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1

Multi-media
instruction-sets

A number of widely used contemporary processors have instructionset ex-
tensions for improved performance in multi-media applications. The aim is
to allow operations to proceed on multiple pixels each clock cycle. Such in-
structionsets have been incorporated both in specialist DSP chips like the
Texas C62xx[16] and in general purpose CPU chips like the Intel IA32[6][7]
or the AMD K6[1].

1.1 The SIMD model

These instructionset extensions are typically based on the Single Instruction-
stream Multiple Data-stream (SIMD) model in which a single instruction
causes the same mathematical operation to be carried out on many operands,
or pairs of operands at the same time. The SIMD model was originally de-
veloped in the context of large scale parallel machines such as the ICL
Distributed Array Processor or the Connection Machine. In these systems
a single control processor broadcast an instruction to thousands of single
bit wide dataprocessors causing each to perform the same action in lock-
step. These early SIMD processors exhibited massive data-parallelism,
but, with each data processor having its own private memory and data-
bus they were bulky machines involving multiple boards each carrying
multiple memory chip, data-processor chip pairs. Whilst they used single
bit processors, the SIMD model is not dependent on this. It can also be
implemented with multiple 8-bit, 16-bit or 32-bit data processors.

The incorporation of SIMD technology onto modern general purpose
microprocessors is on a more modest scale than were the pioneering ef-
forts. For reasons of economy the SIMD engine has to be included on the
same die as the rest of the CPU. This immediately constrains the degree
of parallelism that can be obtained. The constraint does not arise from
the difficulties of incorporating large numbers of simple processing units.
With contemporary feature sizes, one could fit more than a thousand 1-bit
processors on a die. Instead the degree of parallelism is constrained by
the width of the CPU to memory data path.

The SIMD model provides for all data-processors to simultaneously
transfer words of data between internal registers and corresponding lo-
cations in their memory banks. Thus with n data-processors each using
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4 1. MULTI-MEDIA INSTRUCTION-SETS

� -�-
32 bit 64 bit

8 MMX registers aliased to FPU stack
8 General Purpose registers

Figure 1.1: The Intel IA32 with MMX register architecture

w-bit words one needs a path to memory of nw bits. If a CPU chip has a
64-bit memory bus then it could support 64 1-bit SIMD data-processors,
or 8 8-bit data-processors, 2 32-bit processors, etc.

For bulk data operations, such as those involved in image processing,
the relevant memory bus is the off chip bus. For algorithms that can
exploit some degree of data locality the relevant bus would be that linking
the CPU to the on-chip cache, and the degree of parallelism possible would
be constrained by the width of the cache lines used.

Whilst memory access paths constrain the degree of parallelism possi-
ble, the large numbers of logic gates available on modern dies, allows the
complexity of the individual data-processors to be raised. Instead of per-
forming simple 1-bit arithmetic, they do arithmetic on multi-bit integers
and floating point numbers.

As a combined result of these altered constraints we find that SIMD in-
structions for multi-media applications have parallelism levels of between
32 bits (Texas C62xx) and 128 bits (Intel PIII), and the supported data
types range from 8-bit integers to 32-bit floating point numbers.

1.2 The MMX register architecture

The MMX architectural extensions were introduced by Intel in late models
of the Pentium processor. They have subsequently been incorporated in
the PII and PIII processors from Intel and in compatible chips produced by
AMD, Cyrix and others. They can now be considered part of the baseline
architecture of any contemporary PC.

The data registers available for computational purposes on processors
incorporating the MMX architecture are shown in Figure 1.1. The original
IA32 architecture had eight general purpose registers and an eight deep
stack of floating point registers. When designing the multi-media exten-
sions to the instructionset, Intel wanted to ensure that no new state bits
were added to the process model. Adding new state bits would have made
CPU’s with the extensions incompatible with existing operating systems,
as these would not have saved the additional state on a task switch. In-
stead, Intel added 8 new virtual 64-bit registers which are aliased onto the
existing floating point stack. These new multimedia registers, mm0..mm7,
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1 64-bit QWORD

2 32-bit DWORDS

4 16-bit WORDS

8 8-bit BYTES

Figure 1.2: The MMX data formats

Table 1.1: MMX data-types
Format signed unsigned signed saturated unsigned saturated
BYTE yes yes yes yes
WORD yes yes yes yes
DWORD yes yes no no

use state bits already allocated to the Floating Point Unit(FPU), and are
thus saved when an operating system saves the state of the FPU.

The MMX instructions share addressing mode formats with the instruc-
tions used for the general purpose registers. The 3-bit register identifica-
tion fields inherited from the previous instructions are now used to index
the eight multi-media rather than the eight general purpose registers. The
existing addressing modes for memory operands are also carried over al-
lowing the full gamut of base and index address modes to be applied to the
loading and storing of MMX operands.

