below adds each element in array v2 to that of the 
corresponding element of v3 and stores the resultant integer in that position of array v1. 

 
Figure 2-1 

Compare this with the equivalent program written in C and it becomes easy to see advantages 
Vector Pascal has over other languages that do not support vector operations. 

 
Figure 2-2 

It should be noted that in C it is possible for the programmer to overload operators so that the 
‘+’ operator could then be used across arrays in C as it is in Vector Pascal.  However, this 
would not benefit from any parallelism available on the target processor to speed up program 
execution and unless they are using a C compiler that can optimise with vector operations on 
their desired target platform, then it would be the job of the programmer to write the 
necessary assembly language code to make use of any parallelism the target platform has to 
offer.  This would restrict the program (or at least the data parallel optimisations) to only 

int main() 
{ 
 int v1[128], v2[128], v3[128], i; 
 for (i = 0; i < 128; i++) 
  v1[i] = v2[i] + v3[i]; 
} 

PROGRAM vecadd; 
VAR v1, v2, v3 : ARRAY[0..127] OF integer; 
BEGIN 
 v1 := v2 + v3; 
END. 
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work on those platforms where the programmer has defined the suitable assembly code for 
vector operations, whereas Vector Pascal programs are generally platform independent. 
 
These vector operations are not restricted to one dimensional arrays, but can be applied to 
matrices of two dimensions, or arrays or any suitable dimension.  There are restrictions in 

place to prevent, for example, the assignment of an array of n dimensions to an array of m 
dimensions, where m < n.  However, the reverse of this is possible, so program given in 
Figure 2-3 would be valid. 

 
Figure 2-3 

With this ability to work on arrays of single or multiple dimensions, the language lends itself 
well to working on classic mathematical vectors and matrices.  For example, the dot product 
of two vectors is a scalar formed by taking the total of multiplying each element of the first 

vector by the corresponding element of the second vector.  Figure 2-4 gives the Vector Pascal 
program to compute the dot product of the vectors v and w and stores the result in the scalar s. 

 
Figure 2-4 

In this example, the dot operator returned the dot product of the two vectors.  It actually 
represents the vector and matrix product operator, and as such can be used to multiply vectors 
by vectors, vectors to be multiplied by matrices, or matrices to be multiplied by matrices. 
 
When working with arrays, there is sometimes the need to find the total of the array, or 

perhaps the product of all the entries in the array, or even the largest or smallest elements.  
Vector Pascal also provides the reduction operator to help developers do these tasks.  The 

PROGRAM vecdot; 
VAR  
 v, w : ARRAY[0..2] OF integer; 
 s : integer; 
BEGIN 
 s := v.w; 
END. 

PROGRAM vecassign; 
VAR  
 dim1 : ARRAY[0..2] OF integer; 
 dim2 : ARRAY[0..2,0..2] OF integer; 
BEGIN 
 dim2 := dim1; 
END. 
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reduction operator will work with most of the common operators in the Pascal language, for 
example, +, -, *, and also with the new MIN and MAX operators introduced by the Vector 
Pascal language, which will be discussed shortly.  It has been given the name reduction 
operator, because it has the effect of reducing the rank – or number of dimensions – of an 
array by one.  The operator is used by first writing a ‘\’ which is the sign of the reduction 

operator, then the dyadic operator required, for example, +, -, *, and finally the array to 
perform the reduction on.  If we take an array C containing the numbers (1, 2, 3, 4) then the 
total of this array can be found by writing \+C.  This would generate a sequence of 
instructions by inserting the + operator between each element of C, i.e., (1 + 2 + 3 + 4), and 
would return the correct total of 10. 
 
As previously mentioned, Vector Pascal extends the Pascal language with two new basic 
operators.  The MIN and MAX operators behave exactly as one would think, and are simply 
shorthand to save the programmer the time of writing a conditional statement to make use of 

the greater or lesser of two variables.  They are important because the specification of the 
Playstation 2 processor must include ways to execute all of the basic operators in Vector 
Pascal, and since MIN and MAX are now basic operators, they must be included in this 
specification.  
 
Vector Pascal provides many more extensions than those given here, including support for 
input and output or arrays, polymorphic functions, and many other features.  A complete 
outline of the language is given in the SIMD Programming Manual for Linux and Windows 
[5]. 

2.2 Vector Pascal Compiler 

The Vector Pascal Compiler has been written in Java, and is used to compile programs written 
in the Vector Pascal programming language.  In order to compile programs to machine code, 
the compiler relies on a number of tools.  Some of these are part of the Vector Pascal 
Compiler, while others must be provided externally by the operating system environment the 
compiler is running on.  The Vector Pascal Compiler provides the following: 

1. The ilcg.pascal Java package which contains the compiler itself, as well as classes to 
support Pascal type generations.  These translate a Vector Pascal program in an ILCG 

tree. 
2. A code generator for each target machine the compiler should support.  This 

translates the ILCG tree into assembly language for the target architecture.  The 
compiler includes a number of these such as the Pentium and Opteron code 
generators.  A new code generator will be required for the Playstation 2. 
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3. The ilcg.tree Java package which contains all the classes necessary to represent an 
ILCG tree. 

 
Using the above tools provided by the Vector Pascal Compiler, it is possible to translate from 
a Vector Pascal program, down to the assembly language for the appropriate target 

architecture.  However, further processing is required to translate from the assembly file to the 
machine code for the target machine.  The external tools provided by the operating system 
must be able to satisfy this need.  The external tools required are: 

1. The Java run-time system.  This is needed to run the Vector Pascal Compiler, not to 
build the assembly files into machine code. 

2. An assembler for the target architecture, which translates from the assembly code 
output from the Vector Pascal Compiler, into object files on the target system, for 
example, the NASM assembler for x86 processors. 

3. A C compiler and linker, which can compile the C run-time library and link it to the 

object file output from the assembler, thus creating the final executable file, for 
example, the GNU C compiler. 

 
The above tools would be sufficient for running the Vector Pascal Compiler.  However, in 
order to make changes to the compiler, or add a new code generator, additional tools are 
required.  These are: 

1. The Java SDK, for compiling any changes made to the classes in the ilcg.pacsal or 
ilcg.tree packages. 

2. The m4 macro processor.  Using this tool, it is possible to write the machine 

specification file with loops to, for example, define registers.  These loops will be 
automatically expanded by the m4 macro processor, thus saving time when writing 
the machine specification. 

3. The sable compiler generator, which is used to generate a Parser for machine 
specification files written in ILCG source code.  

4. The ilcg Java Package which contains the classes necessary to call the above Parser, 
and generate an ILCG code-generator. 

 

2.2.1 Compiler Structure 

There are many different parts to the compiler, and when run, it will take the source file 
though a number of stages before finally outputting an assembly file which should correspond 

to the Pascal program that was input to the compiler.  This assembly code will use vector 
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operations wherever they have been defined by the machine specification and suitable code 
for vectorisation has been included in the source program. 

2.2.2 Porting to the Playstation 2 

In order to port the compiler to a new platform, in this case the Playstation 2, two main files 
must be written: a file called EE.ilc which contains the description of the Playstation 2’s 
Emotion Engine processor in ILCG; and EECG.java which is a subclass of the code generator 
for the Playstation 2.  EECG.java will include, among other things, implementations of the 

abstract methods to handle procedure call and return; methods to assemble and link the object 
files, which will call the necessary external assembler and linker; and a method called 
getParallelism which defines the level of parallelism we should attempt to use for each type of 
vector.  A more in depth look at the contents of the EE.ilc and EECG.java files will be given 
later in the Implementation section.  

2.3 The Playstation 2 System 

The Playstation 2 system is designed around a single main processor.  There are a number of 
other processors including: a DMA controller which transfers data from memory to the 

different parts of the system; a graphics synthesizer (GS) which displays images on the 
television screen or monitor; an input/output processor (IOP) which has 2 megabytes of its 
own memory; a sound processor; and processors for compressing and decompressing data.  
The Playstation 2 also has a DVD drive and 32 megabytes of main memory, which are linked 
to the main core with a 128-bit data bus.  Although 32 megabytes is sufficient for Playstation 
2 games since they do not have to share the memory with an operating system, programs 
executed in Linux on the Playstation will have much less physical memory available to them.  
They will have virtual memory available because Linux runs from a hard disc drive, but using 
this as memory will severely degrade program performance. Figure 2.5 is adapted from one 

presented at SIGRAPH in February 2000 [3] and shows these components and the data paths 
linking them. 
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Figure 2-5 

The most interesting point to note from Figure 2.5 is the link between the CPU Core and the 

graphics synthesizer.  This will be discussed further when the vector units are covered. 

2.4 The Playstation 2 Processor (The Emotion Engine) 

The Playstation 2 contains not only the main processor, but also an input/output processor, a 
graphics processor, and numerous others.  The focus of this project is on the main processor, 
which actually consists of 4 processors: the MIPS core; the floating point unit; and two vector 
processors.  The most important one of these is the MIPS processor called the R5900, which 
implements most of the 64-bit MIPS III instructions, and some of the MIPS IV instructions.  
It also includes multimedia instructions which operate on 128-bit pieces of data as either: 2 

64-bit values; 4 32-bit values; 8 16-bit values; or 16 8-bit values.   

2.4.1 MIPS Processors 

The MIPS architecture [10] was created in 1981 by John Hennessy.  At the time, many 
processors were using CISC designs which were designed to implement as many complex 
operations in hardware as possible.  This led to these processors being very expensive, and 
although they were very fast at executing the complex tasks they were designed for, the speed 
of the basic instructions was reduced by the added complexity from adding so many other 
instructions to the processor.  The MIPS design aimed to use a deep instruction pipeline 
which is where it tries to have many parts of the processors working on the different parts of 
the execution of an instruction simultaneously.  For example, while one instruction is being 
loaded from memory, another is being decoded, while another is having its operands fetched 
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from memory, while another is executing.  The major setback with this design was that the 
processor would be limited to instructions that can execute in one cycle, since those that take 
longer would stall the pipeline, which makes the design far more complex.  However, this was 
offset by the speed of the instructions that were included and the performance increase from 
using a deep pipeline. 

 
The first MIPS design included 32 32-bit registers, and these registers still exist in the MIPS 
design to this day.  It had a basic instruction set, including instructions to load and store 
values to and from registers and memory, and arithmetic and comparison instructions.  The 
design also allowed for a number of coprocessors to be attached to the MIPS processor.  Since 
the original design did not include floating point instructions, it was possible to add this 
functionality by using a floating point coprocessor.  Instructions for the coprocessor can be 
sent directly to the main processor, and it will route them to the coprocessor.  The Playstation 
2 has 2 coprocessors in the form of a floating point unit; and one of the vector units. 

 

2.4.2 MIPS Instruction formats 

Instructions in MIPS are 32-bits wide.  The designers of the MIPS core decided that all 
instructions should be the same length, and that instructions should generally fit into one of a 
number of groups.  They also decided that, unlike the x86 instruction set of Intel’s processor, 
that operations on data would require all data to reside in registers, i.e., it is not possible on 
MIPS to have one operand in a register and the other in memory as is permitted on x86 
processors.  These decisions were taken to simplify the design of the processor, and to 
simplify the instruction set since only one of each arithmetic instruction need be declared – 
that which operates on data in 2 registers – instead of that instruction, and a similar one for 
when one piece of data is in a register and the other is in memory.  There are 3 main types of 

instruction format in the basic MIPS design: the R, I and J types.  The use of only three main 
types of instructions simplifies the instruction decoder in the MIPS processor, and allows the 
compiler to synthesize more complex instructions from these three basic types.   

R Type Instructions 

opcode rs rt rd shamt funct 

31……26 25….21 20….16 15….11 10……..6 5…..1 
Figure 2-6 

Figure 2-6 shows the different fields that make up an R type instruction, and the bit positions 
that each field uses.  R type instructions operate with three registers: two source registers and 
a destination register.   
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The purpose of the fields is as follows: 

• opcode tells the processor what instruction to execute, 

• rs and rt are the two source registers, 

• rd is the destination register, 

• shamt tells the processor how far to shift values in shift instructions, 

• funct is an additional register to determine what instruction to execute. 

 
It can be seen from the size of the fields that all the register fields are 5 bits long.  This allows 
25 (= 32) registers to be addressed by each field.  This is sufficient since there are only 32 
registers which need to be addressed.  The opcode field is 6 bits long which allows 64 
possible instructions to be used.  However, this is a very small number, but by using the funct 
field as well, up to 2048 possible instructions could be used, far more than is needed. 

I Type Instructions 

opcode rs rt immediate 

31……26 25….21 20….16 15….0 
Figure 2-7 

 
The noticeable differences between the I type and R type instructions are the lack of a third 
register, and the inclusion of a 16-it immediate value.  These instructions are used to perform 

arithmetic on a source register and a 16-bit value.  An example of this is the need to increment 
a number by one which, using only the R type addition instruction, would involve loading the 
1 into a register and using that register in the addition.  This can be shortened to just one 
instruction where the 1 can be passed in the immediate field.  Not only does this reduce the 
number of instructions to execute, but it also saves the program having to use registers to 
store small values that could instead be passed in immediate instructions.  The only shortfall 
of this instruction is the limit of only 16-bit immediate values.  The MIPS designers decided 
against including a 32-bit immediate instruction since that would need an instruction of 
greater than 32-bits in length.  They decided that it was better to keep all instructions at 32-

bits in length, since that simplified the processor design, and 16-bit immediate values are 
usually large enough for most cases in programs. 

J Type Instructions 

opcode address 

31……26 25….0 
Figure 2-8 
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J Type instructions are used to perform jumps in code, for example, jumping to a procedure, 
or jumping to the else branch of a conditional statement.  The 26-bit address field allows 67 
million different memory locations to be address.  Given that memory locations have a size of 
1 byte, this leads to a possible 67 megabytes of memory to be addressed.  Since the 
Playstation 2 only has 32 megabytes of memory, it is therefore possible jump to any location 

in the physical memory with a J type instruction.  There are three jump type instructions 
provided in the Emotion Engine: jump (J); jump and link (JAL); and jump and link from a 
register (JALR).  The first of these simply causes the program counter to take the value of the 
address in the jump instruction.  The second also changes the program counter, but before 
this, it saves the value of the program counter plus 4 to the return address register.  This 
allows the called code to return to the instruction following the jump, and is used to call 
procedures.  The final one of these performs the same function as jump and link, but instead 
of jumping to a memory address given in the address field, it jumps to the address contained 
in the register it is passed. 

2.4.3 MIPS Registers 

As previously seen, the MIPS core has 32 general purpose registers.  These are given in 

Figure 2-9. 

Register Name Number Symbol(s) 

Zero register (always contains 0) 0 $zero 

Assembler temporary (used only by assembler) 1 $at 

Return registers 2-3 $v0-v1 

Argument registers 4-7 $a0-a3 

Temporary registers 8-15 $t0-t7 

Saved temporary registers 16-23 $s0-s7 

Temporary registers 24-25 $t8-t9 

OS Kernel registers 26-27 $k0-k1 

Global Pointer 28 $gp 

Stack Pointer 29 $sp 

Frame Pointer 30 $fp 

Return Address register 31 $ra 
Figure 2-9 

 
All of the registers in Figure 2-9 were 32-bits wide on the original MIPS processors.  They are 
128-bits wide in the Emotion Engine, although the upper 64-bits are only used with the 

Multimedia (or Parallel) instructions, and not in normal program usage. 
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All of the registers have been designated a specific purpose, unlike the 8 general purpose 
registers on the Intel Pentium processors which can be used for any purpose, although normal 
practice dictates specific uses of some of those 8 registers.  The zero register will always 
contain the value zero, and so any attempts to write a value to it will be ignored.  It is useful 

because in calculations there is often the need for a zero value, so instead of the programmer 
having to specifically load a zero into a register, it is now always there if needed.  The 
assembler temporary register is reserved for the assembler to use.  This is necessary because 
there are pseudo instructions in MIPS assembly code that are broken down into a number of 
instructions by the assembler, and the assembler must have a register available to use during 
these instructions, or else it would have to use a register that the programmers code may 
already be using.  The return registers are used to store the result from function calls.  There 
are two of them because when they were originally 32-bits wide, two registers would be 
needed to return 64-bit values.  The argument registers are used to pass up to four arguments 

to procedures, and if there are more than 4 arguments then it is up to the programmer to put 
the extra arguments onto the stack.  This will be covered in more detail shortly. 
 
The registers which are used in general calculations to store results and move values to and 
from memory are generally the saved and unsaved temporaries.  They are called the saved and 
unsaved temporaries because this puts the responsibility for saving their values onto the called 
procedure and calling procedure respectively.  What this means is that a procedure is free to 
change the values of the unsaved temporaries, however, if it calls a procedure, then the 
procedure it calls also has the same freedom.  The result of this is that the calling procedure is 

responsible for saving the contents of any unsaved temporaries it will use before it calls 
another procedure, and restoring the values of these registers after the return from the called 
procedure.  This can be contrasted with the saved temporaries where it is the called procedure, 
not the calling procedure that must save the registers it uses.  This means that if a procedure 
needs to use any of the saved temporaries, it must save their values first, and restore them 
before it exits.  Nevertheless, if it does use a saved temporary, it does not have to save and 
restore it before and after it calls a procedure, since if the procedure it calls made changes to 
that register it would have had to restore its value before exiting.  This convention reduces 
registers spilling since a compiler can put values it needs after a procedure call in saved 

temporaries, as they are guaranteed to still be in those registers after the procedure returns, but 
can put values it does not need after the procedure call in the unsaved temporary registers. 
 
Of the remaining registers, the OS Kernel registers serve a similar purpose to the assembler 
register and cannot be used by normal programs.  The 9th saved temporary, register number 
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25, and the global pointer, have a special purpose when doing procedure calls, and accessing 
labels in assembly code, which will be covered later.  The last register is used to store the 
return address for a procedure to exit to, while the stack and frame pointers are both used for 
working with the stack, which will be covered later. 
 

In addition to these 32 registers, there is also the program counter (PC) which points to holds 
the address of the currently executing instruction and the HI and LO registers.  The HI and 
LO registers store the upper and lower 64-bits of the results from multiplication and division 
instructions respectively.  They have also been extended to 128-bits in size in the Emotion 
Engine, although, similarly to the general purpose registers, the upper 64-bits of each are only 
used by the multimedia instructions. 

2.4.4 Emotion Engine Extensions 

In addition to implementing most of the MIPS III registers and some MIPS IV registers, the 
R5900 processor includes a number of instructions to support multimedia applications.  These 
instructions are similar to the MMX instructions on the Pentium processor.  Like the Pentiums 
MMX instructions, when they are being executed, no other instructions can be executed by 

the processor.  This is different from executing instructions in the Vector Units where it is 
possible for instructions to be executing in the Vector Unit and the main processor at the same 
time.  Similar to MMX, these multimedia instructions have been designed to operate on a 
number of pieces of data at a time.  This is an example of SIMD (Single Instruction Multiple 
Data) parallelism whereby many pieces of data are operated on at the same time by a single 
operator.  It is these multimedia instructions that will provide the parallelism on scalar types 
in the Playstation 2 port of the Vector Pascal Compiler. 

Multimedia registers 

As mentioned in the section on MIPS registers, the Playstation 2 has 128-bit wide general 
purpose registers.  The multimedia instructions use the general purpose registers, and it is 
only these instructions that use the whole 128-bits of the MIPS registers.  In addition to 
providing instructions to do arithmetic using these registers, the multimedia extensions also 
include new instructions to load and store 128-bit values from memory for use in these 
extended general purpose registers. 

Multimedia instruction formats 

opcode = MMI     funct 

31……26 25….21 20….16 15….11 10……..6 5…..1 
Figure 2-10 
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The multimedia instruction format in Figure 2-10 is very similar to the R type format from the 
original MIPS design.  The difference to the R type format is that the opcode is fixed to MMI, 
and it is the funct field that determines what instruction has to be executed.  However, the 
funct field is only 5 bits wide and there are far more multimedia instructions than a 5 bit field 
can address.  The solution to this is that there are 4 more classes of multimedia instructions 

within the MMI class given above.  These are MMI0, MMI1, MMI2, and MMI3.  For each 
multimedia instruction, one of these classes will occupy the funct field.  Bits 6 to 10 are then 
used to represent the opcode of the instruction.  The remaining fields can then be spit up into 
1, 2, or 3 registers, depending on how many source registers an instruction requires.  Note that 
if only one register field is used, then it must be the case that the source and destination 
registers are the same, or the destination register is being passed data from within the 
processors other registers, for example, the HI register.  They may also include a shift amount 
field, which works in the same way as the same field in the R type format. 

2.4.5 System control coprocessor 

The system control coprocessor is attached to the main core as coprocessor 0.  The main 
functions of this coprocessor are: cache control; memory control; exception handling; and 

providing breakpoint operations to the MIPS core.  Instructions sent to the system control 
coprocessor will only be executed if the Emotion Engine core is in kernel mode, i.e., that the 
operating system kernel is accessing it, or bit 28 of the coprocessor status register is a 1, 
which indicates that coprocessor 0 is usable.  It is not necessary for Vector Pascal programs to 
access the features provided by this coprocessor so its instruction set will currently not be 
included in the port of Vector Pascal to the Playstation 2. 

2.4.6 Floating point coprocessor 

The floating point unit (FPU) in the Playstation 2 is attached to the MIPS core as coprocessor 
1.  Floating point instructions can be written in the assembly code for the MIPS core, and if 
the MIPS receives these instructions it will simply pass them to the floating point unit for 
execution.  Calls to the floating point unit cannot be executed in parallel with the MIPS core, 

so in one sense, the floating point coprocessor can really be seen as similar to FPUs in other 
processors, like the Pentium, and it is not really necessary for the programmer to know that 
the FPU is coprocessor 1.  The only case where they must know this is when moving data 
from the MIPS core to the FPU since in this case, the instructions to move data are defined for 
each coprocessor. 
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Floating point format 

The FPU only supports 32-bit floating point numbers.  The format of the numbers supports 

the IEEE754 standard which means that it has 23-bit fraction field, an 8-bit exponent field, 
and a single sign bit. 

sign exponent fraction 

31..31 30…23 22….0 
Figure 2-11 

 
Although the FPU in the Playstation 2 uses the number format given in the IEEE754 standard, 

it does not comply entirely with this standard.  For example, it does not support the Nan (Not 
a Number) or plus and minus infinity values defined in that standard. 

Fixed point format 

The FPU also supports the use of fixed point floating point numbers.  These are just scalar 
numbers which are represented in the standard two’s complement format.  There are no 
arithmetic instructions in the FPU for fixed point numbers – these are in the MIPS core- but 

support has been included for these to allow for the CVT.S.W and CVT.W.S instructions 
which the FPU can use to convert to and from floating point to scalar numbers. 

Floating point registers 

There are 32 32-bit general purpose floating point registers in the FPU.  They can each store a 
single floating point number.  Unlike the MIPS registers, none of these registers have been 
reserved for special purposes like the assembler register, kernel registers, or stack and frame 

pointers.  However, similarly to the MIPS core, there are floating point argument and return 
registers, as well as saved and unsaved temporary registers.  The registers and their purposes 
are given in Figure 2-12 below. 

Register Name Number Symbol(s) 

Result registers 0 - 3 $f0 - $f3 

Temporary registers 4 - 11 $f4 - $f11 

Return registers 12 - 15 $f12 - $f15 

Temporary registers 16 - 19 $f16 - $f19 

Saved Temporary registers 20 - 31 $f20 - $f31 
Figure 2-12 

 

On 32-bit MIPS platforms, floating point registers are used in even/odd pairs.  When storing a 
single precision floating point value in a register, the value will be placed in the even register, 
and the odd register will be left unused.  If the hardware supports double precision numbers – 
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which the Emotion Engine does not – then the odd register would be used for the lower half 
of the double precision number, and the even register for the upper half.  Since double 
precision numbers are not supported in the Emotion Engine, the odd registers are never used, 
and the compiler on the Playstation 2 will actually give an error if any attempts are made to 
use these registers.  The temporary registers behave in the same way as the MIPS temporary 

registers, with respect to whether the calling or called procedure are responsible for saving the 
registers value.  Usage of the result and argument registers will be covered later in the section 
on procedure call mechanisms.   
 
In addition to the 32 general purpose registers, the FPU also has a single accumulator.  This is 
a special register, in that it only has a latency of one cycle, while other floating point 
instructions have a latency of four cycles [11].  The latency of an instruction is the number of 
cycles the processor must wait before using the result of an instruction.  This means that a 
sequence of say two floating point additions where the second addition needs the result of the 

first will cause the floating point unit to wait for four cycles after the first instruction before 
executing the second addition.  The same sequence could be encoded using the accumulator 
instead, and due to its low latency, the floating point unit would not have to wait after the first 
instruction before executing the second [12].  It may be possible to include the accumulator in 
the Playstation 2 machine specification and so long as the Vector Pascal Compilers optimiser 
can keep the data in the accumulator after each operation, and not save it back to memory, as 
it would without any optimisations, significant speedups in the code execution could be 
possible.  

Floating point control registers 

The FPU can support up to 32 control registers, although only the first and last have been 
implemented on the Playstation 2. All of the control registers are 32-bits wide.  The first 
control register is called the Implementation and Revision Register.  This holds the 
implementation and revision numbers which can be queried to determine the capabilities of 
the FPU, for example, there will be a bit to tell the programmer whether double precision 
floating point numbers are supported or not.  These are typically only used in diagnostic 

software and will not be used in this project. 
 
The last control register is called the Control/Status register.  It contains a number of status 
bits which can be used to determine the outcome of the last executed instruction.   These bits 
are separated into the cause flags and the sticky flags.  The cause flags are: 
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Flag Name Purpose 

I Invalid operation Set to 1 if a 0/0 division, or square root of a negative number is 
attempted 

D Division by 0 Set to 1 if division by 0 is attempted 

O Overflow Set to 1 if the exponent of the result of the previous instruction 
overflows 

U Underflow Set to 1 if the exponent of the result of the previous instruction 
underflows 

Figure 2-13 

 
All of the above flags are set to 0 if their conditions do not hold.  It is also possible for more 
than one of these to become 1 at the same time, for example, dividing 0 by 0 would lead to 
both the I and D flags being set to 1.  The sticky flags are just copies of the cause flags, 
however, once they are se to 1, the processor will not clear them, and it is up to the 
programmer to specifically clear them if they wish to do so.  In the FPU on the Playstation 2, 
the sticky flags are not used. 
 

The final status bit which can change during program execution is the C bit.  This occupies bit 
23 in the control register and is set to 1 if the previous instruction was a comparison and the 
comparison is true or otherwise to 0.  As will be seen later, it is possible to use this bit to get 
the result of floating point comparisons, as these results are not stored in normal floating point 
registers, but can be found according to this C bit. 
 
There are a number of fields in this control register which are not used, or are set to always be 
0 or 1.  One notable case is the pair in bit positions 0 and 1 which define the rounding mode 
for the FPU.  Together, these bits can return the values 0, 1, 2, or 3, which tell the FPU to 

round to either the nearest scalar, zero, plus infinity, or minus infinity respectively.  The FPU 
in the Playstation 2 only supports rounding to zero so there bits are set to represent a 1 at all 
times.  This inability to round to anything other than zero is another deviation from the 
IEEE754 standard. 
 

Floating point instructions 

The floating point instructions in the FPU can be grouped together into a number of types: 

• Move instructions, which move data between floating point general purpose and 
control registers, and either the main MIPS core, or memory. 
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• Conversion instructions, mentioned earlier in the fixed point format section, which 

convert to and from integer and floating point representations of numbers. 

• Arithmetic instructions which perform operations such as addition, multiplication, 
division, and rounding on floating point numbers. 

• Comparison instructions which compare the value of two floating point registers and 
set the C bit in the control register if the condition is true. 

• Branch instructions which can cause the processor to jump depending on the value in 

the C bit of the control register. 
 

2.5 The Vector Processing Units 

The vector processing units are self contained processors which include: a vector unit (VU); a 
small amount of data memory; and an interface to the DMA controller (VIF).  The Playstation 
2 has two Vector Processing units: VPU0 and VPU1, which are shown in Figure 2-14. 

 
Figure 2-14 

2.5.1 Operating Modes 

Figure 2-14 shows a number of links between the core processor, memory, and the VPU’s.   
Similar to the floating point unit, it is possible for vector unit 0 to operate as a coprocessor to 
the main core. When it operates in this mode, the main core will not be able to execute any of 

its own instructions while instructions it has issued to vector unit 0 are being executed.  This 
operating mode is known as macro mode, and it is only possible for vector unit 0 and not 
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vector unit 1 to operate in this mode, as there is no connection from the core to vector unit 1. 
Since the VPU’s have their own memory, a simple processor in the Vector Unit, and a VIF to 
transfer data to and from the VPU’s memory and the main memory, it is possible for the VPU 
to run independently of the main core.  This is known as micro mode because the memory 
inside the vector unit containing the instructions to execute is called the micro memory.  

When a vector unit is operating in micro mode, it is possible for the main core to continue 
working simultaneously.  Vector Unit 1 always operates in micro mode, whereas vector unit 0 
can operate in either micro mode or macro mode, but only in one mode at a time. 
 
There is a link between the data memory of VPU0 and vector unit 1.  This link is to show that 
the registers contained in vector unit 1 are memory mapped to the data memory of vector 
processing unit 0.  This means that while VPU1 is not executing, data can be written to this 
area of memory, and once VPU1 starts execution, the data will be loaded from memory and 
placed in the corresponding vector unit 1 registers. 

 
The GIF is an interface to the graphics synthesizer, which is a processor in the Playstation 2 
which draws to the screen.  It is possible for Vector Unit 1 to use special commands to send 
data it has processed to the GIF, which will then process it and put it on the screen.  This 
feature is important in games which have complete control over the Playstation 2, but is not 
useful in simple command line programs compiled by the Vector Pascal Compiler. 

2.5.2 The Vector Units 

 
Figure 2-15 

Figure 2-15 shows the different parts which make up a vector unit.  There are 32 floating 
point registers which can each hold 4 single precision floating point numbers.  There are 16 
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integer registers, which are only 16-bits in length, and so are typically only used for loops 
counters, and array indices.  There are also a number of control registers, which have not been 
shown in Figure 2-15.  These are similar to the floating point control registers and contain 
flags showing the status of execution, i.e., if any errors have taken place.  In addition to these 
registers, there is a block of micro memory.  This is in addition to the data memory in the 

vector processing unit, and contains the instructions to be executed when operating in micro 
mode.  It is not used by vector unit 0 when operating in macro mode. 

Floating point registers 

127 96 95 64 63 32 31 0 
w z y x 

Figure 2-16 

Figure 2-16 shows the layout of a 128-bit floating point register in the vector unit.  There are 
four fields: w, x, y, and z, corresponding to the four fields in typical graphics vectors.  The 
data memory in the vector units is also arranged in this way, i.e., in 128-bit blocks divided 
into the same fields as the registers.  This allows instructions to be written to load and store a 
whole register to and from memory without having to take into account which field goes in 
which location in memory.  Similarly to the floating point coprocessor, there is also an 

accumulator register, but this is now 128-bits wide to support the size of the floating point 
registers in the vector unit.  None of the vector unit floating point registers have been reserved 
for parameter passing, stack manipulation, or other similar operations, with the exception of 
the first floating point register – VF00 – which, like the $0 register in a MIPS code, is a 
constant register.  Unlike the MIPS constant register, this does not contain zero, but instead 
contains zeros in the x, y, and z fields, and a 1 in the w field. 

Execution Units 

In addition to the registers and internal memory, the Vector Unit contains two processing 
units: the upper execution unit; and the lower execution unit.  Figure 2-15 shows these units 
and the units they contain which are used to implement their instruction sets.  It is possible for 
the vector unit to execute an upper and lower unit instruction simultaneously, and so vector 
unit instructions are 64-bit in length: 32-bit for an upper instruction; and 32-it for a lower 
instruction.  It should be noted that if an upper and lower instruction try to write to a register 
at the same time, priority will be given to the upper instruction and the lower instructions 
result will be discarded.  Although Vector Unit 0 does contain a lower execution unit, it can 

only use it is micro mode, and not in macro mode.  This is because the MIPS core only 
accepts 32-bit instructions, which can be sent to the upper execution unit, but 64-bit 
instructions are needed to give the lower execution commands at the same time.  The lower 
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unit could have instead been chosen to work in macro mode, but as will be seen shortly, it 
tends to contain instructions to move data around, and operate on 16-bit integers, and has very 
few arithmetic instructions on floating point numbers, so the upper execution unit is likely to 
be more useful as a coprocessor. 

Upper execution unit 

The upper execution unit contains 4 FMAC’s – Floating point Multiply Accumulators.  These 
are arithmetic units which can each add, subtract, and multiply a single 32-bit floating point 
number, or even perform a multiplication and addition at the same time.  By combining 4 of 
these, it is possible for the upper execution unit to process 4 floating point numbers in 
parallel.  These are used to implement all of the true vector operations in the vector unit, i.e. 
operations that operate across a number of vales at the same time. 

 
The upper instructions have a number of formats depending on their purpose, for example, 
there is a format for operations which use two floating point source registers and one source 
register, shown in  

COP2 co = 1 dest ft fs fd OPCODE 

31……26 25 24….21 20….16 15….11 10……..6 5…..1 

Figure 2-17.  There are also instructions known as broadcast instructions which can use a 
single field of a source register, and apply this to all the fields on another source register.  An 
example of a broadcast instruction is VADDbc which adds the floating point value in the 
broadcast field to each of the four fields of the other source register. 

COP2 co = 1 dest ft fs fd OPCODE 

31……26 25 24….21 20….16 15….11 10……..6 5…..1 
Figure 2-17 

 
Figure 2-17 shows the macro mode instruction format called “MacroOP Field type 1” in the 
Playstation 2 Vector Unit manual [13].  The fields have the following purposes: 

• COP2 tells the MIPS core that this is an instruction for coprocessor 2, i.e., VU0 

• co is a bit permanently set to 1 signifying a coprocessor instruction 

• dest is 4 bit destination field and will be covered shortly 

• ft, fs, and fd and the two source registers and a destination register respectively. 

• OPCODE contains the instruction to be executed by vector unit 0. 
 

The dest field contains 4 bits: one for each of the w, x, y, and z fields in the floating point 
registers.  It is possible to tell the instruction to operate on any combination of the w, x, y, and 
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z fields instead of having to operate on all four.  This would be useful if, for example, it was 
necessary to scale the x, y, and z fields, but not the w field.  To do this, a multiply instruction 
could be applied but with only the x, y, and z fields set to 1, and not the w field.  The dest 
field is present in all of the macro mode instructions, and the corresponding micro mode 
upper unit instructions.  This allows only a few fields to be operated on, as well as making it 

possible to only write to certain memory locations, or load from certain memory locations. 
 
Another advantage of using the destination fields is that it allows the vector unit to operate on 
floating point vectors whose length is not a multiple of four.  In Vector Pascal, it will use 
vector instructions for as much of a vector operation as possible, and then use corresponding 
normal operations on the remaining elements.  In the vector unit, there are no so called normal 
instructions so the burden of completing the operation on the final few elements would rest on 
the MIPS core, or specifically the floating point unit.  By using the destination fields, the 
remaining 1, 2, or 3 elements of the floating point vector can be operated on without fear of 

overwriting the memory of the data after the vector in memory. 

Lower execution unit 

Unlike the upper execution unit, this unit does not contain duplicates of any of its subunits, 
but instead has a number of subunits, each of which provides a different piece of 
functionality.  These are: 

• FDIV – used to execute floating point division and square root calculations, which are 

stored in a dedicated Q register, not a normal floating point register. 

• RANDU - generates random numbers for those instructions which require this 

functionality. 

• LSU – the load and store unit which moves data between registers and the vector 

processing units’ data memory. 

• IALU which is a simple arithmetic unit to add and subtract 16-bit integers. 

• EFU – the elementary function unit.  This unit is only present on Vector Unit 1, and is 
used to implement instructions such as exponentiation, logarithms, and trigonometric 
functions.  Some EFU functions take vector inputs, while others take scalar inputs, 

but the results are all scalars and are stored in the dedicated P register. 

• BRU – this deals with branching instructions, i.e., jumps, and causes the vector unit 
to move its program counter to a new position in micro memory. 

 

Although the lower execution unit can perform a number of useful operations, including 
square roots, and trigonometric functions, these are not suitable for use on a single number, as 
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the time taken to transfer the number to the vector unit, start the vector unit, do the 
calculation, and transfer the result would likely be far longer than the time taken to execute 
the given operation in the MIPS core, or floating point unit.  However, given a vector of 
floating point numbers, and an operation such as square root, it would be efficient to transfer 
the whole vector to the vector unit, perform a square root on each element of the vector, and 

transfer the result back, so long as the vector is of a reasonable size.  Generating sequences of 
instructions to perform this type of operation should be possible in ILCG. 

Differences between the Vector Units 

A number of differences have been highlighted between VU0 and VU1.  These are: 
1. VU0 can operate in macro mode as a MIPS coprocessor, VU1 cannot. 
2. VU0 has only 4KB of data memory and 4KB of micro memory, VU1 has 16KB for 

each. 
3. VU1 has an additional unit in its lower execution unit called the EFU which 

performs, among other things, trigonometric functions. 
4. VU1 can send data to the graphics synthesizer to be displayed on screen, VU0 cannot. 

Controlling the vector units 

For a vector unit to operate in micro mode, its memory must be filled with the data and 
instructions needed, and then it must receive a signal to start execution.  Starting a micro code 
routine in Vector Unit 0 is very simple because there is a macroinstruction called VCALLMS 
which tells VU0 to start execution at a given address in its micro memory.  Since there is no 
direct link between VU1 and the MIPS code, a corresponding instruction for VU1 is not 
possible.  However, VU1 watches a VU0 control register called CMSAR1, and if a value is 
passed to this register using the macro instruction CTC2, which transfers data from the MIPS 
code to a given control register, then VU1 will begin execution at the address in its micro 
memory which is stored in the CMSAR1 register.  If VU1 is executing, then any change to 

this register will be ignored.  It is also possible to use the VIF to start execution in either 
vector unit by means of a VIFcode instruction called MSCAL containing the start address of 
execution. 

The VIF 

When the DMA memory controller in the Playstation 2 is instructed to pass data to the vector 
units, it first compresses the data to increase the amount of data that can be sent using the 

limited memory bandwidth.  The VIF must then decompress this data and place it in the micro 
memory of data memory for its parent vector processing unit.  The VIF also has its own 
instruction set, and it is therefore possible to write commands which will be executed by the 
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VIF.  These instructions do not provide the same functionality of typical processors, i.e., 
arithmetic operations, but are instead used to notify the VIF to transfer data from the main 
memory to the data or micro memory of a vector unit.  VIF instructions cannot access the data 
of the vector units while the vector unit is executing, or another VIF instruction is accessing 
the VU memory, and will stall in either of these cases. 

 
This is one of the possible ways to get data into the vector units.  The other is by use of the 
memcpy C function, which can be instructed to copy some data from one location in memory 
to another.  However, to use memcpy, both the source and target addresses must be in the 
same physical memory, i.e., both in the main memory on the Playstation 2.  This would mean 
that using memcpy would not be possible for transfer to the vector units’ memories, however, 
the vector units memories have been mapped to the physical memory in the Emotion Engine.  
This means that it is possible to set the data and instructions for each processor by simply 
transferring to the appropriate position in memory.  It is also possible to set the VU1 registers 

since they have been mapped to the VU0 data memory, which is itself mapped to main 
memory.  The VU0 registers do not have to be mapped to memory because they are 
accessible via the macroinstructions when operating as a coprocessor.  Although it is possible 
to use memcpy to set vector unit memory, and VU1 registers, it is preferable to use to the VIF 
instructions instead, as they can execute while the main processor continues execution of 
other instructions, but memcpy would have to use the main processor to execute. 
 

2.6 MIPS Memory Allocation  

When a program is compiled, it is impossible to know where is will reside in the physical 
memory of the system it is executing on.  For this reason, programs are compiled into their 
own address space, ranging from 0 to 231 – 1 and which gives the program the impression that 
it has exclusive access to the complete memory of the system.  When the program executes, 
these virtual addresses within the program are translated into the physical addresses of the 
locations they really occupy.  Within the virtual address space a program believes it has 
access to, there are a number of sections, each of which has a fixed start address on MIPS 
processors. 
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Figure 2-18 

 
Figure 2-18 shows the different segments in a MIPS program, and the addresses they may 
occupy.  The addresses are given as hex values.  The text section, which starts at 40 0000 and 

finishes at 1000 0000, contains the instructions for the program.  The first instruction will be 
in memory location 40 0000 and so this is the location the program counter points at when the 
program begins execution.  Above this is the static data segment which stores constants, and 
other static variables.  The global pointer is set to point to 1000 8000, which is an address 
within the static data section.  Given that the load and store word instructions use a 16-bit 
immediate value as an offset, it is possible to address any memory location from 1000 0000 to 
1000 ffff using the global pointer as a base.  If the global pointer did not point to the data 
segment, then accessing static data would need two instructions: one to load the start address 
of the static data section into memory, and another to load the specific variable required: 

 
Figure 2-19 

This can be contrasted with Figure 2-20 which uses the global pointer to access the item at 
1000 4000 and takes only one instruction. 

 
Figure 2-20 

 

lw $s0 -4000($gp) 

la $s0, 1000 0000 
lw $s0 4000($s0) 
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The final section of memory is empty when the program starts, but will be used by the stack 
and the heap during program execution.  The stack grows downwards from the top of this 
section of memory, while the heap grows upwards from the end of the static data section. 