1.3 MMX data-types

The MMX registers support 4 data formats as shown in Figure 1.2. A
register can hold a single 64-bit tt QWORD, a pair of 32-bit DWORDS, 4 16-
bit WORDSor 8 BYTES. Within these formats the data-types shown in Table
1.1 are supported. The saturated data-types require special comment.
They are designed to handle a circumstance that arises frequently in image
processing when using pixels represented as integers: that of constraining
the result of some arithmetic operation to be within the meaningful bounds
of the integer representation.

Suppose we are adding two images represented as arrays of bytes in
the range 0..255 with 0 representing black and 255 white. It is possible
that the results may be greater than 255. For example 200+175 = 375 but

in 8 bit binary
11001000

+ 10101111
= 1 01110111

droping the leading 1 we get 01110111 =

119, which is dimmer than either of the original pixels. The only sensible
answer in this case would have been 255, representing white.

To avoid such errors, image processing code using 8 bit values has to
put in tests to check if values are going out of range, and force all out
of range values to the appropriate extremes of the ranges. This inevitably
slows down the computation of inner loops. Besides introducing additional
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instructions, the tests involve conditional branches and pipeline stalls.
The MMX seeks to obviate this by providing packed saturated data

types with appropriate arithmetic operations over them. These use hard-
ware to ensure that the numbers remain in range.

The combined effect of the use of packed data and saturated types can
be to produce a significant increase in code density and performance.

Consider the C code in figure 1.3 to add 2 images pointed to by p1 and
p2, storing the result in the image pointed to by p3. The code includes
a check to prevent overflow. Compiled into assembler code by the Visual
C++ compiler the resulting assembler code has 18 instructions in the inner
loop. The potential acceleration due to the MMX can be seen by comparing
it with the following hand coded assembler inner loop:

l1: movq mm0,[esi+ebp-LEN] ; load 8 bytes
paddusb mm0,[esi+ebp-2*LEN] ; packed unsigned add bytes
movq [esi+ebp-3*LEN],mm0 ; store 8 byte result
add esi,8 ; inc dest pntr
loop l1 ; repeat for the rest of the array

The example assumes that p1,p2,p3 are stored in registers esi,edx,edi
for the duration of the loop. Only 5 instructions are used in the whole
loop, compared to 18 for the compiled C code. Furthermore, the MMX
code processes 8 times as much data per iteration, thus requiring only
0.625 instructions per byte processed. The compiled code thus executes
29 times as many instructions to perform the same task. Whilst some
of this can be put down to the superiority of hand assembled versus au-
tomatically compiled code, the combination of the SIMD model and the
saturated arithmetic are obviously a major factor.

1.4 3D Now!

The original MMX instructions introduced by Intel were targeted at in-
creasing the performance of 2D image processing, giving their biggest per-
formance boost for images of byte-pixels. The typical operations in 3D
graphics, perspective transformations, ray tracing, rendering etc, tend to
rely upon floating point data representation. Certain high 2D image pro-
cessing operations requiring high accuracy such as high precision stereo
matching can also be implemented using floating point data. Both Intel
and AMD have seen the need to provide for these data representations.
AMD responded first with the 3D Now! instructions, then Intel introduced
the Steaming SIMD instructions which we discuss in the next section.

The basic IA32 architecture already provides support for 32-bit and 64-
bit IEEE floating point instructions using the FPU stack. However, 64-bit
floating point numbers are poor candidates for parallelism in view of the
datapath limitations described in section 1.1.

AMD provided a straight forward extension of the MMX whereby an
additional data-type, the pair of 32 bit floats shown in figure 1.4, could be
operated on. Type conversion operations are provided to convert between
pairs of 32-bit integers and 32-bit floats.

The range of operators supported includes instructions for the rapid
computation of reciprocals and square roots - relevant to the computation
of Euclidean norms in 3D-space.