2.6.1 Position Independent Code 

On the Playstation 2, the C Compiler compiles all code to be position independent code (PIC).    
This means that all references within the code are relative, i.e., are offsets from the program 
counter, or the global, stack or frame pointers.  This allows the program to reside at any 

location in memory when it is called, and not be restricted to having to occupy specific virtual 
memory addresses in the current processes virtual memory, i.e., the code will execute 
correctly no matter where it is positioned in memory.  This can be contrasted with absolute 
addressing whereby instructions can contain absolute memory addresses.  This means that for 
the code to execute correctly, the absolute addresses must coincide with the virtual addresses 
for the process, or else the data referenced in the instruction will not be in the location the 
instruction thought it was in. 
 
In absolute addressing, all labels in the assembly code and pieces of data in the data section 

can be given specific addresses.  Any references to these labels within the assembly 
instructions, for example, a load instruction, can be replaced by the address of the label, and 
similarly for data items.  However, the Playstation 2 uses position independent code, which 
means that absolute addressing is no longer allowed, and all references must be offsets.    
 
There are two main techniques for satisfying the requirement that there are no absolute 
addresses in the assembly code: 

1. Jumps to labels for branches or functions are replaced by jumps relative to the current 
program counter. 

2. References to absolute addresses are replaced by a piece of code which can be used to 
calculate the address of the required piece of data. 

 
The first one of these can be satisfied by the compiler, which works out at what value the 
program counter would be at for each label to jump to.  Any jumps to labels will then be 
replaced by jumps to the specific values the program counter takes at each label.  For 
example, if the original code to jump to DEST was: 
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Program counter Instruction 

0 

4 
….. 
64 

main: 

j LABEL 
….. 
DEST: 

Figure 2-21 

 
Then the PIC equivalent would be: 

Program counter Instruction 

0 

4 
….. 
64 

main: 

j 64 
….. 
DEST: 

Figure 2-22 

 
Figure 2-22 shows that the label DEST has been left unchanged, but the jump instruction 
which used to reference it directly, now jumps to the program counter value the label 
occupies.  This will all be done automatically by the compiler since it can pass over all the 
code finding the value the program takes at each label, and then pass back over the code 
replacing all references to the labels by the program counter values. 

 
The second technique is more complicated than the first and involves the creation of a global 
offset table. 

Global Offset Table 

Although absolute addresses can no longer be used in the assembly code, the data for the 

program will exist at absolute addresses during program execution.  Each object file contains 
its own global offset table, which holds the addresses of all the functions and data values in 
the object file [15].  References to absolute addresses are replaced by lookups to the 
corresponding entry in the table, which at run-time will contain the absolute address of the 
item required.  The global offset table is held in the data segment of the object file, and is 
referenced through the global pointer.  Since each object file has its own global offset table, 
when a function is called, it must set the global pointer to point to its own global offset table, 
as the global pointer would have been pointing to the global offset table for the calling 
procedure, which may have been in a different object file.  Functions called from other 

functions in the same object file do not have to reload the global pointer as it will already be 
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set to the global offset table for that object file.  Some compilers provide an alternative entry 
point to procedures in the same object file which skips the loading of the global pointer [14] 
as it is unnecessary, and this reduces the overhead of calling position independent code. 
 
The MIPS assembler provides two pseudo instructions which programmers can use to setup 

the global pointer to use the global offset table.  These are cprestore and cpload.  The pseudo 
instructions to interact with the global offset table have been prefixed with cp which stands 
for context pointer and is another name for the global pointer.   

 
Figure 2-23 

Figure 2-23 gives the assembly pseudo instructions to set the global pointer to point to the 
global offset table for the current object file.  The cpload pseudo instruction is expanded into 
the two instructions in Figure 2-24.  The set noreorder/reorder pseudo instructions tell the 
assembler to not reorder the instructions that cpload expands to, since the cpload instruction 

must be the first instruction to be executed in a function, and reordering could move it 
elsewhere.  If the cpload instruction was not the first to be executed in the function, then the 
global pointer is not guaranteed to have been set correctly and then any references which 
followed it may not contain the correct pointer to the global offset table.  The _gp_disp 
variable in Figure 2-24 is the offset from the address of the start of the function, and the 
global offset table.  This variable will be replaced by the actual number it represents by the 
linker, which will know how far the function is from the global offset table.  By adding this to 
the virtual memory address of the function, the global pointer will then contain the run-time 
virtual memory address of the global offset table.  Given that the code is position 

independent, the virtual memory address of the function will not be known until run-time.  
The MIPS Application Binary Interface (API) [16] specifies that the “virtual address of a 
called function is passed to the function in register $25”.  The second line of assembly cpload 
expands to add this virtual memory address to the offset to give the final value the global 
pointer should contain to point to the global offset table. 

 
Figure 2-24 

 
Although the assembly code in Figure 2-24 will set the global pointer correctly, it has now 
added the requirement that the virtual address of the current procedure is contained in register 

la $gp, _gp_disp 
addu $gp, $gp, $25 

.set noreorder 

.cpload $25 

.set reorder 
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$25 when the procedure is called.  The assembler satisfies this requirement by finding all of 
the jump and link instructions and replacing them with jump and link register instructions, 
where the register containing the address to jump to is register $25.  Of course, prior to the 
jump and link register instruction, the address of the procedure to call must be loaded into 
register $25.  This would typically have been done using a load address instruction, but that 

would rely on an absolute address, and so will instead be replaced by a lookup into the global 
offset table. 
 
Once the global pointer has been set correctly, it is then necessary to save it to the stack.  This 
is because when the current procedure calls another, the value of the global pointer will be set 
to the called functions global offset table, and so once it returns, any references to the global 
offset table in the current function would be invalid.  The assembler provides the cprestore 
pseudo instruction to save the global pointer to a position in the stack, and reload from this 
position after each jump and link instruction, which correspond to procedure calls.  The 

cprestore instruction is simply passed a number which represents the offset from the stack 
pointer in which space to save the global pointer has been reserved.  For example, “cprestore 
16” would emit “sw 16($sp)” at the position in the assembly where the cprestore was written.  
The assembler also has to reload the global pointer from this position on the stack after each 
jump and link instruction.  It does this by searching for all the jump and link instructions and, 
in this case, emits a “lw 16($fp)” instruction at the position where execution would continue 
from once the called procedure returns.  It can be seen from the generated instructions that the 
assembler uses the stack pointer as the base from which to save the global pointer, but uses 
the frame pointer as the base for restoring the global pointer.  This is because the MIPS ABI 

[16] states that the frame pointer should point to the same location as the stack pointer once 
the procedure starts executing its body of code.  The stack pointer is then free to change value 
to allow new data to be pushed onto the stack.  However, as will be seen in the section on the 
stack, this assumption made by the MIPS ABI, which has been implemented in the 
Playstation 2 assembler, conflicts with the assumptions present in the Vector Pascal Compiler 
with respect to the layout of the stack, and the stack and frame pointer.   
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3 Design 

3.1 The Stack 

When a program is executed, there are typically two areas of memory it has access to: the 
heap; and the stack.  The heap is an area of memory used to store data which may be shared 
by many parts of the program, and tends to live longer than the procedure that created it.  This 

can be contrasted with the stack which is used by each procedure to store data local to that 
procedure, and that will no longer exist once the procedure exits.  A procedure is given a 
stack frame when it is entered which has enough space for any registers that must be saved 
while the procedure is running, and also enough space for any local variables the procedure 
uses.  In some circumstances, for example where the procedure runs out of registers to use in 
a calculation, it may also spill registers onto the stack, which means that the registers value is 
stored on the stack, to be reloaded later, possibly to be used to complete the calculation it was 
being used in. 
 

The stack is accessed via registers called the stack pointer (SP) and frame pointer (FP).  The 
frame pointer contains the address of the start of the stack frame of the current procedure 
whereas the stack pointer contains the address of the end of the current procedures stack 
frame.  This conflicts with the Playstation 2 assembler which assigns both the stack and the 
frame pointer to the end of the stack.  The stack on most platforms grows downwards, 
meaning that the end of the stack is at a lower address than the top.  This also means that to 
save a variable to the stack – pushing it onto the stack – the space for the variable must be 
subtracted from the stack pointer. 
 

 Space used by previous 
procedure 

Frame pointer (FP)  

 

 

 

Space for current 
procedure.  Saved 
variables, temporaries, 
saved registers, etc 

Stack pointer (SP)  

 

 

Currently unused space  

Figure 3-1 
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When a local variable needs to be accessed, its address is given as an offset from the frame 
pointer.  The offset could have been given from the stack pointer, but since the offset is a 
fixed number, changes to the stack pointer would invalidate all the offsets, and normally 
compilers cannot guarantee that the stack pointer will not change during execution of a 
procedure.  As will be seen later, the implementation of the port to the Playstation 2 could 

make this guarantee, but the assumptions in the compiler relating to the stack and frame 
pointer would make it impossible to use just the stack pointer, and not the frame pointer.   
 
When a procedure is called, there are a number of values which have to be saved onto the 
stack.  These values include the frame pointer, which will be moved to point to the top of the 
new procedures stack frame, and so must have its value saved so that it can be restored when 
the procedure exits.  The return address must also be saved.  This is the address of the next 
instruction to execute after the line of code where the procedure was called.  When the 
procedure exits, it should return to this address so that execution of the program continues 

from the point at which the procedure call occurred.  The return address is stored in a register, 
but must be saved since this register is overwritten with each procedure call, and so will be 
lost if a called procedure then calls another, i.e., the first called procedure will not know 
where to return to when it exits because the return address was overwritten when it called a 
procedure. 
 
There are a number of assumptions made by the compiler with respect to the positions of 
variables on the stack.  The first of these is that the parameters to the current procedure are a 
fixed offset up from the frame pointer.  This means that the frame pointer must retain the 

same value throughout execution of the procedure to ensure that the offsets to the parameters 
remain valid.  The second assumption also concerns the frame pointer, but this time relates to 
the display which is a list of the frame pointers of all the procedures the current procedure is 
nested within, and by indexing into this list, the current procedure can use any value seen by 
parent procedures.  Similar to the arguments, the offsets from the frame pointer to the display 
values are also assumed within the compiler, and so must be adhered to when creating the 
display and setting the value of the frame pointer.  Both these assumptions have highlighted 
the need for the frame pointer to remain the same throughout execution of the procedure, but 
given that the arguments and display are on the stack, it is also important to make sure that no 

other variables try to occupy these positions on the stack, since they would then corrupt the 
memory of whatever variable was in the memory they used.  
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3.1.1 Entering a procedure 

A procedure is entered when program execution jumps to the label that marks the beginning 
of the procedure.  There are a number of steps which must take place when entering a 
procedure.  These are: 

1. The return address register must be saved since if this procedure calls another, the 
value in this register will be overwritten. 

2. The frame pointer must be saved, so that when the procedure exits, the frame pointer 

can be restored to point at the address it was pointing at before calling the procedure. 
3. Any of the saved registers which are used during execution of the procedure must be 

saved.  This is to comply with the MIPS standard which puts the responsibility on 
saving these registers on the called procedure, and not the calling procedure. 

4. In the Playstation 2, the global pointer must be set up for this procedure. 
5. A list of frame pointers from parent procedures – called the display – must be created. 

The Display 

In a language such as Pascal which allows for procedures to be nested within each other, a 
mechanism must be provided which allows an inner procedure to find the memory locations 
where variables from the outer procedures reside.  The implementation used by Vector Pascal 
is the display.  This is a list of the frame pointers for each of the parent procedures of the 
current procedure.  Since all the variables for procedures are given as given offsets from their 
frame pointer, it is possible to find any variable from outer procedures if their frame pointer 
and the required offset are known.  For variables in Vector Pascal, the frame pointers in the 
display are all at fixed offsets from the current procedures frame pointer, and the offsets for 

any variable are stored within the variable object in the language and so can be output directly 
in the assembly code, i.e., no calculations are needed to calculate the offset at runtime.   

 
Figure 3-2 

MAIN (Level 1) 

A (Level 2) 

B (Level 3) 

C (Level 3) 
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Figure 3-2 – adapted from the Intel Architecture Software Developers manual [1] - shows 
procedures B and C, both nested within procedure A, which is itself nested within the MAIN 
procedure.  On the Intel platform, a nested procedure is assigned a level, which gives a 
measure of how many frame pointers are contained in its display, and so a higher level means 
that a procedure is more deeply nested than a lower level procedure.  A procedure at level N 

will have a display which contains N frame pointers, the last of which will be its on frame 
pointer.  Intel assigns the outermost procedure the level 1, whereas in the Vector Pascal 
Compiler, the outermost level is assigned a level of 0.  This makes little difference in the 
implementation, since the variables in the main procedure in Vector Pascal are not stored on 
the stack, but are instead held within the data section of the compiled program.  References to 
these variables, at any nesting level, are not given as offsets from the frame pointer, but 
instead from a fixed label in memory.  Therefore, in both the Vector Pascal Compiler, and 
Intel’s implementation of the display, the level 1 procedures are the first to have a frame 
pointer from which variables are offset.  The x86 compatible specifications in the Vector 

Pascal Compiler use the ENTER instruction, which is built into the processor, and which 
automatically creates the display for the given level of procedure.  The ENTER instruction 
puts the frame pointers in the display at fixed offsets from the frame pointer for the current 
procedure and the Vector Pascal Compiler assumes that these frame pointers in the display are 
at the offsets the ENTER instruction saved them at.  On the Playstation 2, there is no ENTER 
instruction, but Intel has documented its behaviour, so the same functionality can be 
synthesized from more basic MIPS instructions.  The ENTER instruction can also create 
space for the stack frame of the current procedure by subtracting a storage amount from the 
stack pointer, although this is not needed on the Playstation 2, since the stack pointer is 

subtracted at a different time.  The pseudo code for the ENTER instruction is given in Figure 
3-3. 
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Figure 3-3 

 
The above code saves the current frame pointer to the stack.  It then stores the current stack 
pointer in a temporary variable called the FRAME_PTR, which will just be a register.  Next, 
it loops a given number of times, and at each iteration subtracts from the frame pointer, and 
then copies the data the frame pointer is pointing to.  This has the effect of copying the 

display from the outer procedure, since the display for the outer procedure occupies the 
locations in memory that are being copied into this procedures display. Once the display from 
the calling procedure has been saved, the current procedures frame pointer is pushed onto the 
end of the display.  This is not used by the current procedure, or any other procedures at the 
same level as the current one, but is instead saved so that procedures at a lower level will have 
access to this procedures stack frame because they will copy this frame pointer from the end 
of the display when they set up their own display.   
 
The figures below show the contents of the stack frame after calls are made to the procedures 

MAIN, A, B, and C assuming the nesting given earlier.  The first shows the stack frame of 
MAIN once it has been entered.  The second shows the stack frame for A after it has been 
called from MAIN.  Similarly, the third shows the effect of calling B from A, while the fourth 
shows a call from B to C, which demonstrates what happens when a procedure calls another 
at the same nesting level as its own, and not a child procedure. 

PUSH frame pointer (FP) 
FRAME_PTR = stack pointer (SP) 
IF level > 0 THEN 
 DO (level -1) TIMES 
  FP = FP – 4 
  PUSH pointer(FP) //push data pointed to by FP 
 OD; 
 PUSH FRAME_PTR; 

FI; 
FP = FRAME_PTR; 
SP = SP –STORAGE; 
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After entering MAIN 

Frame pointer (FP)-> Old FP  

 FP (MAIN) }  Display 
   

Stack pointer (SP)->   
Figure 3-4 

 
The stack frame is very simple for MAIN.  It saves the old frame pointer so that it can restore 
it once it exits.  It is at level 1 and so is not nested within any outer procedures.  This means 
that it does not have to copy any frame pointers from outer procedures into its display, so its 

display simply contains its own frame pointer for child procedures to copy into their own 
displays.  Some space has been given after the display, which would contain saved registers 
and local variables.  The stack pointer points to the end of this allocated space. 
 
After entering A from MAIN 

 Old FP  

 FP (MAIN) 

  

 

Frame pointer (FP)-> Old FP (FP of MAIN)  

 FP (MAIN) 

 FP (A) }   

 
Display 

   

Stack pointer (SP)->   
Figure 3-5 

 
When A is entered, the old frame pointer – in this case the frame pointer for MAIN - is saved 
to the location where the stack pointer currently addresses.  This procedure is at level 2 so 
copies 1 frame pointer from the display of MAIN, which is the frame pointer for MAIN, 
which it saved for nested procedures such as this own to copy.  The frame pointer for A is 
then saved to the end of the display.  Finally, the frame pointer for A is moved to point at the 

top of the stack frame for A, which is the bottom of the stack frame from MAIN, i.e., the 
location the stack pointer addressed before A was called. 
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After entering B from A 

 Old FP  

 FP (MAIN) 

  

 

 Old FP (FP of MAIN)  

 FP (MAIN) 

 FP (A) 

 

   

Frame pointer (FP)-> Old FP (FP of A)  

 FP (MAIN) 

 FP (A) 

 FP (B) }  

 
 
Display 

   

Stack pointer (SP)->   
Figure 3-6 

 
Similar to MAIN calling A, when B is called from A, it saves the old frame pointer – which is 
now the frame pointer for A – to the stack, but this time copies two frame pointers from the 
display A created.  As with the other cases, it then copies its own frame pointer to the end of 
the display, and moves the frame pointer to point to the top of its stack frame. 
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After entering C from B (Note, B and C are at the same level)  

 Old FP  

 FP (MAIN) 

  

 

 Old FP (FP of MAIN)  

 FP (MAIN) 

 FP (A) 

 

   

Frame pointer (FP)-> Old FP (FP of A)  

 FP (MAIN) 

 FP (A) 

 FP (B) 

    
 
 

   

Frame pointer (FP)-> Old FP (FP of B)  

 FP (MAIN) 

 FP (A) 

 FP (C) } 

 
Display 

   

Stack pointer (SP)->   
Figure 3-7 

 
When C is called from B, it saves B’s frame pointer, and then has to copy the display into its 
own stack frame.  However, unlike the other cases, C in not nested within B, but is instead at 
the same level of B.  This means that it should not have access to B’s stack frame, and thus 
B’s variables.  The loop to copy the display deals with this because C will copy 2 frame 

pointers from the display into its own display.  These two frame pointers are both copied from 
B’s display, but are pointers to MAIN and A respectively.  This allows C to access the 
variables for both MAIN and A, which is correct since C is at the same nesting level as B, and 
they are both nested with A and MAIN.  The frame pointer to B’s stack frame is not copied 
because it is in the third position of B’s display, and since C is at level 3, it only copies the 
first 2 positions.  As before, C then copies its own frame pointer to the end if its display, and 
moves its frame pointer to the top of its stack frame. 
 
This example dealt with a procedure calling another at the same nesting level, however, the 

ENTER instruction also handles a child procedure calling a parent procedure correctly.  For 
example, if C was to call A, then A should copy the frame pointer to MAIN from C’s display.  
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This will be the case using ENTER because A is at level 2 so will copy one frame pointer 
from the calling procedures display – the frame pointer to MAIN.  The pointer to MAIN is 
guaranteed to be at the top of C’s display since C is nested within MAIN, and MAIN is at 
level 1.  If MAIN’s frame pointer was not at the top of C’s display then C would not be nested 
within MAIN, and so would not be able to call A. 

 
As mentioned in the section on the stack, one of the assumptions built into the Vector Pascal 
Compiler is the offsets from the current procedures frame pointer to the frame pointers of all 
parent procedures in the display.  These examples clearly show that the top of the display is 
addressed by taking the frame pointer and subtracting 4 from it.  This gives the address of a 
level 1 frame pointer.  Simply subtracting another 4 will give a level 2 pointer, and so on.  
This assumption also prevents the stack and frame pointer from pointing to the same location 
in memory, since that would force the display to be beyond the end of the stack, i.e., within 
the space that would next be used by the stack.  This causes problems with restoring the 

global pointer, as, seen in the section on the Global Offset Table, since the assembler assumes 
that the frame pointer points to the end of the stack frame, not the start of it.  If the frame 
pointer points to the top of the stack frame, then the global pointer will be saved to an address 
below the frame pointer, but restored from an address above the frame pointer, which will not 
contain the saved global pointer, but instead the arguments to the current procedure.  There 
are a number of possible solutions to this problem: 

1. The global pointer is in a memory location lower than the frame pointer, so a negative 
offset could be passed to the cprestore pseudo instruction. 

2. An offset of 0 could be passed to cprestore; this would allow the global pointer to be 

restored from the frame pointer and would not interfere with the procedures 
arguments. 

3. There is no requirement that the Pascal code use the $fp register as a frame pointer, so 
the $fp register could be set to equal the $sp register as the assembler assumes, and 
another register could be used as the frame pointer to access variables, arguments, 
and the display. 

 
The first solution is not possible because the assembler does not allow a negative offset to be 
given to the cprestore instruction.  By looking at the instructions generated by the cprestore 

method, there is no reason to restrict a negative offset based on the generated instructions 
alone.  However, it is likely that the assembler writers did this to prevent saving to an address 
lower than the frame pointer because they assume the frame pointer points to the end of the 
stack frame, and so addresses lower than the frame pointer would be invalid. 
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The second solution would be possible, but the compiler tends to save the old frame pointer in 
the address pointed to by the current frame pointer, and the return address in the memory 
location above that.  These are the only two locations which could have been used to save the 
global pointer, as higher addresses are used for arguments.  Although it would have been 
possible to use one of these locations to save the global pointer, it was thought best to keep 

the layout of the stack as close to other platforms to save confusion. 
 
The third method was implemented in the port to the Playstation 2.  This involved replacing 
all occurrences of the frame pointer with the register which would be the new frame pointer.  
The $fp register could then be moved to point to the same piece of memory as the stack 
pointer, and so any attempts to reload the global pointer will be successful.  Both the stack 
pointer and frame pointer are guaranteed to be unchanged after a procedure call, however, if 
the frame pointer is not chosen wisely, then it may not have the same value after a procedure 
call as it had before the call.  The solution to this is to use one of the saved temporary 

registers as the frame pointer, since if a called procedure changes its value, it must restore the 
value before exiting. 

3.1.2 Procedure Call Mechanisms 

In order to call a procedure is called, there are a number of steps the compiler must take: 
1. Any caller saved registers, i.e. the unsaved temporaries, with values that are needed 

after the procedure call are saved 
2. The arguments to the called procedure are placed in registers and/or on the stack so 

that the called procedure can access them 
3. The return address is loaded into the return address register 
4. A jump instruction is executed to cause the program counter to begin execution at the 

start of the called procedures body. 

 
The third and fourth points in the above list are both satisfied the using the jump and link 
instruction which is covered earlier in the Global Offsets Table section.  The first point 
involves working out which unsaved temporary registers hold values needed after the 
procedure call and pushing their values onto the stack.  These values can then be restored 
after the procedure call.  However, this relies on the Vector Pascal Compiler knowing the 
location of all procedure calls, which is impossible on the Playstation 2.  This is because, 
although for standard procedure calls, a method will be called to load the arguments correctly 
and perform the jump to the procedure, there are procedure calls in the specification which are 

essentially hidden to the compiler.  These are the calls to the double precision floating point 
operations, which will be covered shortly, and also calls to Math routines for trigonometric 
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results.  Note that it would be possible to search the assembly output from the compiler and 
determine where all the function calls are, and then establish which registers need to be saved 
before each function call.  However, this would be non trivial and has not currently been 
implemented in the port of Vector Pascal to the Playstation 2.  It would also slow the compiler 
since it would have to make at least one more pass over the code to work out what registers to 

save.  
 
The final point to cover is the method in which parameters are passed to procedures.  Both the 
Vector Pascal Compiler and the MIPS GNU C compiler have assumptions over where the 
arguments will be located.  The Playstation 2 port must put the arguments to procedures in 
exactly the correct registers and memory locations or else it will be impossible to call either C 
functions, or other Pascal procedures. 

Passing Parameters to Pascal Procedures 

In Vector Pascal, all arguments are pushed onto the end of the stack.  None of the argument 
registers are used.  Arguments smaller than 4 bytes, for example, 16-bit integers, or 
characters, are aligned on 4 byte boundaries, i.e., they are given 4 bytes of space, even though 
they need less.  Arguments of larger than 4 bytes are simply put straight onto the stack.  When 
a Pascal procedure is called, it assumes that the last argument to be passed is at the top of the 
stack – the location pointed to by the stack pointer.  Once the procedure has been entered, this 
argument will be at the location given by adding 8 to the frame pointer.  If all arguments were 

4 bytes in length, then the second would be 12 up from the frame pointer, and the third would 
by 16 up and so on.  However, if for example the first argument is 8 bytes in length, then the 
second will be at an offset of 16 from the frame pointer and not 12.  The Vector Pascal 
Compiler is aware of when arguments larger than 4 bytes are passed and can change the 
offsets it uses in code accordingly.  This does not change the calling code to a great extent 
since all that is needed is a check for the size of the argument and a suitable subtraction of 
that amount from the stack pointer to make enough space. 
 
Arguments can be passed in either right to left or left to right order.  In a left to right order, 

the leftmost argument will be pushed onto the stack first, which means that it will be at the 
highest memory address of any of the arguments, and the stack pointer will point to the last 
argument.  In right to left order, the rightmost argument will be pushed first, and so the first 
argument will be pointed to by the stack pointer.  In Vector Pascal, procedures can use either 
ordering.  The procedure call method, which pushes the arguments onto the stack, can access 
the class for the procedure it is calling, and retrieve the ordering variable.  It can then push the 
arguments in left to right or right to left order, as expected by the procedure being called. 
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 …. 

 Param 2 

 Param 1 

 Return address 

Frame pointer (FP)-> Old FP 

 Display 

 Saved registers 

Stack pointer (SP)-> Local variables 

 

 

 

Currently unused space  

Figure 3-8 

 
Figure 3-8 shows the layout of the stack frame for a procedure in Vector Pascal on the 
Playstation 2 which was called using right to left parameter passing.  The stack frame contains 
the saved registers, local variables, and display which was all covered earlier.  The frame 
pointer is pointing to the memory location containing the frame pointer from the calling 

procedure, and the return address is contained in the memory location above this.  The offset 
to the arguments from the frame pointer can be seen to be 8 bytes, since an offset of 0 gives 
the old frame pointer and an offset of 4 gives the return address.  Since the parameters were 
passed in right to left order, the last parameter was pushed onto the stack first, and so the first 
parameter is at the smallest offset from the frame pointer.  The can be contrasted with Figure 
3-9 which shows a call to a procedure with N arguments passed in left to right order. 
 

 …. 

 Param N - 1 

 Param N 

 Return address 

Frame pointer (FP)-> Old FP 

 Display 

 Saved registers 

Stack pointer (SP)-> Local variables 

 

 

 

Currently unused space  

Figure 3-9 
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Passing Parameters to C Procedures 

Whereas the Vector Pascal calling convention puts all the arguments on the stack, the C 

calling convention is to put as many arguments in registers, and then the remaining arguments 
onto the stack, although the compiler assumes that space has been saved on the stack for those 
parameters passed in registers as well, so that the called procedures can saved the parameters 
to this space if necessary.  In C, all parameters are passed in left to right order, that is, 
generally the first parameter will be in register $a0, with the second in $a1, and so on.  
Parameters which must be passed on the stack are also passed in this order, so the last 
parameter will be at the highest memory address.  As with Pascal, arguments of less than 4 
bytes are promoted to use 4 bytes, either on the stack, or in an argument register.  Parameters 
can be passed in the 4 MIPS argument registers - $a0 - $a3 - and the 4 floating point argument 

registers, although the floating point registers must be used in pairs, so only register $f12 and 
$f14 are really available for parameter passing.  Both 64-bit integers and double precision 
floating point numbers, which take up 8 bytes, are passed in the MIPS argument registers, or 
on the stack, as required.  However, even though the MIPS registers are 128-bits in size, 64-
bit arguments are instead passed in the lower 32-bits of a pair of registers.  In addition to this, 
they can only be passed in an even/odd pair of registers, not an odd/even pair, i.e., in $a0 and 
$a1, or $a2 and $a3, but not in $a1 and $a2.  Although double precision numbers are floating 
point, they are not passed in the floating point argument registers. 
 

The floating point registers can store only two arguments.  However, they do not store the 
first two floating point arguments, but instead the first two arguments if they are floating point 
numbers.  This means that if the first argument is a floating point number, but the second is an 
integer, then the first will be stored in $f12, but the second will be stored in $5.  The 
restrictions on the $f14 are greater in that an argument will only be store in it if the argument 
is a floating point number, and the second is a floating point number, i.e., $f14 will can only 
be used if $f12 has been used.  If $f12 was not used, the floating point argument will be 
passed in the $5 register, in a similar way to the third and fourth floating point arguments 
being passed in registers $6 and $7 as there are then no more floating point registers left to 

pass parameters in. 
 
Since 64-bit arguments are passed in a pair of registers, it is possible for some of the MIPS 
registers to not be used, even if there are no arguments in the corresponding floating point 
register.  This can happen if the first argument fits in either the first floating point or MIPS 
register.  If the second argument is a 64-bit one, then the next usable register is $1, but the 64-
bit arguments can only use even/odd pairs of registers, so $a1 would not be used, and $2 and 
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$a3 would store the argument.  A similar case is possible if the next register to use is $a3, 
since this would involve the argument being passed in a register and on the stack.  It will 
instead pass the whole argument on the stack, and so $a3 will be unused.  If a 64-bit argument 
is passed on the stack, it must be passed in memory addresses on 8 bit alignment.  This means 
that if the first argument passed onto the stack is 4 bytes long, then if the second is 8 bytes 

long, it will not occupy the next available space on the stack, since that is only aligned to 4 
bytes, but will instead leave that space unused, and use the 8 bytes after it. 
 

Arguments MIPS registers FP regs. First 6 Stack locations (offset from sp) 

1 2 3 4 5 6 a0 a1 a2 a3 f12 f14 0 4 8 12 16 20 

i i f f i i 1 2 3 4   5 6     

f i f f f f  2 3 4 1  5 6     
d i d i i i 1 1 2    3 3 4 5 6  
i d f i f f 1  2 2   3 4 5 6   
i f i d i d 1 2 3    4 4 5  6 6 

Figure 3-10 

 
Figure 3-10 shows a number of possible combinations of arguments and the locations they 
would be passed either in MIPS or floating point registers, or on the stack.  The first block 
shows the types of the first 6 arguments, given by an i, f, or d, to represent integer, single 

precision floating point, or double precision floating point.  64-bit integers would behave in 
the same way as double precision floating point.  The second block shows the argument 
number that is contained in each MIPS argument register, and similarly for the third block and 
the floating point argument registers.  The fourth block gives the first 24 bytes of the stack, 
and shows the space taken on the stack for the arguments that use it.  These examples 
demonstrate the following: 

• The first row shows that even though the floating point registers are not used, then 

third and forth arguments use the third and fourth MIPS registers instead. 

• The second row shows that the first floating point argument will be passed in the first 

floating point register, and that floating point numbers can be passed in the third and 
fourth MIPS registers. 

• The third row shows that double precision numbers use pairs of registers, and will not 

place part of a double precision number in a register and part of the stack. 

• The fourth row shows that double precision numbers will not use a MIPS register if it 
is odd, but will instead use the even/odd pair of registers that follows it. 
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• The final row shows that double precision numbers will skip parts of the stack space 

if it would put them on a 4 byte alignment, instead of an 8 byte alignment. 

3.2 Double precision floating point operations 

Due to the lack of a double precision floating point unit in the Playstation 2, arithmetic using 
double precision numbers must be emulated.  The designers of Playstation 2 Linux were 
aware of this need to perform double precision arithmetic and so provided functions which 
can be called directly from within the assembly code.  There is a C header file called 
floatemu.h which contains all the functions that have been written for developers to use.  

There are a large number of these functions available, including all the common operations, 
such as addition, subtraction, multiplication, and division.  The main functions used are given 
in Figure 3-11. 

Function Description 

dpadd(a, b) Returns the addition of a and b 

dpsub(a, b) Returns the subtraction of b from a 

dpmul(a, b) Returns the multiplication of a and b 

dpdiv(a, b) Returns the division of a by b 

dpcmp(a, b) Returns -1, 0, 1 if a is <, =, > than b 

dptofp(a) Returns the floating point number given by a 

fptodp(a) Returns the double precision floating point number given by a 

dptoli(a) Returns the integer representation of the double a 

li.d Loads a double precision constant into the destination register 
Figure 3-11 

 
All the above procedures are called by loading the inputs into the argument registers ($4-7) 
and retrieving the result from the return registers ($2-3).  The exceptions are the fptodp and 
dptofp which pass the floats in using the floating point argument registers ($f10-f12) and get 
the float results in the $f0 register.  Also, li.d is not a function in the floatemu.h header, but 
instead a pseudo instruction implemented by the assembler which allows double precision 
constants to be loaded into registers. 
 

The lack of support for double precision numbers also raises a problem with calling functions 
with double precision parameters.  Despite the fact that the general purpose registers in the 
Playstation 2 can store 64-bit numbers, double precision floating point numbers are instead 
split into two 32-bit parts and each is stored in its own general purpose register.  This causes a 
problem with the code generator in the Vector Pascal Compiler because there is no way to 
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reserve a pair of registers to store a single piece of data.  One possibility would be to reserve 
all of the odd registers in the machine specification, and then only use the even registers.  The 
assembler can then be instructed to use an even register for a double precision number, but 
will use both the even register and the odd one that follows it.  However, this would half the 
number of usable registers in the MIPS core, and since only the saved temporaries are 

currently used, there are already a limited number of registers to use.  It is likely that general 
instructions will be executed more often that double precision ones, and so it would be better 
to maintain a high level of performance for the general instructions, even if that results in 
slightly lower double precision performance. 
 
However, it is possible to work around this by storing values in a single register and only 
transferring them to two registers when passing the value as an argument in a procedure call.  
The Emotion Engine implements the load and store double instructions to load and store 64-
bit values to and from memory.  If the double precision number can be loaded into a single 

register, it should then be possible to call the double precision functions in Figure 3-11 by 
copying the lower 32-bits of the register to an even argument register, and the upper 32-bits to 
the odd argument register following it.  Two possibilities for doing this are given in Figure 
3-12 and Figure 3-13, which take the double precision number in register A, and assign the 
lower ands upper 32-bits to registers B and C respectively. 

 
Figure 3-12 

 

 
Figure 3-13 

 
Both these examples should make it possible to get from a single register to two registers for 
double precision operators.  Similar instructions make it possible to get from a result in two 

registers back to a single register.  However, these rely on the load and store double 
instructions which have the restriction that they must access memory locations aligned on 64-
bit boundaries.  There is no way to guarantee that this will be the case, and as the Pascal 
Parameter Passing section covered, if the second argument to a procedure is 64-bits long, but 
the first argument was less than 64-bits long, then the second definitely be aligned on a word 
boundary and not double word.  The MIPS designers have taken this into account with the 
load and store left and right instructions.  Instead of storing a double to a memory location, 

MOVE B, A // moves the lower 32-bits of A to the lower 32-bits of B 
PROT3W C, A, 0 // copies bits 32..63 in A into bits 0..31 in C 

MOVE B, A // moves the lower 32-bits of A to the lower 32-bits of B 
DSRA32 C, A, 0 // shifts the upper 32-bits of A into the lower 32-bits of C 
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store left and store right can be called with the same memory location.  If the location is 
aligned on a 64-bit boundary, then only one of these instructions will write to memory, but if 
it is not aligned properly, then part of the register will be saved to memory by the store left 
instruction, and the other part will be saved by store right.  The load equivalents behave 
similarly. 

 
One other alternative to these methods is to define all the double precision instructions in the 
machine specification to operate on memory address and not registers.  This would mean that 
the instruction would have to contain all the necessary instructions to load double precision 
numbers from memory into the argument registers, call the appropriate function, and then 
save the function result from the result registers back to memory.  An example of the 
sequence necessary to add two double precision numbers is given in Figure 3-14.  It assumes 
that the values to add are in locations with offsets 0 and 8 from the frame pointer, and the 
result should be written to the memory location with an offset of 16 from the frame pointer. 

 
Figure 3-14 

 
The code in Figure 3-14 uses load word instructions to load the upper and lower bits of the 
double precision number into registers. Since the Vector Pascal Compiler will align 
arguments and data in memory to word boundaries, there is no issue with alignment when 
using these instructions.  It is possible to force the assembler to generate a pair of load and 
store word instructions in place of corresponding load or store double instruction.  This can be 
done by wrapping the instruction in a “.set mips2” and “.set mips0” pair of pseudo 

instructions.  The first one of these will force the assembler to use MIPS II instructions which 
don’t include store and load double as these are part of the MIPS III instruction set, and so the 
assembler will synthesize these using the equivalent word instructions.  The second pseudo 
instruction will tell the assembler to return to its default setting for future instructions. 
 
 

3.3 Multimedia instructions 

LW $4, 0($fp) 

LW $5, 4($fp) 
LW $6, 8($fp) 
LW $7, 12($fp) 
JAL dpadd 
SW $2, 16($fp) 
SW $3, 20($fp) 
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The multimedia instructions are used in the Playstation 2 to operate on vectors of integers in 
parallel.  They are called in a very similar way to the ordinary instructions, and even use a 
very similar instruction format to the normal instructions.  The difficulty with using these 
instructions lies with loading and saving the registers with 128-bit values.  This is because the 
load quad and store quad instructions both require 128-bit alignment, which cannot be 

guaranteed in the compiler.  However, as with the double precision instructions, it is possible 
to synthesize these from instructions which don’t have this alignment restriction.  To generate 
128-bit loads and stores, 2 64-bit loads or stores are generated using the load and store left 
and right instructions previously covered.  This will make it possible to load the upper and 
lower 64-bits into two different registers.   All that is required after that is to join the two 64-
bit values together to give the 128-bit value the multimedia instructions operate on.  To 
combine two 64-bit values, the parallel copy lower doubleword (PCPYLD) instruction can be 
used.  The example in Figure 3-15 shows this instruction combining the values in registers $8 
and $9 to give the value in register $10. 

 
Figure 3-15 

The reverse is possible when saving the 128-bit values is required.  The instruction only has 
to move the upper 64-bits back down to the lower 64-bits of a register, and does not need to 
do anything with the lower 64-bits of the register.  This is because they can be saved directly 
to memory from the position in the register they are already in. 

 
Figure 3-16 

 1  2  3  4 

 0  0  1  2 

$10 

$9 

0  0  0  0 $0 

 1  2  3  4 

0  0  3  4 

 0  0  1  2 

$8 

$10 

$9 
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3.4 The ILCG Emotion Engine Specification 

This file contains all of the instructions that are to be implemented for the port of the compiler 
to the Playstation 2.  The file can logically be divided into a number of sections: the top of the 
file which has declarations of all the required types and the registers; the middle sections 

which contains a pattern for each instruction to implement; and an instruction set at the end of 
the file which lists all of the instructions in the middle section in the order in which they 
should be checked when matching them to the ILCG file of the Vector Pascal source file.  The 
finished ILCG machine specification will be passed though a code-generator-generator to 
create a Java class of the code-generator for the Playstation 2.  The class created will be a 
subclass of a prewritten class called Walker, and so the Playstation 2 code-generator can be 
known as a walker. 

3.4.1 Declaring Types 

ILCG supports addressing memory in chunks from 1 byte up to 16 bytes.  These are declared 
as terminal symbols in ILCG with 1,2,4,8, and 16 byte chunks called octet, halfword, word, 
doubleword, and quadword respectively.  The integer types have also been defined, and it is 

possible to use the following terminal symbols for integers: int8, uint8, int16, uint16, int32, 
unit32, int64, and uint64.  In the Playstation 2 machine specification these have then been 
grouped in to signed and unsigned types for operations which work on any size, but specify 
and signed or unsigned constraint.  Floating point types have been declared as float or double 
although it is possible to use ieee32 or ieee64 if a specific representation is required.  It is also 
possible to define reference types which are pointers to data of the above types.  The registers 
in ILCG are declared as ref types since they essentially point to a location containing a piece 
of data of a specific type, for example, a single precision floating point register would have 
type ref ieee32. 

3.4.2 Declaring Registers 

It is possible to define a new register in ILCG, or for a register to be defined as an alias for an 

existing register, for example, in the Pentium, the BP register is a portion of the EBP register.  
It is also possible to define sets of registers using a pattern as seen in Figure 3-17 below, 
which associates the name freg with the registers F0 to F5.  These are useful because 
instructions in hardware are not declared for a specific register but instead for a set of 
registers. 

 
Figure 3-17 

pattern freg means [F0|F1|F2|F3|F4|F5]; 
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3.4.3 Declaring instructions 

An instruction in ILCG is just a pattern which accepts a number of arguments and specifies 
how those arguments can be combined.  The code-generator for the target machine will take 
the source program in ILCG form and use these instruction patterns to match against patterns 
in the source program.  It is possible for the instruction to accept non-terminal symbols, i.e., 
ones which have been defined in the machine specification. This is important as it allows 
different addressing modes to be defined, e.g., register to register or register to memory.  The 

instruction can then accept a pattern that will match against either of these addressing modes, 
allowing a greater deal of abstraction in the ILCG code, since the single instruction can match 
a number of possibilities.  Figure 3-18 shows the ILCG instruction for addition of two floating 
point numbers using the register set in Figure 3-17. 

 
Figure 3-18 

3.4.4 The Instruction Set 

The instruction set is simply a list of all of the instructions that should be used to match 
against the ILCG source code, and the order in which to check the instructions.  The order is 
important because there will be several possible ways to match a given ILCG sequence, but 
typically only one optimal way of doing so.  By giving certain instructions before others, it is 
possible to control the assembly output of given ILCG code, although it can be difficult to 

ensure that optimal code is generated for more complicated cases. 
 
A simple example of the importance of the ordering of instructions can be seen with the 
following example. 