1.4. 3D NOW! 7

main()
{
unsigned char v1[LEN],v2[LEN],v3[LEN];
int i,j,t;
for (j=0;j<LEN;j++){
t=v2[j]+v1[j];
v3[j]=(unsigned char)(t>255?255:t);
}

}
ASSEMBLER

xor edx, edx ; 9.8
;

; LOE edx ebx ebp esi edi esp dl dh bl bh
$B1$3: ; Preds $B1$5 $B1$2

mov eax, edx ; 10.9
lea ecx, DWORD PTR [esp] ; 10.6
movzx ecx, BYTE PTR [eax+ecx] ; 10.6
mov DWORD PTR [esp+19200], edi ;
lea edi, DWORD PTR [esp+6400] ; 10.12
movzx edi, BYTE PTR [eax+edi] ; 10.12
add ecx, edi ; 10.12
cmp ecx, 255 ; 11.26
mov edi, DWORD PTR [esp+19200] ;
jle $B1$5 ; Prob 16% ; 11.26

; LOE eax edx ecx ebx ebp esi edi esp al ah dl dh cl ch bl bh
$B1$4: ; Preds $B1$3

mov ecx, 255 ; 11.26
; LOE eax edx ecx ebx ebp esi edi esp al ah dl dh cl ch bl bh

$B1$5: ; Preds $B1$3 $B1$4
inc edx ; 9.18
cmp edx, 6400 ; 9.3
mov DWORD PTR [esp+19200], edi ;
lea edi, DWORD PTR [esp+12800] ; 11.4
mov BYTE PTR [eax+edi], cl ; 11.4
mov edi, DWORD PTR [esp+19200] ;
jl $B1$3 ; Prob 80% ; 9.3

Figure 1.3: C code to add two images and corresponding assembler for the
inner loop. Code compiled on the Intel C compiler version 4.0.

IEEE32 IEEE32

-� 64 bit MM reg

Figure 1.4: The AMD 3DNOW! extensions add 32 bit floating point data to
the types that can be handled in MMX registers
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� R q z

4 × 32-bit floating point fields

8 × 128-bit xmm registers

Figure 1.5: The Streaming SIMD extensions add additional 32 bit floating
point vector registers

Another significant extension with 3D Now, copied in the Streaming
SIMD extensions is the ability to prefetch data into the cache prior to its
use. This is potentially useful in any loop operating on an array of data.
For instance the loop in the previous section could be acclerated by insert-
ing the marked prefetch instructions.

l1: movq mm0,[esi] ; load 8 bytes
add esi,8 ; inc src pntr
prefetch [esi] ; ensure that the next 8 bytes worth are in the cache
paddusb mm0,[edx] ; packed unsigned add bytes
add edx,8 ; inc src pntr
prefetch [edx] ; preload 8 bytes from other array
movq [edi],mm0 ; store 8 byte result
add edi,8 ; inc dest pntr
prefetchw [edi] ; set up the cache ready for writing 8 bytes of data

The instruction count rises, despite this performance goes up since loads
into the cache are initiated 6 instructions prior to the data being needed.
This allows the loading of the cache to be overlapped with useful instruc-
tions rather than forcing calculations to stall whilst the load takes place.

1.5 Streaming SIMD

Intel produced their own functional equivalent to AMD’s 3DNOW instruc-
tionset with the Pentium III processor. They called the new instructions
Streaming SIMD. As with 3DNOW, the Streaming SIMD instructions com-
bine cache prefetching techniques with parallel operations on short vectors
of 32 bit floating point operands.

The most significant difference is to the model of machine state. Whilst
the original MMX instructions and 3DNOW add no new state to the ma-
chine architecture, Streaming SIMD introduces additional registers. Eight
new 128-bit registers (XMM0..7) are introduced. The addition of new state
means that operating systems have to be modified to ensure that xmm
registers are saved during context switches. Intel provided a driver to do
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Table 1.2: The XMM registers support both scalar and vector arithmetic
Vector addition

ADDPS xmm0,xmm1
xmm0 1.2 1.3 1.4 1.5
xmm1 2.0 4.0 6.0 8.0 +
xmm0 3.2 5.3 7.4 9.5

Scalar addition

ADDSS xmm0,xmm1
xmm0 1.2 1.3 1.4 1.5
xmm1 2.0 4.0 6.0 8.0 +
xmm0 1.2 1.3 1.4 9.5

this for Microsoft Windows NT 4.0, Windows 98 and subsequent Windows
releases have this support built in.

The default format for the XMM registers is a 4-tuple of 32 bit floating
point numbers. Instructions are provided to perform parallel addition,
multiplication, subtraction and division on these 4-tuples. Two very useful
extensions to this format are provided.

1. A set of boolean operations are provided that treat the registers as
128 bit words, useful for operations on bitmps.

2. Scalar operations are provided that operate only on the lower 32 bits
of the register. This allows the XMM registers to be used for con-
ventional single precision floating point arithmetic. Whilst the pre-
existing Intel FPU instructions support single precision arithmetic,
the original FPU is based on a reverse Polish stack architecture. This
scheme does not fit well with the register allocation schemes used
in some compilers. The existence of what are effectively eight scalar
floating point registers can lead to more efficient floating point code.