 
This example copies the piece of data from memory location b into memory location a.  The 

optimal code for such an operation is 

 
This code loads the 32-bit value from the memory location b into a register reg, and then 
stores it to the memory location a.  This code would be generated if the instruction set 
comprised of the following 

instruction pattern ADDS(freg r1, freg r2, freg r3) 
        means[r1:=  +(  ^(  r2), ^(  r3))] 
 assembles[‘add.s 'r1',' r2 ',' r3]; 

lw reg, 0(b) 
sw reg, 0(a) 

mem(a) := mem(b) 
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This is because the walker will look at the SW pattern and notice that it is of the form 
“mem(a) := some register”.  This is similar to the ILCG code in that both of them have a 
memory location then an “:=”.  The SW pattern does then have a register whereas the ILCG 
has another memory location, but this is not a problem because the walker will then try to 
load the memory location into a register to make it compatible with the SW pattern.  This it 

will try to match the pattern “some register := mem(a)”.  It will search from the start of the 
instruction set again to match this, and will fail to match this on the SW pattern because the 
SW pattern has a memory location on the left of the “:=” whereas the pattern to match has a 
register.  However, it will then try to match this pattern to LW and will find it is an exact 
match.  This will cause the LW to return that it has matched this pattern to the SW pattern 
which will also return since there are no more remaining unmatched pieces of code.  Thus, the 
sequence generated will be the LW instruction then the SW instruction. 
 
However, if just one more instruction is inserted, the MOV instruction, which moves a piece 

of data from one register to another, then the above code may now take three instructions 
even though it only needs two.  

 
If the instruction set is now defined as above, then the following steps will be taken when 
matching the same ILCG code. 

1. The SW pattern will again match “mem(a) := some register” and instruct the walker 
to try to match “some register := mem(b)” 

2. The new pattern will again fail to match SW, but will now match MOV because both 
start with “some register :=”.  Similarly to SW, it has a register on the right, and not a 
memory address, but will instruct the code generator to try to match “some register := 

mem(b)” 
3. The pattern from MOV will again fail to match SW.  It will match MOV again, but 

the code generator will notice that this match has already taken place and avoid doing 
it again to stop an infinite match from taking place.  The pattern will then match LW. 

4. The ILCG code will therefore generate a LW followed by MOV, and finally a SW. 
 
It can be seen that the problem with the above instruction set is that the LW instruction should 
be matched before the MOV instruction to stop these unnecessary moves from taking place.  
By simply putting the MOV pattern after the LW pattern, this will be resolved and optimal 

code will be generated for the above example. 

instructionset[ SW|MOV|LW]; 

instructionset[ SW|LW]; 
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What can be seen from the above example is that even a relatively trivial case can cause 
unnecessary code to be generated.  More complicated interactions, such as those between 
integer and floating point registers took place in the development of the machine 
specification.  For example, if a MOV instruction was needed by the code generator, but 

MOV was preceded by moves to and from the floating point registers, then instead of doing a 
MOV between integer registers with one instruction, a move would first be done from the 
source integer register to the floating point register, and then from the floating point register 
back to the destination integer register. 
 

instructionset[ SW |LW| MOV]; 
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4 Implementation 

4.1 The ILCG Machine Specification file 

Some examples of the possible code that can appear in an ILCG machine specification were 
given in the Design section.  These displayed the simple case of trying to move a piece of data 
in memory.  The ILCG specification for the Playstation 2 contains instructions to perform all 

of the basic operations in the ILCG specification, including: addition, subtraction, 
multiplication, division, remainder, min, max, shifts left and right, assignments, bitwise 
Boolean operators, and Boolean comparisons.  It also contains instructions to plant labels in 
assembly code for branch statements to jump to, and for implementing condition jumps, i.e., 
IF statements which are used for assembling IF statements in Pascal, and for testing the 
condition of loops to break from a loop when it has finished.  In addition to these operations, 
the following floating point instructions have been written: addition, subtraction, 
multiplication, division, Boolean comparisons, assignment, conversion to and from integers, 
and a number of trigonometric functions. 

 
Before all of these instructions could be defined, the registers and corresponding register sets 
were defined.  First the 32 128-bit MIPS registers were defined.  All of the other integer 
registers were then defined as subtypes of these registers.  A scalar register set was created for 
all of the types given in the ILCG Design section.  In addition to creating a set for each type 
of register, some sets were combined to create sets for instructions which could handle any 
integer sized argument, for example, the Boolean operator AND operates over the lower 64-
bits of a MIPS register regardless of the size of the data in the registers.  This does not cause 
any problems, because the code-generator will generate instructions to only extract the part of 

the register needed once the instruction has completed, for example, it will use SW if it 
required on the lower 32-bits of a register.  Some patterns were also declared which were up 
of a number of types. 
 
The 32 floating point registers were then defined, as well as the floating point control register, 
although it is not used in any instructions.  Aliases of these floating point registers were 
needed which can store 32-bit integers.  This is necessary because the floating point to integer 
convert instruction saves its result to a floating point register, but the code generator would be 
unable to move this result from the floating point register as it would believe that the register 

was only floating point.  By defining the integer alias registers, the type of a floating point 
register can then be an integer, and the move instruction will be successful.  This is somewhat 



 - 59 - 
 

dangerous because the code generator may then start to load integers into floating point 
registers and perform floating point arithmetic on them, in the belief that the arithmetic is 
actually for integers.  Careful use of type casts in the floating point and integer instructions 
has removed this possibility. 
 

Once all of the registers were defined, the addressing modes of the Emotion Engine had to be 
defined.  These addressing modes are using by the code generator to allow instructions to 
accept data from registers as well as memory, and the code generator can insert loads and 
saves to registers from memory where arguments must be loaded or saved to and from 
memory.  The MIPS design does not allow operands for instructions to be present in memory, 
i.e., both must be in registers, or one can be an immediate value, and so the addressing modes 
are very simple of the Emotion Engine.  They are: 

• Offsets from labels 

• Offsets either up or down from registers 

• The contents of a register 

• Offsets from the global pointer 

 
With all of the register, types, and memory addressing modes decaled, it was now possible to 
declare instruction patterns.  Typically, a pattern is needed for each individual instruction, but 
there are cases where many instructions can be generated from a single pattern.  One of these 

cases is the dyadic floating point operations, e.g., addition, subtraction, multiplication, 
division.  It is possible to declare an operation in ILCG which associates a label in ILCG with 
a given ILCG operation, and generate a given symbol when that label is placed in an 
instruction patterns assembly output.  An operation was declared in the machine specification 
for each of the common ILGG operations.  Patterns were then generated for those which have 
something in common, for example, the dyadics mentioned previously, or the MIN and MAX 
instructions. An instruction, for example, RRRieee32 in Figure 4-1, can then take as one of its 
arguments an operations pattern.  In this example, the code generator could then match any 
instruction of the form “register: = register ‘op’ register”, as long as the registers are floating 

point.  The equivalent integer instruction looks very similar but uses integer registers instead 
of the floating point registers. 

 
Figure 4-1 

pattern arithoperator means[add|sub|divide|mul]; 
instruction pattern RRRieee32( arithoperator op, freg r1, freg r2, freg r3) 
        means[r1:=  op(  ^(  r2), ^(  r3))] 
 assembles[op '.s 'r1',' r2 ',' r3]; 
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4.1.1 Implementing floating point math operations 

There are a number of mathematical operations that Vector Pascal allows on floating point 
numbers.  There are: absolute value, cosine, sine, tangent, natural logarithm, and square root.  
There are instructions for both absolute value and square root, so these can be translated 
directly into a single assembly language instruction.  However, there is a C library in PS2 
Linux for executing all of these operations.  The C file in Figure 4-2 was compiled to see how 
the C compiler implements the required operations.  The assembler generated revealed that 

the compiler first converted a floating point number to a double precision floating point 
number, then called the function to accept a double precision number, and then convert the 
result back to a floating point number.  The assembly generated for the sine operation is given 
in Figure 4-5.  This code can almost be copied directly from the assembly output to the ILCG 
machine specification. 

 
Figure 4-2 

 

 
Figure 4-3 

 

l.s     $f12,36($fp) 
jal     fptodp 
move    $4,$2 
move    $5,$3 
jal     sin 
move    $4,$2 
move    $5,$3 

jal     dptofp 
s.s     $f0,32($fp) 

int main() 
{ 
  float a,b; 
  b = 0.5f; 
  a = sin(b); 
  a = cos(b); 

  a = tan(b); 
  a = log(b); 
  return 0; 
} 
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4.1.2 Implementing double precision instructions 

The double precision instructions that have been implemented are the basic operations found 
in Figure 3-11 as well as the floating point math functions.  As there are no instructions for 
double precision numbers, the square root and absolute operations also had to be implemented 
as function calls, whereas for single precision numbers they could use the appropriate 
instructions.  The double precision operations were therefore defined in a very similar way to 
the sine function in Figure 4-5, but instead of translating from a single to double precision 

number and back again, instructions were needed before the function call to translate from 
using one register to represent a double precision number in the machine specification, to 
using two register in C procedure calls.  

Figure 4-4 shows the assembly generated for the instruction to set register $16 to be the sum 
of registers $17 and $18. 
 

Figure 4-4 

 

l.s     $f12,36($fp) 
jal     fptodp 
move    $4,$2 
move    $5,$3 
jal     sin 
move    $4,$2 
move    $5,$3 
jal     dptofp 
s.s     $f0,32($fp) 



 - 62 - 
 

4.1.3 Implementing the multimedia instructions 

The difficult part of using the multimedia instructions on the Playstation 2 is in designing how 
to load and store 128-bits which are not guaranteed to be aligned properly in memory.  This 
issue was covered in the design section.  Assuming the sequence to generate for the load and 
store instructions is known, using the multimedia instructions is not much harder than using 
the general MIPS instructions.  They are declared in much the same way, but use vector typed 
registers instead of the normal typed registers, and they must cast their arguments to their type 

to prevent interference with other vector instructions, or the normal MIPS functions. 

4.1.4 Optimizing the ILCG machine specification 

Throughout development, many test programs have been written and the generated assembly 

code observed by eye.  It is relatively easy to see instructions that are unnecessary, or simply 
the wrong way of performing a certain operation.  The example given earlier in the ILCG 
design section is one, where the instructions were given in the wrong order, and so a MOV 
instruction was inserted into the assembly code when it was not necessary.  Figure 4-5 shows 
another example which copies the value of register $2 to $3, but does so via the floating point 
registers. The optimal code for this sequence is simply “move $3, $2”. 

 
Figure 4-5 

The example given above would be generated if the move to coprocessor 1 (MTC1) 
instruction was ahead of the MOV instruction in the instruction ordering.  It has the 

disadvantage of not only using two instructions, but also takes up a floating point register 
unnecessarily.  If all of the floating point registers were in use when the sequence was 
generated then one of the floating point registers would have had to be saved to the stack, and 
reloaded after the move instructions had completed.  This would add a load and store to the 
instructions executed, and they would also take time to access memory. 

4.1.5 Multimedia optimisations 

The multimedia instructions in the Emotion Engine have been designed to not only operate 
efficiently on vectors of data, but also to move them around in ways necessary to multimedia 
applications.  For example, there are instructions to move fields around within the register in a 
way which could, for example, keep the W field in a graphics vector in the same position, 
while swapping the other fields from X, Y, Z, to Z, Y, X ordering.  A more useful application 
in terms of the Vector Pascal language is to be able to load a single value into a register, and 

have that value copied to all of the fields of a vector.  This is a way to vectorise the operation 

MTC1 $2, $f20 // moves $2 into floating point register $f20 
MFC1 $3, $f20 // moves from $f20 into $3 
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where a value if copied to all of the positions of an array in Vector Pascal.  This would 
currently generate a loop to assign the value to each position in the array, but it is possible to 
use the multimedia operators to allow vectors instructions to reduce the number of loop 
iterations required.  This can be seen in Figure 4-7 where an integer variable is loaded from 
memory, copied into the vector, and then the vector can be saved back to memory if 

necessary, but with all of its fields now assigned to the variables value, which is assumed to 
be 1 here. 

 
Figure 4-6 

This example demonstrates how it is possible to further avoid loops, and increase 
vectorisation of code, even if one of the pieces of data is a scalar variable.  This example may 
not be significantly faster than a loop once, but an equivalent using 16-bit or even 8-bit 

numbers could be much faster than the normal approach.  It should be noted that this is 
currently not possible in Vector Pascal, as the code generator cannot vectorise for code with a 
vector on one side and a scalar on the other, but such a feature may be implemented in a 
future release. 
 

4.2 The EECG Walker subclass 

The EECG.java file contains the Java class for the Walker for the Playstation 2.  The 
important tasks defined in this file are: 

• Implementing procedure call mechanisms from both C and Pascal 

• Overriding getParallelism to define the parallelism available on the Emotion Engine 

• Implementing the assembly and linker methods 

lw $2, 0($sp) 

$3 $2 

1 0 0 0 0 

pextlb $3, $2, $2 1 0 0 1 1 

pextlb $3, $3, $3 1 1 1 1 1 
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The details of the procedure call mechanisms have been covered earlier, where it was 
mentioned that it would be possible for this compiler to guarantee that the stack is never 
moved during execution of a procedures body of code.  When compiling a Vector Pascal 
program, the compiler will call the EECG method for procedure call, which will output some 

code that is standard to all procedures.  It will then instruct the code generator to generate the 
code for the body of the procedure, before outputting some more standard code to restore 
registers, clean up the stack, and exit the procedure.  After the body of code has been 
generated, one of the standard codes placed in the output is an assembly constant telling the 
compiler how much space is needed by the procedure.  A piece of assembly code generated at 
the start of procedure call can use this constant to make enough space for the procedure on the 
stack.  Whenever a procedure is called from within the current procedure, variables will be 
pushed onto the stack, thus moving the stack frame.  However, in the Emotion Engine, due to 
the 128-bit register width, the stack frame must remain a multiple of 16 at all times due to 

alignment restrictions.  This is not an issue when calling other Vector Pascal procedures, since 
they assume an alignment of only 4, but it must be ensured when calling C procedures as it is 
impossible to know whether they will execute correctly if they assume the stack pointer is a 
multiple of 16 and it is not.   
 
In order to fulfil this alignment requirement, all of the places in the code where the stack 
would have been manipulated were replaced with code to add to counters for how much the 
stack pointer should be offset by.  After the procedure has called the code generator on its 
body of code, the maximum amount of stack space required to call the procedure with the 

most arguments will be known, and this can be added onto the stack space already needed by 
the procedure.  A calculation can then be performed to round the stack up to the next multiple 
of 16.  Since GCC will compile the runtime library, and will give the stack in main a value 
which is a multiple of 16, the stack will have a multiple of 16 before any Pascal code is 
called.  By ensuring that the stack is always subtracted by multiples of 16, the Vector Pascal 
compiler can guarantee that it will always be a multiple of 16 when calling other procedures. 
 
It was the necessary to find all the locations in the code where a variable would have pushed 
to the stack.  This would typically entail subtracting 4 from the stack, and then saving the 

variable to “0($sp)”, i.e., an offset of zero from the stack pointer.  However, the stack pointer 
cannot be manipulated in this way.  There are two solutions to this problem.  The first is that 
there are some variables pushed before the stack pointer is changed and so they will know 
their offsets from the old stack pointer.  For example, Figure 4-7 shows the code generated n 



 - 65 - 
 

the original code by the first two pushes onto the stack, which occurs before the stack would 
have been changed to subtract the space necessary for the procedure. 

 
Figure 4-7 

Since it is known that these are always the first two variables to be saved to the stack, their 
offsets from the old stack pointer will always be -4 and -8.  It is therefore possible to replace 
this with the code from Figure 4-8.  Note that another advantage of getting the compiler to 
calculate all of the offsets is that the stack will now only be manipulated once for each 
procedure call, and not once for each variable pushed in each procedure call.  This will result 
is far fewer instructions being executed when calling some procedures. 
 

 
Figure 4-8 

 

The other method to save variables is to generate new instances of the ILCG Variable class, 
which will automatically be allocated space by the current procedures local store allocator and 
will also automatically be given an offset from the frame pointer.  A small ILCG tree can then 
be generated which creates a statement to assign the register which needs to be saved to 
memory.  The code generator will then generate the necessary instructions to save the 
variable.  A reverse of this statement can be used at a later point to restore the variable from 
the same location in memory back to its register.  This is the method used to save registers, 
whereby an array of all the registers to save can be created.  A loop can then cycle through the 
registers to save, create a variable for each of them, and attach a statement to the tree to save 

and restore the register at the appropriate points.  Since all the statements to save the registers 
can be part of a larger statement, it is possible only call the code generator once, and not once 
for each register.   
 
This mechanism for saving registers can also be used to reserve space for the global pointer.  
This must be saved using the cprestore pseudo instruction as explained in the section on the 
Global Offset Table.  This will not be saved by an explicitly declared store instruction as are 
the other registers, as the cprestore instruction will save it to the offset it is given.  However, it 
is necessary to calculate the offset for the memory location global pointer will occupy.  A 

sw $31, -4($sp) 
sw $fp, -8($fp) 

addi $sp, $sp, -4 
sw $31, 0($sp) 
addi $sp, $sp, -4 
sw $fp, 0($fp) 
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variable must be declared for the global pointer even though it will not be used by the code 
generator to save to the stack.  However, creating a variable for the global pointer will have 
the effect of causing the procedure to allocate space for the global pointer.  The offset from 
the frame pointer to this space can then be found by accessing the offset field of the variable 
instance.  A was seen previously, this offset cannot be negative, which it is from the frame 

pointer.  However, at the point in the code where the cprestore is generated, the stack will 
have been subtracted by the amount necessary for the procedure.  By simply adding the offset 
to the reserved space, the positive offset value from the stack pointer will be generated.  This 
value can then be passed to cprestore to cause it to save and restore the global pointer from 
the correct location in memory. 
 

4.2.1 Parallelism 

The parallelism for the Playstation 2 can be found from the instruction set, for example, there 
are instructions to operate on 16 8-bit numbers at a time.  The parallelism returned from the 
getParallelism method is given in Figure 4-9.  Types not in the list have a parallelism of 1 
returned. 

Length of Type Parallelism 

8-bit integer 18 

16-bit integer 8 

32-bit integer 4 

32-bit float 4 
Figure 4-9 

 

4.3 Executing the compiler 

The Vector Pascal compiler cannot be executed on the Playstation 2.  This is because the 
Playstation 2 does not have a Java run-time environment, which is an essential piece of 
software the platform must provide for the compiler to run.  This can be solved by creating a 

cross compiler environment in which the Vector Pascal compiler in run on a machine with 
Java installed, in this case a Linux machine, and the compiler output can be transferred to the 
Playstation 2 and compiled and run there.  It would be possible to generate the assembly file 
for a Vector Pascal program and pass this to the Playstation 2 to be assembled.  However, the 
include statements in the file would contain addresses of folders on the Linux machine, and 
not on the Playstation 2.  The solution to this is to assemble the file on the Linux machine.  It 
is possible to get the source code for the binary utilities, including the assembler, from Disc 2 
of the Linux distribution for the Playstation 2.  This source can then be compiled on the Linux 
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PC, thus allowing MIPS assembly files to be assembled on a machine other than the 
Playstation 2. 
 
Once the object file has been created, it only has to be linked with the C runtime library, and 
it will then be executable on the Playstation 2.  However, it was not possible to compile the 

GCC compiler on the Linux PC, as it required the PS2 Linux standard C libraries which were 
only on the Playstation 2 hardware.  These could have been transferred to the Linux PC, but 
due to the large amount of disc space they require, a different solution as necessary.  Had the 
compiler been available on the Linux PC, the executable fie would still have had to be 
transferred to the Playstation 2 to be executed.  It is possible to instead transfer the object file 
output from the assembler.  Although this has not been linked with the run-time library, the 
run-time library C file can simply be transferred to the Playstation 2, and then both it and the 
assembly output can be linked natively.  It is then possible to execute the linker output on the 
Playstation 2.  Appendix A includes a Perl script used to execute the conformance tests.  This 

script shows the different parts of the build process and the commands necessary to automate 
the compiling process. 

4.3.1 Running the assembler 

The assembler for the Playstation 2 is distributed with a number of patches to make it work 
with the Playstation 2 instruction set.  However, the default options for the assembler do not 
build for the Playstation 2, but instead for standard MIPS processors.  This causes the 
assembler to fail, and a number of errors messages displayed saying that instructions which 
are known to be present in the hardware are not supported by the assembler.  This can be 
overcome by passing the “-m5900” argument to the assembler.  This tells the assembler to use 
the Playstation 2 instruction set, as the Playstation 2’s processor is known as the R5900. 
 

4.3.2 Running the C compiler 

The GCC compiler on the Playstation 2 is used to compile the run time library, and link it 

with the object file generated by the assembler.  The GCC program builds for the R5900 by 
default and so the argument passed to the compiler is not necessary here.  However, both the 
floating point math operations, and all of the double precision operations use the standard C 
math library.  The compiler will generate error messages if this is not linked with the object 
file, as there will be undefined references to math functions implemented in the library.  By 
passing the “-lm” argument to the GCC program, the math library will be included by the 
linker.   
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The other argument which must be passed to the compiler is “-DEECG” which defines the 
symbol “EECG” in the run time library C file.  This is necessary because the run-time library 
contains stringcompare and stringassign methods which are by default commented out.  These 
methods are instead implemented in a macro file containing a hand coded assembly 
implementation. However, the macro file is written for the Pentium, and so is not compatible 

with the Playstation 2.  The solution to this was to uncomment the implementations of these 
procedures in the run time library, but surround them with “#ifdef EECG” codes.  This will 
cause them to only be compiled into the run-time library when EECG in not defined, i.e., on 
all the platforms other than the Playstation 2. 
 

4.4 Changes made to the Vector Pascal Compiler 

During development there were a number of issues raised when writing the machine 
specification.  One of these was the limit of 64 registers in a specification.  This limit existed 

because the compiler used a 64-bit integer in Java to store a bit for every register in use.  This 
was used to store the registers in use before sequences of instructions were generated.  The 
compiler could then check future sequences and if the sequence was the same and the 
registers in use were the same, then the compiler would not have to call the code generator for 
the sequence, and could just output the from the saved sequence. 
 
This limit of 64 registers was easily exceeded by the Playstation 2 specification as there were 
32 integer registers and 32 floating point registers.  Once the HI and LO, control, and parallel 
registers were added as well, the specification had close to 100 registers.  The 64-bit number 

in the compiler was replaced with an instance of the Java BitSet class, which, as before, 
allowed for a bit to be set for every register in use.  When the compiler needed to know what 
registers were in use, the BitSet was turned into a string, and returned to the compiler. 
 

4.5 Optimizing operations 

The following sections discuss some of the possible ways of implementing various operations 
in the MIPS hardware, while trying to use the fewest instructions possible.  These include 
ways of implementing all of the comparison operators for all the types supported by the 

Vector Pascal language.  The following example shows the usage of the MIN operator in 
Vector Pascal and presents a number of ways of implementing this instruction in hardware. 
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Figure 4-10 

On many processors, Figure 4-10 would have to be translated into a conditional statement 
which will include jump statements when written in assembly language.  Jump statements 
cause processor execution to halt while it loads the new location to start processing from, and 
since a processor cannot do any useful work while halted, it is an expensive operation.  Figure 
4-11 presents a number of different ways to encode the MIN operator using the Playstation 2 
instruction set.  Assume that the identifiers A, B, and C are the registers containing the 
respective variables. 

Conditional with jumps Conditional move Built in MIN instruction 

slt temp, B, C 
beq $0, temp, else_label 
move A, B 
j end_label 
else_label: 
move A, C 
end_label: 

slt temp, B, C 
movn A, B, temp 
movz A, C, temp 

PMINW A, B, C 

Figure 4-11 

The conditional jumps algorithm above implements the minimum operator by ensuring that 
only one of the move instructions can ever be executed each time that code is run.  It does this 

by first comparing the B and C values and setting a temporary register to be one if B is less 
than C, or zero otherwise.  The beq instruction then branches to the else code if the temporary 
values was zero, i.e., C was smaller than B, and the else code sets A to be C.  If the temporary 
value was one, then A is set to B, and a jump is made to the end of the conditional.  The jump 
is necessary because the processor executes instructions in the order they appear in the code, 
and if the jump to the end is not made, then the else branch would be executed, thus setting A 
to be C no matter what the values of B and C are. 
 

PROGRAM minimum; 
VAR  
 a, b, c : integer; 
BEGIN 
 a := b min c; 

END. 
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The conditional move code relies on two instructions which will only move a value if their 
condition is set.  The code starts the same as the conditional jump code, by first setting a 
temporary value depending on whether B or C is smaller.  The two remaining lines of 
assembly are functionally the same as the conditional jump ode, but execute without the need 
for jump instructions.  The jumps are not necessary because only one of the instructions can 

meet the condition, so only one move will ever take place.  The movn instruction will only 
move B into A if the temporary value is not zero, which is correct since the temporary value 
will be one if B is less than C and should be stored in A.  The movz instruction is the opposite 
in that if moves C into A if the temporary value is zero. 
 
The final code uses a MIN instruction which is built into the processor, and should therefore 
be the fastest of all the methods available for calculating the minimum value.  It is possible to 
use the values for the throughput and latency of each of the instructions in the three versions 
of code to work out which is fastest, and by what amount. 

 
The latency of an instruction is the amount of time it takes for that instruction to execute 
(Comp Design and Org).  It can be thought of as a good measure for the theoretical 
performance of a piece of code, but run-time factors like memory access times could make the 
code execute much slower.  The latency for all of the instructions used in the above examples 
is 1.  This means that the fastest code will be the one that executes the fewest instructions, i.e., 
the code using the built in PMINW instruction.  The latency for each version of code is 
therefore 4, 3, and 1 processor cycles.  However, the code using conditional jumps will cause 
the processor pipeline to halt, and since the pipeline is 6 cycles long it incurs another 6 cycles 

of execution time, thus making it take at least 10 cycles.  It can therefore be seen that the 
conditional jumps version is around three times slower than the conditional moves version, 
which is itself 3 times slower than using the built in instruction.  The built in instruction also 
has the advantage of being able to do four MIN operations at once, and so its theoretical speed 
advantage if used across vectors of integers would be another four times greater than it 
already is in this example.   
 
This is a somewhat fabricated example of a possible speed up given the addition of a built in 
minimum instruction to the Playstation 2 processor.  A more important point it displays is the 

advantage of trying to avoid using jumps as much as possible.  It is generally not possible to 
avoid using jumps in normal code, but as can be seen from the conditional moves way of 
implementing the minimum operator, it is sometimes possible to avoid jumps when writing 
assembly for specific operations. 
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4.6 Comparison Operators 

Symbol Description 

A <> B True if A is not equal to B 

A = B True if A is equal to B 

A > B True if A is greater than B 

A < B True if A is less than B 

A >= B True if A is greater than or equal to B 

A <= B True if A is less than or equal to B 
Figure 4-12 

Figure 4-12 lists all of the Boolean comparison operators.  The Playstation 2 contains an 
instruction to compare the values in two registers called “Set on Less Than” (SLT).  The SLT 
instruction compares scalars of 64-bits in size so it is possible to implement all of the above 
comparison operators for numbers up to 64-bits with the SLT instruction.  However, the 
instruction returns a 1 if a comparison is true, and a 0 if it is false, but the compiler uses the 
values -1 (all 1’s in binary) for true, and 0 for false.  This means that a true represented by a 1 
must be mapped onto a true represented by a -1.  This would be possible using a conditional 

statement, similar to the example of implementing MIN given earlier.  However, as with 
MIN, it would be preferable to do this without using a conditional since that would cause the 
processor to jump, and thus result in an expensive stall of the pipeline.  The difficulty in 
implementing these operations without a conditional is that a 1 must be mapped to a -1, but 
without changing the 0, since false is represented by a 0 in both the processor and the 
compiler.  This means that a simple operation like taking the result and subtracting 2 from it, 
which would be a valid way to turn 1 to -1, will not work, since that same operation would 
change the value of false from 0.  This is further complicated because the only instruction that 
can do a comparison on the Playstation 2 can only check if the value in one register is less 

than the value in another register, but comparisons are also needed for equality, inequality, 
and values being greater than one another. 
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4.6.1 Less than (<) 

This is the simplest of all the operators to translate into a sequence of assembly language 
instructions since all that has to be done is to take the result of the SLT instruction and map 
the true value of 1 to a -1.  It was necessary to find a way to map a 1 to a -1, while leaving the 
value of 0 unchanged.  Instead of looking at this as leaving the 0 unchanged, it can instead be 
seen as having 2 mappings, which both must be achieved using the same function.   
 

 
Figure 4-13 

In this case the mapping is quite simple, since simply negating the left hand side will give the 
right hand side.  In fact, it will be seen in the other examples that this mapping applies to all 
cases where we want to map the true and false values in the Playstation 2 directly to those in 
the code.  There are cases where we need to map false to true, and true to false, which will be 
given later.  Now that the mapping had been found, all that remains is to implement it is 
assembly code.  Unfortunately there is no negation instruction in the processor, however, the 
first register ($0) always contains 0 and subtracting from 0 is the same as negation.  Assuming 
that we want a register B to be the result of X < Y, the assembly necessary to achieve this is 
given below. 

 
Given this simple code, it is possible to formally assess its correctness, since either X is less 
than Y before the comparison, or it is equal to or greater than Y.  Figure 4-14 shows that 
given any values in the X and Y registers, the value in the B register will be correct after the 
end of the above sequence of instructions. 

X < Y Value in B after SLT Value after SUB Result 

True 0001 1111 True 

False 0000 0000 False 
Figure 4-14 

0 0 

1 -1 

 

f 

 
 

SLT B, X, Y 
SUB B, $0, B 
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4.6.2 Greater than (>) 

The greater than operation is simply a rearrangement of the less than operation, and so if we 
wanted the result of X > Y we can simply use the less than operation but instead of checking 
for X < Y, we check for Y < X. 

4.6.3 Equal to (=) 

Since there is no instruction for comparing equality, we have to look at the possible values for 
X and Y, and find a way to implement equality using only the SLT instruction. 

X < Y X > Y X = Y 

False True False 

True False False 

False False True 
Figure 4-15 

As can be seen from Figure 4-15, there are only three possible cases for the results of X < Y, 
or X > Y to take.  They can either individually each be true, or both can be false.  It is 

mathematically impossible for both to be true simultaneously.  If X is not greater than Y then 
it must be less than or equal to Y, and similarly if Y is not greater than X then it must be less 
than or equal to X.  If both of these conditions hold at the same time then it must be the case 
that X and Y are equal.  In this case, if we take the results of X < Y and X > Y and logically 
OR them together, we will get false values where we need true, and true results where we 
need false.  It is then simply a case of finding a new mapping which can map false to true and 
true to false.  

 
Figure 4-16 

 
This mapping can be implemented by subtracting 1 from the left hand side to get the required 

result on the right hand side.   
 
Returning to the equality example, we can now get to a state where we have a Boolean value 
which is the logical OR of two less than comparisons.  This can be implemented directly in 

0 -1 

1 0 

 

f 
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assembly language, and when appended with the above mapping, will result in the Boolean 
value containing the correct result.  Note, there is no subtract immediate instruction in the 
processor, but an add immediate with a negative value achieves the same result.  The 
assembly code to implement B = (X = Y) is given below.  The temp1 and temp2 values are 
used to show that temporary registers are needed here to store parts of the result.  It would be 

possible to use the B register instead of one of the temporary registers. 

 
Figure 4-17 

4.6.4 Not equal to (<>) 

As the name suggests, this is just the negation of the equality operator.  It would be possible 
to take result of the equality operator, negate it, and have a valid result.  However, this is 
inefficient since the equality operator used the second mapping to map true to false and false 
to true.  Negating the result of the equality operator is logically the same as using the first 
mapping instead of the second since second does essentially negate the result whereas the first 
does not.  The assembly in Figure 4-18 below implements B = (X <> Y). 

 
Figure 4-18 

4.6.5 Less than or equal to (<=) 

Similar to the inequality operator, this operator can be implemented using the negation of one 
of the other operators, in this case, the greater than operator.  Since the greater than operator 
uses the first mapping to achieve its result, we can implement less than or equal to using the 

same code, but with the second mapping instead of the first. 

 
Figure 4-19 

SLT B, X, Y 
ADDI B, B, -1 

SLT temp1, X, Y 
SLT temp2, Y, X 
OR B, temp1, temp2 

SUB B, $0, B 

SLT temp1, X, Y 

SLT temp2, Y, X 
OR B, temp1, temp2 
ADDI B, B, -1 
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4.6.6 Greater than or equal to (>=) 

Similar to less than or equal to, this is just the negation of less than and is given by the 
following code. 

 
Figure 4-20 

4.7 Floating point comparison operators 

As with scalar numbers, we also need to perform the same comparisons on floating point 
numbers.  Instead of having a single instruction available for comparisons, which was all that 
was available for scalars, we now have three instructions available to use: 

Instruction Description 

C.EQ.S X, Y 1 if X = Y, 0 otherwise 

C.LE.S X, Y 1 if X <= Y, 0 otherwise 

C.LT.S X, Y 1 if X < Y, 0 otherwise 
Figure 4-21 

The difficulty of performing floating point comparisons no longer lies with having to find 
ways of doing all the operators with only the one instruction, but instead with accessing the 
result of the instruction without branching.  This is because the floating point comparison 
instructions do not set a general purpose register with their result, but instead set a single bit – 

the C bit - in a floating point control register to either one or zero depending on the result of 
the comparison.  There are instructions which can branch depending on whether the value in 
that control bit is a zero or a one, but it would be better to avoid using these. 
 

Bits 31 - 24 C Bits 22-0 

xxxxxxxx 1 or 0 xxxxxxx xxxxxxxx xxxxxxxx 
Figure 4-22 

As Figure 4-22 shows, the C bit is the 23rd bit in the control register (PS2 manual).  The 

purpose of the other bits is not important at this time.  There is an instruction – CFC1 - which 
can transfer the whole control register to a general purpose register.  With the whole control 
register now in a general purpose register, we would now like to have just a one or a zero in 
the least significant bit of the register, and zeros in all the other bits, i.e., we want the register 
to represent the scalar values of zero or one.  This can be achieved by first shifting the register 
right by 23 places, thus moving the C bit to the least significant bit position, and then masking 
out the other bits to zero so that only the value of the least significant bit remains.  This 
masking can be achieved by using the logical AND instruction with a one in each bit position 

SLT B, X, Y 
ADDI B, B, -1 
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where we wish the bit in the source register to remain in the destination register, which in this 
case is just the least significant bit position, thus making the mask the scalar value one.  Once 
the AND instruction has completed, we will have a one or a zero in the general purpose 
register, and can simply use the first mask from the scalar comparisons to map the scalar 1 to 
-1, and 0 to 0. 

4.7.1 Less than, equal to, or less than equal to 

These there operations all have corresponding instructions to do the comparison directly.  

When the comparison instruction and instructions to extract the C bit have executed, we will 
have a one or a zero, representing true and false respectively.  These instructions then all use 
the first map to get the resultant truth value the compiler expects.  The assembly code for the 
operations B = (X * Y) is given below, where * can be replaced by EQ, LT, or LE for 
equality, less than or equal to, or less than comparisons respectively.  Note that the $31 is the 
assembly code for the floating point control register. 

 
Figure 4-23 

Although this sequence of instructions appears quite long considering it must be generated for 
every floating point comparison, it would still execute quicker than the corresponding code 
using the branch instructions since they would need 6 cycles just for the branch, plus a cycle 
for each additional instruction.  Figure 4-24 shows the contents of the B register after each 
instruction assuming that the C bit is one, i.e., the comparison is true. 

Instruction Value in B register 

CFC1 xxxxxxxx 1xxxxxxx xxxxxxxx xxxxxxxx 

SRL 00000000 00000000 0000000x xxxxxxx1 

ANDI 00000000 00000000 00000000 00000001 

SUB 11111111 11111111 11111111 11111111 
Figure 4-24 

This demonstrates that if the comparison is true, then the result will be a register full of 1’s.  
The corresponding table for a false comparison is given in Figure 4-25. 

Instruction Value in B register 

CFC1 xxxxxxxx 0xxxxxxx xxxxxxxx xxxxxxxx 

SRL 00000000 00000000 0000000x xxxxxxx0 

C.*.S X, Y 
CFC1 B, $31 
SRL B, B, 23 
ANDI B, B, 1 
SUB B, $0, B 
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ANDI 00000000 00000000 00000000 00000000 

SUB 00000000 00000000 00000000 00000000 
Figure 4-25 

Although this table is mostly full of zero’s and appears to show little about what the compiler 

does for floating point comparisons, it is important because it demonstrates that the compiler 
can generate correct true and false values using exactly the same sequence of instructions. 

4.7.2 Greater than, not equal to, or greater than and equal to 

These three operators are all negations of the other three operators, for example, (X >= Y) is 
the same as NOT (X < Y).  This means that the assembly code from above can be used, but 
with just one modification, which is that we must now negate the result.  This is because a 
result of true for (X < Y) would correspond to a value of false for (X >= Y).  Looking back to 
the scalar comparisons, we had a similar situation there, and it was solved by using the second 
mapping for truth values, instead of the first.  The assembly code for the remaining three 
comparisons is given in Figure 4-26 below, where * can again be replaced by EQ, LT, or LE, 
but now for inequality, greater than or equal to, and greater than respectively. 

 
Figure 4-26 

4.8 Double precision floating point comparisons 

In the design section, we saw that the Playstation 2 has no double precision floating point 
unit, and so all operations on these numbers must be emulated.  One of the functions that have 
been written supports comparing doubles and is called dpcmp.  It is passed two double 
precision numbers and will return either a -1, 0 or 1 depending on if the first number is 
respectively less than, equal to, or greater than the second.  This function can therefore be 

used to implement all of the comparison operators on double precision numbers.   
 
The first stage in using this function was to realise that it can always return one of three 
results.  The results must be grouped together with two of the results in one group, and the 
remaining result in another group.  Each group corresponds to either the true, or false values 
for the operator that is being implemented, and we must find a sequence of instructions that 
will eventually give us the required true or false values given these possible outputs. 

C.*.S X, Y 

CFC1 B, $31 
SRL B, B, 23 
ANDI B, B, 1 
ADDI B, B, -1 
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4.8.1 Less than (<) 

To implement X < Y, the dpcmp function is called with the arguments X and Y and will 
return one of the three following outcomes: 

1. if X < Y, then a -1 will be returned, 
2. if X = Y then a 0 will be returned and, 
3. if X > Y then a 1 will be returned. 

 

It is only the case where -1 is returned that the result should be true and so this shall make up 
the first group.  The second group is made up of the cases where 0 or 1 is returned.  A 
sequence of instructions must now be found which will eventually give us a -1 for all numbers 
in the first group, and a 0 for all numbers in the second group.  This can again be seen as a 
mapping from a set of inputs, to their corresponding outputs.  The mapping for this operator is 
given below.  The mappings for all the other operators are very similar and shall not be given. 

 
Figure 4-27 

It is possible to implement this mapping using a single instruction – shift right arithmetic 
(SRA).  This shifts the lower 32 bits of the register right by a given number of places, 
inserting the sign bit (bit 31) into the rightmost positions of the resultant number.  This will 

suitably implement the above mapping because the -1 is a register full of 1’s which will 
remain so after the shift, and similarly a register full of zeros will also be full of zeros after the 
shift.  Only a register containing the integer value one would be affected since the one would 
be lost when shifted right, and the sign bit is zero, so only zeros would fill the rightmost 
positions of the resultant register.  This would cause the one to be turned into a zero as 
needed.  This can be seen in the following table which demonstrates this mapping on 4 bit 
numbers. 
 
 

0 0 

1 0 

 

f 

 
 
 
 

-1 -1 
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Value Bit representation Sign bit After shift right by 1 Result 

-1 1111 1 1111 -1 

0 0000 0 0000 0 

1 0001 0 0000 0 
Figure 4-28 

This mapping has successfully grouped the two false values together, while leaving the single 
true value in its own group.  It has also generated the final truth values which were needed 
and so no further instructions are necessary here to get those final values.  It will be seen later 
that some of the other operators require more instructions to get the final truth values from 
their groups. 

4.8.2 Equal to (=) 

For the equality operator, only a result of zero from dpcmp should generate a true result.  The 

results of -1 and 1 should both give false.  Both 1 and -1 can be distinguished from 0 by their 
value of 1 in the least significant bit position which can be used to group them together.  By 
using the logical AND of the result and 1, the other bit positions are masked out and only the 
least significant bit position remains.  This causes both -1 and 1 to become 1, while 0 remains 
0.  The final truth values are then found by subtracting 1 from all the results. 

dpcmp result Bit representation After AND 1 After SUB of 1 Result 

-1 1111 0001 0000 0 

0 0000 0000 1111 -1 

1 0001 0001 0000 0 
Figure 4-29 

4.8.3 Greater than (>) 

The dpcmp function will return a 1 if the first argument is greater than the second.  It is this 
case that should generate a true result, whereas -1 and 0 should generate false.  Unlike the 
“less than” case, there is no simple similarity between the -1 and 0 results.  However, if we 
subtract 1 from all the results, then the -1 becomes -2, 0 becomes -1 and 1 becomes 0.  There 
is now a similarity between the two entries to be grouped together since they both contains 

1’s.  Shifting right by one then causes both the false results to be -1, and the true result to be 
0.  These are the exact opposite of what is required, but using the NOT operator, the correct 
results are then given. 
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dpcmp Bit representation After SUB of 1 Shift right by 1 NOT Result 

-1 1111 1110 1111 0000 0 

0 0000 1111 1111 0000 0 

1 0001 0000 0000 1111 -1 
Figure 4-30 

4.8.4 Less than or equal to (<=) 

In the last case, when dealing with the greater than operator, the results had to be inverted 
because the true values were false, and the false values were really true.  The less than or 
equal to operator can instead be written as the NOT of the greater than operator. This means 
that by taking the sequence of operations to get the greater than result and adding another 
NOT to the end of it, the correct results for less than or equal to will be generated.  However, 
there is already a NOT at the end of the sequence and applying the NOT operator twice has 

the same effect as not applying it at all.  Therefore, the sequence for this operator is simply 
the same sequence as for the previous operator, but without the application of NOT at the end. 