The scalar and vector uses of the XMM registers are contrasted in table
1.2. A special move instruction (MOVSS) is provided to load or store the
least significant 32 bits of an XMM register.

1.5.1 Cache optimisation

The Streaming side of the Streaming SIMD extensions is concerned with
optimising the use of the cache. The extensions will typically be used with
large collections of data, too large to fit into the cache. If an application
were adding two vectors of a million floating point registers using standard
instructions, the 4MB of results would pollute the cache. This cache pollu-
tion can be avoided using the non-temporal store instructions, MOVNTPS
and MOVNTQ operating on the XMM and MM registers respectively.

A PREFETCH instruction is provided to preload data into the cache.
This is more sophisticated than the equivalent 3DNOW! instruction de-
scribed above. The AMD instruction applies to all cache levels. The Intel
variant allows the programmer to specify which levels of cache are to be
preloaded.

Whereas all previous IA32 load and store instructions had operated
equally well on aligned and unaligned data. The Streaming SIMD exten-
sions introduces special load and store instructions to operate on aligned
128 bit words. General purpose load and store instructions capable of
handling unaligned data are retained.
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2

Possible programming
techniques for MMX and
Streaming SIMD

There is little exploitation of these extensions on specific architectures be-
cause of the lack of appropriate compiler support. For example,Intel sup-
ply a C compiler that has low level extensions allowing the extended in-
structions to be used. Intel terms these extensions ’assembler intrinsics’.
Syntactically these look like C functions but they are translated one for one
into equivalent assembler instructions. The use of assembler intrinsics
simplifies the process of developing MMX code, in that programmers use
a single tool - the C compiler, and do not need to concern themselves with
low level linkage issues. However, the other disadvantages of assembler
coding remain. The Intel C compiler comes with a set of C++ classes that
correspond to the fundamental types supported by the MMX and SIMD
instruction sets. The SIMD classes do a good job of presenting the under-
lying capabilities of the architecture within the context of the C language.
The code produced is also efficient. However, whilst the C++ code has
a higher level of expression than assembler intrinsics, it is not portable
to other processors. Similarly, SUN’s Hotspot Java Optimiser is targeted
at the old Intel 486 instructions rather than the newer MMX instructions
available since the Pentium.

There are many disadvantages to these approaches. First of all, pro-
grammers must have deep knowledge both of low level architectural be-
haviour and of architecture specific compiler behaviour to integrate as-
sembly language with high level code. Secondly, effective use of libraries
depends on there being a close correspondence between the intended se-
mantics of the application program and the semantics of the library rou-
tines. Finally, use of architecture specific libraries inhibits program porta-
bility across operating systems and CPU platforms.

There has been sustained research within the parallel programming
community into the exploitation of SIMD parallelism on multi-processor
architectures. Most work in this field has been driven by the needs of
high-performance scientific processing, from finite element analysis to me-
teorology. In particular, there has been considerable interest in exploiting
data parallelism in FORTRAN array processing, culminating in High Per-
formance Fortran and F[12]. Typically this involves two approaches. First
of all, operators may be overloaded to allow array-valued expressions, sim-

11



12 2. POSSIBLE PROGRAMMING TECHNIQUES FOR MMX AND STREAMING SIMD

ilar to APL. Secondly, loops may be analysed to establish where it is pos-
sible to unroll loop bodies for parallel evaluation. Compilers embodying
these techniques tend to be architecture specific to maximise performance
and they have been aimed primarily at specialised super-computer ar-
chitectures, even though contemporary general purpose microprocessors
provide similar features, albeit on a far smaller scale.

There has been recent interest in the application of vectorisation tech-
niques to instruction level parallelism. Thus, Cheong and Lam [4] discuss
the use of the Stanford University SUIF parallelising compiler to exploit
the SUN VIS extensions for the UltraSparc from C programs. They report
speedups of around 4 on byte integer parallel addition. Krall and Lelait’s
compiler [10] also exploits the VIS extensions on the Sun UltraSPARC pro-
cessor from C using the CoSy compiler framework. They compare classic
vectorisation techniques to unrolling, concluding that both are equally ef-
fective, and report speedups of 2.7 to 4.7. Sreraman and Govindarajan
[14] exploit Intel MMX parallelism from C with SUIF, using a variety of
vectorisation techniques to generates inline assembly language, achieving
speedups from 2 to 6.5. All of these groups target specific architectures.
Finally, Leupers [11] has reported a C compiler that uses vectorising op-
timisation techniques for compiling code for the multimedia instruction
sets of some signal processors, but this is not generalised to the types of
processors used in desktop computers.

In this chapter I look in detail at possible techniques for programming
the MMX hardware. In order to illustrate the techniques I will use a sample
program that adds two arrays of bytes storing the result in a third. The
arrays will be 6400 bytes long, and the operation will be repeated 100,000
times.

Timings for the program are given for a 233Mhz Sony Vaio. The test
program therefore requires 640,000,000 add operations.

The program is used purely for illustrative purposes, it is not realistic
as a benchmark of general performance on the MMX.

2.1 Direct use of assembler code

With instructionsets as complex as those incorporated into the latest Intel
and AMD processors, careful hand-written assembler language routines
produce the highest quality machine code.

Microsoft’s MASM assembler supports the extended instructionset as
does the free assembler NASM. The latter has the advantage of running
on both Linux and Windows, and provides support for MMX, 3DNOW! and
SIMD instructions.

In the absence of better tools, direct coding of inner loops as assembler
routines is the obvious course to pursue where run-time performance re-
quirements demand it. Disadvantages of using assembler are well known:

1. It is not portable between processors. A program written in assembler
to use the AMD extensions will not run on an Intel processor nor, a-
fortiori, on an Alpha.

2. It requires the programmer to have an in-depth knowledge of the un-
derlying machine architecture, which only a small proportion of pro-
grammers now have.
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;

SECTION .text ;
global _main
LEN equ 6400
_main: enter LEN*3,0

mov ebx,100000 ; per-
form test 100000 times for timing
l0:

mov esi,0 ; set esi registers to index the elements
mov ecx,LEN/8 ; set up the count byte

l1: movq mm0,[esi+ebp-LEN] ; load 8 bytes
paddb mm0,[esi+ebp-2*LEN] ; packed unsigned add bytes
movq [esi+ebp-3*LEN],mm0 ; store 8 byte result
add esi,8 ; inc dest pntr
loop l1 ; repeat for the rest of the array
dec ebx
jnz l0
mov eax,0
leave
ret

;

Figure 2.1: Assembler version of the test program

3. Productivity in terms of programmer time spent to implement a given
algorithm is lower than in high level languages.

4. The programmer must further master the low level linkage and pro-
cedure call conventions of the high level language used for the rest of
the application.

5. Programmers have to master additional program development tools.

All of these militate against widespread use. The fact that the AMD
extensions can only be programmed in assembler may have been a factor
limiting their practical use.

2.1.1 The example program

The assembler version of the example program is shown in figure 2.1. It
runs in 4.01 seconds on the test machine, a 233Mhz Pentium II, a through-
put of 160 million byte arithetic operations per second.

The C version is shown in figure 2.3. It compiled with the Intel C com-
piler it runs in 82 seconds on the test machine, a performance of around
8 million arithmetic operations per second. Thus the assembler version
using MMX is about 20 times as fast as the C version.

2.2 Use of assembler intrinsics

Intel supply a C compiler that has low level extensions allowing the ex-
tended instructions to be used. Intel terms these extensions ‘assembler
intrinsics’. For example the ADDPS instruction which adds 4 packed single
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/*

*/
#define LEN 6400
#define CNT 100000
main()
{

unsigned char v1[LEN],v2[LEN],v3[LEN];
int i,j,t;
for(i=0;i<CNT;i++)

for (j=0;j<LEN;j++) v3[j]=v2[j]+v1[j];
}
/*

*/

Figure 2.2: C version of the test program

precision floating point numbers is mirrored by the Intel C/C++ Compiler
Intrinsic Equivalent

__m128 _mm_add_ps(__m128 a, __m128 b)

which adds the four SP FP values of a and b.
Syntactically these look like C functions but they are translated one for

one into equivalent assembler instructions. The use of assembler intrin-
sics simplifies the process of developing MMX code, in that programmers
use a single tool - the C compiler, and do not need to concern themselves
with low level linkage issues. However, the other disadvantages of assem-
bler coding remain.

1. It is still not portable between processors.

2. It still requires the programmer to have an in-depth knowledge of the
underlying machine architecture.

3. Productivity is unlikely to be higher than with assembler.

2.3 Use of C++ classes

The Intel C compiler comes with a set of C++ classes that correspond to the
fundamental types supported by the MMX and SIMD instructionsets. For
instance, type Iu8vec8 is a vector of 8 unsigned 8 bit integers, Is32vec2 a
vector of 2 signed 32 bit integers, etc. The basic arithmetic operators for
addition, subtraction, multiplication and division are then overloaded to
support these vector types.