 - 81 - 
 

 

dpcmp Bit representation After SUB of 1 After Shift right by 1 Result 

-1 1111 1110 1111 0 

0 0000 1111 1111 0 

1 0001 0000 0000 -1 
Figure 4-31 

4.8.5 Greater than or equal to (>=) 

Similar to the last case, this operator can be written as the NOT of the less than operator.  In 
the less than case, to group the results together, a simple shift right by 1 was used which gave 
the correct results.  The sequence for this operator can be generated by taking the shift right 
by 1, and applying the NOT operator afterwards. 

Value Bit representation After shift right by 1 NOT Result 

-1 1111 1111 0000 0 

0 0000 0000 1111 -1 

1 0001 0000 1111 -1 
Figure 4-32 

4.8.6 Not equal to (<>) 

It is also possible to encode this operator by applying a NOT to the result of the equality 
operators sequence of instructions.  However, this would be inefficient as it is possible to 

encode inequality with the same number of instructions as equality.  The first stage of equality 
used a mask to zero out all but the least significant bits of each result. This successfully 
grouped the results together, into those which should be true and false, with values 0 and 1 
respectively.  These were not the correct truth values, but the application of one of the 
mappings from the scalar comparisons resulted in the correct truth values.  In the section 
earlier on scalar comparisons, it was noted that to get the opposite truth values, the other 
mapping could be applied instead.  In this case, the first mapping was the subtraction of 1, 
however, if instead the results are subtracted from 0, the correct truth values will be output.  It 
is this substitution of mappings that makes it possible to perform inequality on double 

precision numbers in the same number of instructions as equality. 

dpcmp result Bit representation After AND 1 After SUB from 0 Result 

-1 1111 0001 1111 -1 

0 0000 0000 0000 0 

1 0001 0001 1111 -1 
Figure 4-33 
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5 Testing 

There were numerous tests run during the course of this project, including: 

• Writing small C programs to see the structure of the assembly generated.  This 

revealed the need for the cpload and cprestore instructions which save and restore the 
global pointer. 

• Writing C program to see how parameters are passed. 

• Writing Vector Pascal programs and manually looking at the assembly output.  This 
was done to ensure that the assembly was valid, and was correct.  It also illustrated 
cases where valid, but useless instructions were bring generated, which led to 

instructions being changed and reordered to remove as many of the useless 
instructions as possible. 

• Testing running programs on the Playstation 2, and if the program generated a 

segmentation fault, using the gdb debugger to analyse the code and fix the problem it 
encountered. 

• Compiling all 221 Pascal conformance tests using the Playstation 2 specification in 
Vector Pascal. 

• Altering the machine specification if any programs failed to compile for the Emotion 
Engine, but compiled successfully for the Pentium. 

• Running all of the conformance tests which compiled. 

 
The most significant results from testing are those generated by the ISO conformance tests.  
Since there are 221 tests, it is infeasible to run them all manually so a Perl script was created 
which would compile each test, run it, and pipe the output to a results file for future 
inspection.  Appendix A contains the Perl script used, and a table of the results.  The same 

tests were performed on the Pentium platform as well.  The main results are: 

• Of the 221 tests, 73 failed to compile 

• Of the 148 remaining tests, 80 passed the conformance tests 

• 23 conformance tests outputted a FAIL 

• 40 tests failed to output to the screen 

• 1 test was passed on the Playstation 2 which failed on the Pentium 4 

• 12 tests were failed on the Playstation 2 which passed on the Pentium 4 

• 31 tests which generated no output on the Playstation 2 generated output on the 

Pentium 4 
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These tests demonstrate the successful implementation of many of the issues involved in 
porting the compiler, but most importantly, since output is being generated, the procedure call 
mechanism is working correctly.  In the cases where no output was being generated, it is 
possible that the assembly was incorrect, or there may be mistakes in the machine 
specification which cause assembly to not be generated, but still allow the compiler to exit 

successfully. 
 
Tests were also generated throughout development to check if basic operations were working, 
for example, Figure 5-1 shows a Vector Pascal program to test the basic double precision 
operators.  The output from this program is given in Figure 5-2. 

 
Figure 5-1 

 

 
Figure 5-2 

 
In addition to testing double precision operations, programs small programs were written to 
test the basic multimedia instructions.  These were declared to perform addition, subtraction, 

multiplication, and assignments of 128-bit vectors.  Appendices B1, B2, and B3 list the source 
programs and results for unsigned 8-bit, signed 16-bit, and signed 32-bit vectors respectively. 
 

20000.000499999998 
20001.500499999998 
40000.000999999997 
19997.000499999998 
6666.666833333333 

program dpops; 
var e,f : double; 
begin 
 e := 20000.0005; 
 writeln(e); 
 f := e + 1.5; 
 writeln(f); 
 f := e * 2.0; 
 writeln(f); 
 f := e - 3.0; 
 writeln(f); 
 f := e / 3.0; 
 writeln(f);} 
end. 
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6 Current status 

Currently, the port of the Vector Pascal compiler to the Playstation 2 has been shown to 
function correctly for a large number of the conformance tests, and has produced working 
output for floating point and double precision instructions, as well as for the results of some 
integer vector operations.  The compiler and its source code is being released to the open 
source community to allow them to develop it further if they wish to do so.  The complete 

compiler with source code and this project report will be compressed and stored on the Vector 
Pascal website for download by anyone who wishes to use it.  The following message was 
posted on the announcements board on the Playstation 2 Linux site. 
 
“ 
To the Playstation 2 Linux community, 
 
I have just completed my final year computing project at the University of Glasgow and 
would like to announce its release to the open source community.  My project involved 

porting an existing compiler for a language called Vector Pascal to the Playstation 2.  This 
language is an extension of Pascal which automatically generates parallel instructions for 
operations given on arrays.  It currently supports most of the MIPS core instruction set, the 
floating point unit, and some of the multimedia instructions.  In the future, the compiler may 
even support the vector units in micro mode. 
 
The site for the compiler is 
http://www.dcs.gla.ac.uk/~wpc/reports/compilers/compilerindex/x25.html where a link will is 
available for you to download it. 

 
Regards, 
Peter Cooper 
“ 
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7 Future Improvements 

The first improvement which should be made to this project is to generate test programs to 
fully test all of the instructions in the Emotion Engine machine specification.  An analysis of 
the programs which failed the conformance tests should be done to make sure the failures are 
not due to the Emotion Engine specification.  More importantly, the programs which ran the 
conformance tests but failed to output should be debugged to find out why no output was 

generated.  The most obvious future improvement in terms of performance gained is the 
addition of code to execute instructions on the vector units.  The macro mode registers and 
some of the common instructions have been defined, an generate what appears to be correct 
code, but which fails during execution.  Fixing this code to make macro mode work would 
give a substantial increase in performance in code executing on the Playtation 2.  Defining 
code to work on the either vector unit in micro mode is far mode difficult as they have their 
own data and instruction memories which must be given the appropriate information.  The 
ILCG language currently does not support have more than one physical memory, so at 
present, interacting with the vector units cannot be done at the machine specification level. 

However, an extension proposed by Dr Paul Cockshott to allow units in Pascal to be compiled 
to different processors will allow an implementation of the vector units to be produced. 
 

7.1 Compiling units to different platforms 

In the current version of Vector Pascal, there is no way to compile code to the vector units, as 
they have different physical memory from the main core.  Also, it is impractical to allow parts 
of a source file to be compiled to one processor, and other parts to another processor, since 
there would be global and nested variables visible to both machines which would cause 

problems with synchronisation, i.e., ensuring that both processors can see the same value for 
these variables.  In addition to this, the vector units on the Playstation 2 have a very limited 
amount of memory, and if they had to store all variables, even if they did not need them, or 
even could not operate on them, this would quickly fill up their data memory. 
 
The proposed extension would make use of the ability for Pascal programs to include units 
which are just like a library in C and contain functions the program needs to access.  If a unit 
was written to only use types and instructions available to the vector unit, then it would be 
possible to compile that unit in Vector Pascal – assuming a suitable machine description has 

been written of course – and then the unit could be loaded into the instruction memory on the 
Playstation 2.  The unit could define functions and procedures which are visible to the 
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program which includes it.  In a typical unit, calls to these functions would be executed in the 
same way as a call to a function in the same file, i.e., parameters are pushed onto the stack, 
the function is called, and the result is retrieved from the result register.  When calling a 
function in a different physical memory from the caller, the caller would have to transfer the 
parameters to the memory of the other processor, and then send a signal to the processor to 

start execution of the called function, and finally copy the result back from the memory in the 
other processor where the result was saved to.  One possible way to do this would be to define 
an interface between processors. 
 

7.1.1 Defining an interface between different processors 

When a unit is included in a Vector Pascal program, the assembly output of the program will 
contain a number of include statements – one for each unit included, plus the inclusion of the 
default system unit, and a macro file if one is necessary.  If the unit has been compiled to a 
different target platform than the program, then the assembly for the program and the nit will 
be incompatible and so will raise assembler errors.  It is therefore undesirable to have the 
program include the assembly for any units not on the same platform.  It would be possible to 

write interface code which can search for these include statements for different platforms, and 
substitute them for an include to an interface file.  This interface file would have to have 
functions defined which use the same arguments and labels as those defined in the unit, but 
would be written in the language of the programs target platform and so could be included 
successfully by the assembler.  The functions in the interface file would then contain code to 
transfer data to and from the units’ functions, and call the units functions. 
 

7.1.2 Interfacing the Emotion Engine and Vector Units 

 
Figure 7-1 

 

program ee; 
uses floatops:apu[0]; 
var 
 A, B, C: array [0..3] OF real; 
begin 
 a := fpadd(b,c); 
end; 
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Figure 7-1 gives an example of a program which defines three arrays of 4 floats.  It will be 
assumed that this file will be compiled to the Emotion Engine (EE) and that the floatops unit 
will be compiled to Vector Unit 0 (VU0).  The important line is the second which declares 
this program to use the unit called floatops, and which wants this unit to be compiled to the 
platform with apu 0.  The apu is an argument that will be passed to the compiler, for example, 

“apu0=VU0” would tell the compiler that any units with apu equal to 0 should be compiled to 
vector unit 0.  At this stage, the compiler could check to ensure that a suitable interface has 
been defined between the Emotion Engine platform the program will be compiled to and the 
Vector Unit 0 platform the floatops unit will be compiled to.   
 
The first step the compiler would take to compile the above code is to compile floatops to the 
VU0 target.  When a program or unit is compiled, unique labels are inserted into the 
assembler code to identify each function.  A call to a function will not use the name of the 
function in assembler, but instead the unique label for that function.  When a unit is compiled, 

an mpu file is created for that unit.  This is a serialized version of the ILCG tree representing 
that unit and contains all of the function labels, and the function arguments for that unit.  It 
also contains any declared types or constants that programs including the unit may wish to 
use.  Once the units for Figure 7-1 have been compiled, the program itself will be compiled.  
All code will be compiled as normal and the code generator does not have to take any special 
steps to distinguish code intended to call different platforms.  The call to fpadd above would 
be generated as normal, with the parameters B and C passed on the stack, and a JAL 
instruction inserted to jump to the label for fpadd as defined in the mpu file for the floatops 
unit. 

 
Once the assembler output has been generated for each of the units and the above program, 
the interface code could be called.  This would generate as assembler file written for the 
Emotion Engine and would contain a function for each of the functions in the floatops unit.  
The functions in the interface would be given the same labels as those in the mpu file for 
floatops as this will then cause the assembler to jump to the interface versions of the functions 
when the main program tries to call these functions.  This may raise some confusion, as there 
would then be a function present in the unit, and in the assembly code interface with the same 
label.  One possible solution to this is to have all functions append their platform to the end of 

labels in the same way that their platform is appended to the name of the assembly output file.  
Each function in the interface would take its parameters and transfer them to Vector Unit 0.  
This can be done using the malloc procedure defined in C, or as covered in the VIF section, 
VIF codes can be used to instruct the DMA controller to transfer data from the location in 
memory where the parameters have been passed, to a location in VU0 data memory for that 
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parameter.  Since it is only possible to transfer to a vector unit when it is not running, the 
interface to the unit can place the arguments in any locations in VU0 data memory, so long as 
it does not put parameters in the same memory locations, and defines a suitable place for the 
vector unit to place its results. 
 

It is possible that as well as transferring the data to the vector unit, the instructions may also 
have to be passed.  A function could be written to pass the instructions when the initialisation 
code for the floatops unit is called, but the instruction memory in the Vector Units is small, 
and it may not be possible to hold all the instructions for a unit in the micro memory at the 
same time. 
 
Once the data has been loaded and the instructions are contained in micro memory, the vector 
unit must be instructed to start execution.  There are a number of ways to do this, which have 
been covered earlier in the section on the Vector Units. The only way which can start either 

Vector Unit is the use of a VIF instruction called MSCAL.  This can be passed the address of 
the first instruction to execute in micro memory, and will cause the vector unit to start 
execution at that address.  For this to be possible, the addresses of the vector unit functions 
must be known.  It may be possible to calculate these before execution, or the function to be 
executed could just always be loaded into address 0. 
 
Once the interface assembly code has been generated, the interface generator can search the 
assembly file for the main program for the include statement for the unit and platform it has 
been designed to interface with.  It can substitute this include line for one to include its own 

interface assembly code that it has generated.  When the main program is then assembled, it 
will include the interface and will have code to suitably call the unit it uses.  The only issue 
remaining is how to get the code from the object file for the unit into memory for the main 
program.  There are two ways of doing this on the Playstation 2: 

• Sony submitted a library of code as part of their Vector Unit competition which 

included methods to load a compiled vector unit object file and put it in memory [24] 

• It is possible to strip the vector unit object file of any header code to get just the 

instructions.  These can then be attached to the object file generated for the main 
program and suitable instructions given in the main program can extract this data 
from the object file and load them into memory. 

 
It would be preferable to be able to execute instructions in the vector units while other 
instructions are being executed in the MIPS core.  One way to achieve this, without adding 
any new syntax to the Vector Pascal language is to define a standard that if a function is 
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called on another platform, then the program will stall until the function has returned its 
result, whereas if a procedure has been called then it will execute without the main program 
stalling.  This does place some requirements on the programmer in that they must ensure that 
it is possible for the procedure to execute in parallel with other code without causing 
undesirable results.  The programmer may also wish for the main program to wait until a 

procedure has finished executing.  A simple way to do this would be to define a wait function 
which could take a parameter for the apu to wait for.  The interface could then define this 
function, and it could check the status of the control registers for the vector units to see when 
the vector unit has finished execution.  It would be possible to simply define this as a busy 
loop which checks the status of the vector unit every cycle and breaks once execution has 
finished.  Once the loop breaks, the function would exit and normal program code could 
continue. 
 

7.1.3 Interfacing other platforms 

In the case of the Emotion Engine, the interface code was used to transfer between processors 
in the same physical machine.  However, the interface code can contain any valid code and so 

there is no reason why it could not call other computers via a sockets library.  This would 
allow programs to be executed in parallel on a potentially very large number of machines at 
the same time.  In this case the interface code would be far more complex, but other than this 
added complexity, there is no reason why a cluster of computers could not be used in parallel. 
 

7.2 Compiling to other MIPS processors 

It has been seen that the Playstation 2 R5900 processor implements instruction sets from 
MIPS I, II, II, and IV designs.  It would be possible to separate these out into separate ILCG 

machine specifications for each of these platforms.  A machine specification for the MIPS II 
design, for example, would be able to include the MIPS I design in its ILCG specification by 
way of the ILCG include tag.  The MIPS II design would then only need to declare the MIPS 
II instructions, and not the MIPS I.  It would also be possible to only define the registers, 
types, and memory addressing modes in the MIPS I design, and these too could be used by 
MIPS II.  Using this feature, the Emotion Engine specification would only have to define the 
multimedia instructions, as it would get all of its other instructions from the MIPS 
specifications it includes.  This would allow the Vector Pascal Compiler to compile to a 
number of extra targets will very little work, as most of the MIPS features are already defined 

in the Emotion Engine specification, and could simply be moved to the appropriate new 
machine specifications. 
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8 Future Platforms 

8.1 The Cell Processor 

In February 2005 at the International Solid-State Circuits Conference (ISSCC), Sony, IBM, 
and Toshiba gave the public their first insight into what they have called the Cell processor.  
The Cell processor has been designed to be a very flexible architecture as IBM does not 

believe that “the one-size-fits-all model of the PC does not apply in the embedded space” 
[25].  The Cell processor features a core CPU based on the IBM POWER architecture, and 
then up to 8 Synergistic Processing Elements (SPE).  These SPE units are very similar in 
function to the Vector Units in the Playstation 2 in that they have their own vector processor 
and their own memory [26].   
 

 
Figure 8-1 

The structure of the Cell processor can be seen in Figure 8-1.  It shows the POWER core, and 

the SPE units.  Due to the speed of the elements in Cell, there is a need for very high memory 
bandwidth.  This has been provided in Cell by Rambus, who manufactured the memory for 
the original Pentium 4, and for the Playstation 2.  The memory in Cell has a bandwidth of 
over 70GB/s [27], far higher than the 6.4GB/s available to desktop PC’s using DDR400 
memory, or the DDR3 memory found in top of the range PC graphics cards.  In addition to 
this high performance memory, the SPE’s have also each been given 256KB of cache 
memory.   This is far more than the 16KB found in Vector Unit 1 in the Playstation 2 and so 
the SPE should be able to process a lot of data before having to load more data from the 
memory.  All this memory bandwidth will be needed if Cell is to get close to the 256GFLOPS 

it can theoretically perform at, assuming all 8 SPE’s are used, and the processor is running at 
the 4GHZ speed demonstrated at the ISSCC conference. 
 

POWER 

Core 

SPE SPE SPE SPE 

SPE SPE SPE SPE 

RAM 
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The POWER core in Cell has been designed to coordinate all of the SPE units, as well as 
functioning as 64-bit processor which is fully compliant with the POWERPC instruction set.  
It will have a 32KB level 1 cache, and 512KB of level 2 cache.  The core features a floating 
point unit similar to the Emotion Engine one, in that it still does not comply fully to IEEE754 
single precision standards when rounding numbers.  However, it will feature a fully IEEE754 

compliant double precision floating point unit, which will be far quicker than the emulated 
instructions on the Emotion Engine.  Since Cell using a POWERPC core, and not a MIPS 
one, there is no possibility of using the Playstation 2 port of Vector Pascal to execute code on 
the Cell architecture.  Also, Sony have not yet announced whether they will release a Linux 
Kit for the Playstation 3, although IBM do plan to use Cell as the core for new workstations 
[25], and as IBM manufacture the Apple G5 processor, there is a chance that Apple may 
adopt Cell as the processor for their future PC’s.  However, any work that is done to get the 
Vector Units working in parallel with the MIPS core on the Playstation 2 will be applicable to 
performing the same task on the Cell, but with a far larger amount of parallelism. 

 

8.2 Dual Core Processors 

An alternative approach to that taken in Cell is to not have a single main processor, and many 
child processors, but instead put two fully capable processors on the same die.  Intel recently 
demonstrated a dual core version of their Pentium 4 processors called the Pentium D [17].  
Their main competitor, AMD, displayed a dual core version of their Opteron processor in 
2004 [18].  Both companies have outlined plans to introduce dual core versions of their whole 
CPU ranges in the coming years.  Intel has also added that dual core is just the first step, and 

that eventually CPU’s with many cores will be introduced [17].   
 
Dual core processors do, however, have one significant downfall in that they significantly 
increase the complexity of software designed to use it.  One industry which sees will be the 
first to utilise dual core processing in their software in the computer games industry.  With the 
Playstation 3 using a Cell processor, rumours suggesting the Xbox 2 will have multiple 
CPU’s, and future PC’s having dual cores, future games will have to utilise all of this power 
available to them to achieve their desired performance level.  However, one programmer in 
the games industry has highlighted the two to three times greater time to develop code for 

these systems [19]. 
 
A novel approach will also have to be implemented in Vector Pascal if it is to support these 
processors.  Unlike the Emotion Engine, there is no point in one core assigning a task to 
another core then waiting for the result, as the first core could simply have done the task 
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itself.  In the Emotion Engine the vector units have different functionality to the main core, so 
this is acceptable since the vector unit will, in most cases, be far quicker at performing the 
task than the main core.  One possible approach is to introduce threads to the Vector Pascal 
language in a similar way they were introduced to languages like Java.  However, this puts the 
burden of thread synchronisation, and ensuring data is not corrupted by threads on the 

programmer.  One potential solution could be to assign different parts of the same calculation 
to the different processors, i.e., assign one half of a vector operation to one core, and the other 
half of the vector operation to the other core.  This would allow up to twice as may vector 
operations to be performed at the same time, although the second processor would then be 
unused for ordinary operations.  This is the approach taken by Intel in their multi-threading 
enabled Fortran Compiler [8]. 
 