Figure 2.3 shows the example program implemented in C++ using the
Intel SIMD class Iu8vec8. The SIMD classes do a good job of presenting
the underlying capabilities of the architecture within the context of the
C language. The code produced is also efficient, the example program
in C++ runs in 4.56 seconds on the test machine, a performance of 140
million byte operations per second. However, it has to be born in mind
that the C++ code is not portable to other processors. The compiler always
generates MMX or SIMD instructions for the classes. If run on a 486
processor these would be illegal. The C++ code build around these classes,
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//

#define LEN 800
#define CNT 100000
#include "ivec.h"
main()
{
Iu8vec8 v1[LEN],v2[LEN],v3[LEN];
int i,j,t;
for(i=0;i<CNT;i++)

for (j=0;j<LEN;j++)
v3[j]=v2[j]+v1[j];

}//

Figure 2.3: C++ version of the test program

program vecadd;
type byte=0..255;
var v1,v2,v3:array[0..6399]of byte;

i:integer;
begin

for i:= 1 to 100000 do v3:=v1 + v2;
end.

Figure 2.4: Example program in High Performance Pascal

whilst it has a higher level of expression than assembler intrinsics, is no
more portable.

2.4 High level language expressions of data par-
allelism

High level language notations for expressing data parallelism have a long
history, dating back to APL in the early ’60s[8]. The key concept here
is the systematic overloading of all scalar operators to work on arrays.
Given some type t let us denote an array whose elements are of type t as
having type t[]. Then if we have a binary operator ω : (t⊗ t)→ t defined on
type t, in languages derived from APL we automatically have an operator
ω : (t[]⊗ t[])→ t[].

Thus if x, y are arrays of integers k = x+ y is the array of integers where

Table 2.1: Comparative performance of different versions of example pro-
gram
Version Time in seconds
Assembler using MMX 4.95
C++ using MMX classes 5.00
High Performance Pascal to MMX instructionset 9.88
High Performance Pascal to 486 instructionset 75.41
C 87.88
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ki = xi + yi.
The basic concept is simple, there are complications to do with the

semantics of operations between arrays of different lengths and different
dimensions, but Iverson provides a consistent treatment of these.

The most recent languages to be built round this model are J, an inter-
pretive language[9], and F[12] a modernised Fortran. In principle though
any language with array types can be extended in a similar way. Unlike
the SIMD classes provided by the Intel C++ compiler, the APL type exten-
sions are machine independent. They can be implemented using scalar
instructions or using the SIMD model. The only difference is speed.

I have chosen this model as the basis for our experiments in compiling
high level language code to SIMD instructionsets. Our objectives in these
experiments were to:

1. Provide a means of expressing data parallel operations that was in-
dependent of the instructionset available.

2. To provide a mechanism for automatically generating good machine
code for data parallel operations.

3. To provide a means by which the code generator can be automatically
retargeted to different SIMD and non-SIMD instructionsets based on
a formal description of these instructionsets.

4. To provide a toolkit that was operating system and machine indepen-
dent.

5. To produce at least one demonstration compiler for at least one lan-
guage with data-parallelism to evaluate the technique.

6. To produce at least two code generators one for a scalar instructionset
and one for a SIMD instructionset.

For initial experiment I have chosen the base 486 and the Pentium
with MMX as the two instructionsets to be targeted. An extended version
of pascal with operators overloaded in the APL style is used as the source
language. This is provisionally called High Performance Pascal.

The structure of the experimental system is shown in figure 2.5. It
is complex. Consider first the path followed from a source file foo.pas ,
shown in the upper right of the diagram, to an executable file foo.exe , in
the lower center of the diagram. The phases that it goes through are

i. The source file is parsed by a java class Hppc.class and results in
an internal data structure, an ilcg tree, which is basically a semantic
tree for the program. The classes from which this is built are from
package ilcg.tree .

ii. The resulting ilcg tree is walked over by a class that encapsulates the
semantics of the target machine’s instructionset; in this case Pen-
tium.class. The output of this process is an assembler file foo.asm .

iii. This is then fed through an appropriate assembler and linker, as-
sumed to be externally provided to generate an executable.

The key components on this path are Hppc.class and Pentium.class
Hppc is a simple, hand writen, recursive descent parser, nothing much in-
teresting about this. Pentium.class has a much more complicated genesis.
It is produced from a file Pentium.ilc, in a notation ILCG, which gives a
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ilcg grammar ilcgp.java
-

javac

ilcgp.class

WalkGen.java WalkGen.class

javac

ILCG

s1

-

-

pentium.ilc

pentium.java

javac

pentium.class

iclg tree of foo

foo.asm

?

?

NasmLink

foo.objfoo.exe

Hppc.class

foo.pas

?

javac

Hppc.java
-

��

Sable

Figure 2.5: System overview
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semantic description of the Pentium’s instructionset. This is processed by
an application ILCG which builds the source file Pentium.java.

The application ILCG is built out of two main components: a collection
of classes that comprise a parser for the language ILCG, and a class which
walks parse trees for ILCG programs and outputs code generators. The
parser classes are automatically generated from a definition of the gram-
mar of ILCG using the parser generator Sable[15]. The walker WalkGen
walks a parse tree for an ILCG file and builds a walker for semantic trees.

In what follows I provide a description of the notation ILCG, a descrip-
tion of the semantic trees taken as input to the code generators and then
describe the strategy used in the generated code generators to translate
these trees to assembler code.



3

ILCG as a notation for
describing instuctionsets

The purpose of ILCG to mediate between CPU instruction sets and high
level language programs. It poth provides a representation to which com-
pilers can translate a variety of source level programming languages and
also a notation for defining the semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to an auto-
matically constructed code generator, working on the syntax match-
ing principles described in [5]. This then generates equivalent se-
quences of assembler statements.

2. Its ascii source form acts as input to a code generator generator, that
produces the code generators as described above.

It is assumed that all store allocation appart from register spillage has
already been accomplished.

It is itself intended to be machine independent in that it abstracts from
the instruction model of the machine on which it is being executed. How-
ever, it will assume certain things about the machine. It will assume that
certain basic types are supported and that the machine is addressed at
the byte level.

We further assume that all type conversions, dereferences etc have to
be made absolutely explicit. Since the notation is intended primarily to be
machine generated we are not particularly concerned with human read-
ability, and thus use a prefix notation.

In what followsIwill designate terminals of the language in bold thus
octet and nonterminal in sloping font thus word8.

3.1 Supported types

3.1.1 Data formats

The data in a memory can be distinguished initially in terms of the number
of bits in the individually addressable chunks. The addressable chunks
are assumed to be the powers of two from 3 to 7, so we thus have as
allowed formats:word8, word16, word32, word64, word128. These are
treated as non terminals in the grammar of ILCG.

19
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Table 3.1: Range expanding coercions

INPUT OUTPUT
byte integer
ubyte integer
short integer
ushort integer
uinteger double
integer double
float double
long double

When data is being explicitly operated on without regard to its type,
we have terminals which stand for these formats: octet, halfword, word,
doubleword, quadword.

3.1.2 Typed formats

Each of these underlying formats can contain information of different
types, either signed or unsigned integers, floats etc.

We thus allow the following integer types as terminals in the language:int8,
uint8, int16, uint16, int32, uint32, int64, uint64 to stand for signed
and unsigned integers of the appropriate lengths.

The integers are logically grouped into signed and unsigned. As non
terminal types they are represented as byte, short, integer, long and ubyte,
ushort, uinteger, ulong.

Floating point numbers are either assumed to be 32 bit or 64 bit with
32 bit numbers given the nonterminal symbols float,double. If we wish
to specify a particular representation of floats of doubles we can use the
terminals ieee32, ieee64.

3.1.3 Ref types

A value can be a reference to another type. Thus an integer when used
as an address of a 64 bit floating point number would be a ref ieee64 .
Ref types include registers. An integer register would be a ref int32 when
holding an integer, a ref ref int32 when holding the address of an integer
etc.

3.2 Supported operations

3.2.1 Type coercions

In order to prevent the n2 problem associated with conversions between
n different types, ILCG provides a limited subset of allowed expansions,
which, by composition allow any conversion requested without minimal
loss of accuracy. The compressions necessarily involve a loss of accuracy.

The allowed conversions are summarised in the tables 3.1 and 3.2.
The syntax for the type conversions is C style so we have for example

(ieee64) int32 to represent a conversion of an 32 bit integer to a 64 bit
real.
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Table 3.2: Range contracting coercions

INPUT OUTPUT
integer byte
integer ubyte
integer short
integer ushort
double uinteger
double integer
double float
double long

3.2.2 Arithmetic

The allowed arithmetic operations are addition, multiplication, subtrac-
tion, division and remainder with operator symboles +,*,-,div , mod.. The
arithmetic is assumed to take place at the precisions of 32 bit integer and
64 bit reals.

The syntax is prefix with bracketing. Thus the infix operation 3 + 5 ÷ 7
would be represented as +(3 div (5 7)).

3.2.3 Memory

Memory is explicitly represented. All accesses to memory are represented
by array operations on a predefined array mem. Thus location 100 in
memory is represented as mem(100). The type of such an expression is
address. It can be cast to a reference type of a given format. Thus we could
have

(ref int32)mem(100)

3.2.4 Assignment

We have a set of storage operators corresponding to the word lengths sup-
ported. These have the form of infix operators. The size of the store being
performed depends on the size of the right hand side. A valid storage
statement might be

(ref octet)mem( 299) :=(int8) 99
The first argument is always a reference and the second argument a

value of the appropriate format.
If the left hand side is a format the right hand side must be a value of

the appropriate size. If the left hand side is an explicit type rather than a
format, the right hand side must have the same type.