8.3 Using Graphics Cards as Vector Processors 

There has been considerable research recently into using the graphics cards found in most 
modern PC’s to perform vector operations.  This is taking place because a top of the range 
graphics card can achieve a theoretical performance of 40 GFLOPS, while a 3GHz Pentium 4 
can only achieve 6 GFLOPS [20].  Graphics cards do currently suffer from a limited 
instruction set, and very few registers, and also can currently only operate on streams of data, 
and not reference individual memory address.  However, they are able to operate across very 
large pieces of data at a time, and have very high memory bandwidth.  With the introduction 
of the PCI Express interface, there is now a far higher bandwidth between the graphics card 
and the main CPU which makes it less costly to transfer data to be processed by the graphics 

card particularly if the operation the graphics card is performing is a time consuming one. 
 
Some notable uses of graphics card include: 

• Image processing in medical applications, which currently takes a very long time on 

general purpose machines [20] 

• Processing audio streams [21] 

• Creating a cluster of GPU’s to model a flow simulation of contaminant air particles in 

Times Square in New York [22] 
 
Although it may be difficult to program the Graphics Processing Unit as a general purpose 
computer, using it to provide say an image processing library unit in Pascal could provide 

significant speedups over executing only on a single CPU. 
   



 - 93 - 
 

8.4 Physics coprocessors 

At the recent Game Developers Conference, a company called AGEIA introduced a physics 
card for PC’s called PhysX [23].  This has been designed to take the burden of physics 
processing away from the CPU in the same way that the graphics card did this with 3D image 

processing.  Few details are currently available for the card, but it is known that it will be 
released for PCI and PCI Express interfaces.  The developers of the PhysX system have also 
released a software development kit to allow software developers to write software to use the 
system, in the same way that Open GL and Direct X allow developers to give graphics cards 
instructions.  It may be possible to use this physics unit as a vector unit which would allow 
simultaneous processing in the main processor and in this unit. 
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9 Conclusion 

Porting Vector Pascal to a new platform is not a trivial task.  Writing the machine 
specification is not difficult once the importance of using instruction ordering, type casts and 
patterns is realised.  The most difficult part of porting the compiler is understanding the 
assumptions built into the compiler, and implementing ways to support these given the 
limitations of the Playstation 2, for example, the issue of alignment when loading and saving 

data larger than 4 bytes in size. 
 
The compiler has been designed in a very modular way, and it will be possible to port it to a 
wide variety of new platforms, and possibly some of those given in the Future Platforms 
Section.  It should be possible in the future to add many of the features discussed earlier, 
including the more advanced vectorisation possibilities.  With the increased demands on 
programmers to use vector instructions in general purpose computers, the simplicity of using 
these vector operations in Vector Pascal should make it easier for programmers to write very 
fast programs, taking full advantage of the parallelism available on the target platform, with 

minimal effort from the programmers perspective. 
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Appendix A 

The script below compiles each conformance test on the Linux machine Java was running 
from.  The standard output generated from the Vector Pascal Compiler is appended to a file 
called output.txt to make it possible to see at a later time what programs compiled properly, 
and the reasons why some failed to compile.  It then assembles the output, automatically 
including the system.pas unit, and sends the generated object file to the Playstation 2.  It relies 

on the ability for SSH to generate Kerberos keys to allow remote access to the Playstation 2 
without the need for entering passwords.  The file is then linked with the run-time library on 
the Playstation 2 to generate an executable file.  The program is then executed on the 
Playstation 2, and the output appended to the results.txt file on the Linux machine running the 
Perl script. 

 
 
The table below lists: the conformance tests, the outputs from the Vector Pascal compiler for 
those which compiled and successfully printed something to screen, and whether the Pentium 
passed the same tests. 

#! /usr/bin/perl -w 
  
system("ls -1 ../CONFORM/CONF*.PAS >files"); 
open FILES,"files";  
$mmpcdir="../.."; 
while(<FILES>){ 

 $file = $_; 
  chomp($file); 
 system "echo Source ".$file."\n"; 
 system "rm EECG.vwu\n"; 
 system  "cp ".$file." ./test.pas\n" ; 
 system "echo Source ".$file." >> output.txt"; 
    system " java -Xmx200m  -Dmmpcdir=${mmpcdir} -jar ${mmpcdir}/mmpc.jar test -S 
-cpuEE -felf -Ap.s >> output.txt";   
 system "mipsEEel-linux-as -a=asm.lst -m5900 -o p.o ./p.s\n "; 

 system "scp p.o angel19:\n"; 
 system "ssh angel19 \"mipsEEel-linux-gcc p.o mmpc/rtl.c -o a.out -lm -
DEECG\n\""; 
 system "ssh angel19 \"./a.out\n\" >> results.txt"; 
} 
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Test Compiled? EE Output P4 Output 

CONF001.PAS Y PASS...6.1.1-1 PASS...6.1.1-1 

CONF002.PAS Y PASS...6.1.1-2 PASS...6.1.1-2 

CONF003.PAS    

CONF004.PAS Y FAIL...6.1.2-1 FAIL...6.1.2-1 

CONF005.PAS    

CONF006.PAS Y PASS...6.1.2-3 PASS...6.1.2-3 

CONF007.PAS Y PASS...6.1.3-1 PASS...6.1.3-1 

CONF008.PAS Y PASS...6.1.3-2 PASS...6.1.3-2 

CONF009.PAS Y PASS...6.1.5-1 PASS...6.1.5-1 

CONF010.PAS Y PASS...6.1.5-2 PASS...6.1.5-2 

CONF011.PAS Y PASS...6.1.6-1 FAIL...6.1.6-1 

CONF012.PAS Y PASS...6.1.6-2 PASS...6.1.6-2 

CONF013.PAS Y PASS...6.1.6-3 PASS...6.1.6-3 

CONF014.PAS Y PASS...6.1.7-1 PASS...6.1.7-1 

CONF015.PAS Y FAIL...6.1.7-2 PASS...6.1.7-2 

CONF016.PAS Y FAIL...6.1.7-3 PASS...6.1.7-3 

CONF017.PAS Y PASS...6.1.8-1 PASS...6.1.8-1 

CONF018.PAS Y PASS...6.1.8-2 PASS...6.1.8-2 

CONF019.PAS Y FAIL...6.1.9-1 FAIL...6.1.9-1 

CONF020.PAS Y PASS...6.1.9-2 PASS...6.1.9-2 

CONF021.PAS Y PASS...6.1.9-3 PASS...6.1.9-3 

CONF022.PAS Y FAIL...6.2.1-1 PASS...6.2.1-1 

CONF023.PAS Y FAIL...6.2.1-2 PASS...6.2.1-2 

CONF024.PAS Y None in code None in code 

CONF025.PAS Y PASS...6.2.2-1 PASS...6.2.2-1 

CONF026.PAS Y PASS...6.2.2-2 PASS...6.2.2-2 

CONF027.PAS Y PASS...6.2.2-3 PASS...6.2.2-3 

CONF028.PAS Y PASS...6.2.2-4 PASS...6.2.2-4 

CONF029.PAS Y PASS...6.2.2-5 PASS...6.2.2-5 

CONF030.PAS Y FAIL...6.2.2-6 PASS...6.2.2-6 

CONF031.PAS Y PASS...6.2.2-7 PASS...6.2.2-7 

CONF032.PAS Y FAIL...6.3-1 FAIL...6.3-1 

CONF033.PAS Y FAIL...6.3-10 PASS...6.3-10 

CONF034.PAS Y PASS...6.4.1-1 PASS...6.4.1-1 

CONF035.PAS Y PASS...6.4.2.2-1 PASS...6.4.2.2-1 

CONF036.PAS Y PASS...6.4.2.2-2 PASS...6.4.2.2-2 

CONF037.PAS Y FAIL...6.4.2.2-3 FAIL...6.4.2.2-3 
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CONF038.PAS Y PASS...6.4.2.2-4 PASS...6.4.2.2-4 

CONF039.PAS Y PASS...6.4.2.2-5 PASS...6.4.2.2-5 

CONF040.PAS Y PASS...6.4.2.2-6 PASS...6.4.2.2-6 

CONF041.PAS Y PASS...6.4.2.2-6 PASS...6.4.2.2-6 

CONF042.PAS Y PASS...6.4.2.2-8 PASS...6.4.2.2-8 

CONF043.PAS Y PASS...6.4.2.3-1 PASS...6.4.2.3-1 

CONF044.PAS Y PASS...6.4.2.3-2 PASS...6.4.2.3-2 

CONF045.PAS Y PASS...6.4.2.3-3 PASS...6.4.2.3-3 

CONF046.PAS Y PASS...6.4.2.3-4 PASS...6.4.2.3-4 

CONF047.PAS Y PASS...6.4.2.4-1 PASS...6.4.2.4-1 

CONF048.PAS Y PASS...6.4.2.4-2 PASS...6.4.2.4-2 

CONF049.PAS Y PASS...6.4.3.1-1 PASS...6.4.3.1-1 

CONF050.PAS Y PASS...6.4.3.1-2 PASS...6.4.3.1-2 

CONF051.PAS Y PASS...6.4.3.2-1 PASS...6.4.3.2-1 

CONF052.PAS Y No output No output 

CONF053.PAS Y PASS...6.4.3.2-3 PASS...6.4.3.2-3 

CONF054.PAS    

CONF055.PAS Y PASS...6.4.3.3-1 PASS...6.4.3.3-1 

CONF056.PAS Y PASS...6.4.3.3-2 PASS...6.4.3.3-2 

CONF057.PAS Y PASS...6.4.3.3-3 PASS...6.4.3.3-3 

CONF058.PAS Y PASS...6.4.3.3-4 PASS...6.4.3.3-4 

CONF059.PAS Y PASS...6.4.3.3-5 PASS...6.4.3.3-5 

CONF060.PAS Y PASS...6.4.3.3-6 PASS...6.4.3.3-6 

CONF061.PAS Y PASS...6.4.3.3-7 PASS...6.4.3.3-7 

CONF062.PAS Y PASS...6.4.3.3-17 PASS...6.4.3.3-17 

CONF063.PAS    

CONF064.PAS Y No output  

CONF065.PAS Y No output PASS...6.4.3.4-11 

CONF066.PAS Y PASS...6.4.3.5-1 PASS...6.4.3.5-1 

CONF067.PAS    

CONF068.PAS    

CONF069.PAS    

CONF070.PAS    

CONF071.PAS    

CONF072.PAS    

CONF073.PAS    

CONF074.PAS    

CONF075.PAS    
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CONF076.PAS    

CONF077.PAS Y No output PASS...6.4.4-1 

CONF078.PAS    

CONF079.PAS Y PASS...6.4.5-1 PASS...6.4.5-1 

CONF080.PAS Y PASS...6.4.5-2 PASS...6.4.5-2 

CONF081.PAS Y PASS...6.4.5-3 PASS...6.4.5-3 

CONF082.PAS    

CONF083.PAS    

CONF084.PAS Y PASS...6.4.5-6 PASS...6.4.5-6 

CONF085.PAS Y No output PASS...6.4.6-1 

CONF086.PAS Y No output PASS...6.4.6-2 

CONF087.PAS Y PASS...6.4.6-3 PASS...6.4.6-3 

CONF088.PAS    

CONF089.PAS    

CONF090.PAS    

CONF091.PAS    

CONF092.PAS Y PASS...6.6.1-1 PASS...6.6.1-1 

CONF093.PAS    

CONF094.PAS Y No output PASS...6.6.2-1 

CONF095.PAS    

CONF096.PAS Y No output PASS...6.6.2-3 

CONF097.PAS Y FAIL...6.6.2-4 PASS...6.6.2-4 

CONF098.PAS Y FAIL...6.6.2-11 PASS...6.6.2-11 

CONF099.PAS Y No output PASS...6.6.2-12 

CONF100.PAS Y FAIL...6.6.3.1-1 PASS...6.6.3.1-1 

CONF101.PAS    

CONF102.PAS Y No output PASS...6.6.3.1-3 

CONF103.PAS    

CONF104.PAS Y PASS...6.6.3.1-7 PASS...6.6.3.1-7 

CONF105.PAS    

CONF106.PAS    

CONF107.PAS Y No output PASS...6.6.3.2-3 

CONF108.PAS Y FAIL...6.6.3.3-1 PASS...6.6.3.3-1 

CONF109.PAS Y No output PASS...6.6.3.3-2 

CONF110.PAS Y FAIL...6.6.3.3-3 PASS...6.6.3.3-3 

CONF111.PAS    

CONF112.PAS    

CONF113.PAS    
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CONF114.PAS    

CONF115.PAS    

CONF116.PAS    

CONF117.PAS    

CONF118.PAS    

CONF119.PAS Y No output No output 

CONF120.PAS    

CONF121.PAS    

CONF122.PAS    

CONF123.PAS Y PASS...6.6.5.3-2 PASS...6.6.5.3-2 

CONF124.PAS    

CONF125.PAS    

CONF126.PAS    

CONF127.PAS Y PASS...6.6.5.3-20 PASS...6.6.5.3-20 

CONF128.PAS    

CONF129.PAS    

CONF130.PAS Y No output  FAIL...6.6.5.3-27 

CONF131.PAS    

CONF132.PAS    

CONF133.PAS Y FAIL...6.6.6.2-1 FAIL...6.6.6.2-1 

CONF134.PAS Y No output No output 

CONF135.PAS   FAIL...6.6.6.2-3 

CONF136.PAS Y No output  

CONF137.PAS Y FAIL...6.6.6.4-1 FAIL...6.6.6.4-1 

CONF138.PAS Y No output PASS...6.6.6.4-2 

CONF139.PAS    

CONF140.PAS Y PASS...6.6.6.4-10 PASS...6.6.6.4-10 

CONF141.PAS    

CONF142.PAS Y PASS...6.6.6.5-2 PASS...6.6.6.5-2 

CONF143.PAS    

CONF144.PAS    

CONF145.PAS    

CONF146.PAS    

CONF147.PAS    

CONF148.PAS    

CONF149.PAS Y No output PASS...6.7.1-9 

CONF150.PAS    

CONF151.PAS Y No output PASS...6.7.2.2-1 
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CONF152.PAS Y FAIL...6.7.2.2-2 FAIL...6.7.2.2-2 

CONF153.PAS Y FAIL...6.7.2.2-3 FAIL...6.7.2.2-3 

CONF154.PAS    

CONF155.PAS Y PASS...6.7.2.3-1 PASS...6.7.2.3-1 

CONF156.PAS Y No output PASS...6.7.2.4-1 

CONF157.PAS Y No output PASS...6.7.2.4-2 

CONF158.PAS    

CONF159.PAS Y No output No output 

CONF160.PAS    

CONF161.PAS Y No output PASS...6.7.2.5-2 

CONF162.PAS    

CONF163.PAS    

CONF164.PAS Y No output No output 

CONF165.PAS    

CONF166.PAS Y No output FAIL...6.8.1-8 

CONF167.PAS    

CONF168.PAS Y No output FAIL...6.8.2.4-1 

CONF169.PAS Y No output No output 

CONF170.PAS    

CONF171.PAS    

CONF172.PAS Y PASS...6.8.3.7-1 PASS...6.8.3.7-1 

CONF173.PAS Y PASS...6.8.3.7-2 PASS...6.8.3.7-2 

CONF174.PAS Y PASS...6.8.3.7-3 PASS...6.8.3.7-3 

CONF175.PAS Y PASS...6.8.3.8-1 PASS...6.8.3.8-1 

CONF176.PAS Y PASS...6.8.3.8-2 PASS...6.8.3.8-2 

CONF177.PAS    

CONF178.PAS Y No output No output 

CONF179.PAS Y PASS...6.8.3.9-3 PASS...6.8.3.9-3 

CONF180.PAS Y FAIL...6.8.3.9-4 PASS...6.8.3.9-4 

CONF181.PAS Y PASS...6.8.3.9-23 PASS...6.8.3.9-23 

CONF182.PAS Y PASS...6.8.3.9-25 PASS...6.8.3.9-25 

CONF183.PAS Y PASS...6.8.3.9-26 PASS...6.8.3.9-26 

CONF184.PAS Y FAIL...6.8.3.9-28 FAIL...6.8.3.9-28 

CONF185.PAS Y PASS...6.8.3.10-1 PASS...6.8.3.10-1 

CONF186.PAS Y PASS...6.8.3.10-2 PASS...6.8.3.10-2 

CONF187.PAS Y PASS...6.8.3.10-3 PASS...6.8.3.10-3 

CONF188.PAS Y FAIL...6.8.3.10-4 FAIL...6.8.3.10-4 

CONF189.PAS Y FAIL...6.8.3.10-5 FAIL...6.8.3.10-5 
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CONF190.PAS Y PASS...6.8.3.10-6 PASS...6.8.3.10-6 

CONF191.PAS Y PASS...6.8.3.10-8 PASS...6.8.3.10-8 

CONF192.PAS Y No output Output, but no PASS 

CONF193.PAS Y No output Output, but no PASS 

CONF194.PAS Y No output Output, but no PASS 

CONF195.PAS    

CONF196.PAS Y No output Output, but no PASS 

CONF197.PAS    

CONF198.PAS Y No output Output, but no PASS 

CONF199.PAS Y No output Output, but no PASS 

CONF200.PAS    

CONF201.PAS    

CONF202.PAS    

CONF203.PAS    

CONF204.PAS    

CONF205.PAS Y No output Output, but no PASS 

CONF206.PAS    

CONF207.PAS    

CONF208.PAS Y PASS...6.10-2 PASS...6.10-2 

CONF209.PAS Y PASS...6.10-3 PASS...6.10-3 

CONF210.PAS Y PASS...6.10-5 PASS...6.10-5 

CONF211.PAS Y PASS...6.10-6 PASS...6.10-6 

CONF212.PAS Y No output Output, but no PASS 

CONF213.PAS Y No output Output, but no PASS 

CONF214.PAS Y PASS...6.8.3.5-23 Output, but no PASS 

CONF215.PAS    

CONF216.PAS    

CONF217.PAS Y No output PASS...6.4.3.3-25 

CONF218.PAS Y PASS...6.1.5-14 PASS...6.1.5-14 

CONF219.PAS Y No output Output, but no PASS 

CONF220.PAS Y No output Output, but no PASS 

CONF221.PAS Y No output Output, but no PASS 
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Appendix B1 

Test program for unsigned 8-bit integer vectors. 

 
Output: 

 
 

1  2  3  4  5  6  7  8  9  10  11  12  13  14   15   16 
  
2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32 
  
-1  -2  -3  -4  -5  -6  -7  -8  -9  -10  -11  -12  -13 -14 -15 -16 
 
 

program bytevec; 
type int8 = -128..127; 
type intarray = array[0..15] of int8; 
var  
 a,b,c : intarray; 
begin 
 a[0] := 1; 
 a[1] := 2; 
 a[2] := 3; 
 a[3] := 4; 
 a[4] := 5; 
 a[5] := 6; 
 a[6] := 7; 
 a[7] := 8; 
 a[8] := 9; 
 a[9] := 10; 
 a[10] := 11; 
 a[11] := 12; 
 a[12] := 13; 
 a[13] := 14; 
 a[14] := 15; 
 a[15] := 16; 
 writeln(a); 
 b := a + a; 
 writeln(b); 
 c := b; 
 b := a - c; 
 writeln(b); 
end. 
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Appendix B2 

Test program for signed 16-bit integer vectors. 

 
Output: 

 

1  2  3  4  5  6  7  8 
 
2  4  6  8  10  12  14  16 
  
-1  -2  -3  -4  -5  -6   -7   -8 
  
1   4   9   16   25   36   49   64 
  
 

program hwvec; 
type intarray = array[0..7] of word; 
var  
 a,b,c : intarray; 
begin 
 a[0] := 1; 
 a[1] := 2; 
 a[2] := 3; 
 a[3] := 4; 
 a[4] := 5; 
 a[5] := 6; 
 a[6] := 7; 
 a[7] := 8; 
 writeln(a); 
 b := a + a; 
 writeln(b); 
 c := b; 
 b := a - c; 
 writeln(b); 
 b := a * a; 
 writeln(b); 
end. 
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Appendix B3 

Test program for signed 32-bit integer vectors. 

 
Output: 

 
 

 

1        2        3         4 
  
2        4        6         8 
  
-1       -2       -3        -4 
  
1        4        9         16 
 

program swvec; 
type intarray = array[0..3] of integer; 
var  
 a,b,c : intarray; 
begin 
 a[0] := 1; 
 a[1] := 2; 
 a[2] := 3; 
 a[3] := 4; 
 writeln(a); 
 b := a + a; 
 writeln(b); 
 c := b; 
 b := a - c; 
 writeln(b); 
 b := a * a; 
 writeln(b); 
end. 
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