3.2.5 Dereferencing

Dereferencing is done explicitly when a value other than a literal is re-
quired. There is a dereference operator, which converts a reference into
the value that it references. A valid load expression might be:

(octet)↑ ( (ref octet)mem(99))
The argument to the load operator must be a reference.
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3.3 Machine description

Ilcg can be used to describe the semantics of machine instructions. A ma-
chine description typically consists of a set of register declarations followed
by a set of instruction formats and a set of operations. This approach
works well only with machines that have an orthogonal instruction set,
ie, those that allow addressing modes and operators to be combined in an
independent manner.

3.3.1 Registers

When entering machine descriptions in ilcg registers can be declared along
with their type hence

register word EBX assembles[’ebx’] ;
reserved register word ESP assembles[’esp’];
would declare EBX to be of type ref word.

Aliasing

A register can be declared to be a sub-field of another register, hence we
could write

alias register octet AL = EAX(0:7) assembles[’al’];
alias register octet BL = EBX(0:7) assembles[’bl’];
to indicate that BL occupies the bottom 8 bits of register EBX. In this

notation bit zero is taken to be the least significant bit of a value. There are
assumed to be two pregiven registers FP, GP that are used by compilers to
point to areas of memory. These can be aliased to a particular real register.

register word EBP assembles[’ebp’] ;
alias register word FP = EBP(0:31) assembles [’ebp’];
Additional registers may be reserved, indicating that the code generator

must not use them to hold temporary values:
reserved register word ESP assembles[’esp’];

3.3.2 Register sets

A set of registers that are used in the same way by the instructionset can
be defined.

pattern reg means [EBP |EBX|ESI|EDI|ECX|EAX|EDX|ESP ] ;
pattern breg means[AL|AH|BL|BH|CL|CH|DL|DH];
All registers in an register set should be of the same length.

3.3.3 Register Arrays

Some machine designs have regular arrays of registers. Rather than have
these exhaustively enumerated it is convenient to have a means of provid-
ing an array of registers. This can be declared as:

register vector(8)doubleword MM assembles[’MM’i] ;
This declares the symbol MMX to stand for the entire MMX register

set. It implicitly defines how the register names are to be printed in the
assembly language by defining an indexing variable i that is used in the
assembly language definition.

We also need a syntax for explicitly identifying individual registers in
the set. This is done by using the dyadic subscript operator:
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subscript(MM,2)
which would be of type ref doubleword.

3.3.4 Register Stacks

Whilst some machines have registers organised as an array, another class
of machines, those oriented around postfix instructionsets, have register
stacks.

The ilcg syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[ ’ ’] ;
Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of type ref t as first ar-
gument and a value of type t as the second argument. Thus we might
have:

PUSH(FP,↑mem(20))

POP is a monadic operator returning t on stacks of type t. So we might
have

mem(20):=POP(FP)

3.3.5 Instruction formats

An instruction format is an abstraction over a class of concrete instruc-
tions. It abstracts over particular operations and types thereof whilst spec-
ifying how arguments can be combined.

instruction pattern
RR( operator op, anyreg r1, anyreg r2, int t)
means[r1:=(t) op( ↑((ref t) r1),↑((ref t) r2))]
assembles[op ’ ’ r1 ’,’ r2];
In the above example, we specify a register to register instruction format

that uses the first register as a source and a destination whilst the second
register is only a destination. The result is returned in register r1.

We might however wish to have a more powerful abstraction, which
was capable of taking more abstract apecifications for its arguments. For
example, many machines allow arguments to instructions to be addressing
modes that can be either registers or memory references. For us to be
able to specify this in an instruction format we need to be able to provide
grammer non-terminals as arguments to the instruction formats.

For example we might want to be able to say
instruction pattern
RRM(operator op, reg r1, maddrmode rm, int t)
means [r1:=(t) op( ↑((ref t)r1),↑((ref t) rm))]
assembles[op ’ ’ r1 ’,’ rm ] ;
This implies that addrmode and reg must be non terminals. Since the

non terminals required by different machines will vary, there must be a
means of declaring such non-terminals in ilcg.

An example would be:
pattern regindirf(reg r)
means[↑(r) ] assembles[ r ];
pattern baseplusoffsetf(reg r, signed s)
means[+( ↑(r) ,const s)] assembles[ r ’+’ s ];
pattern addrform means[baseplusoffsetf| regindirf];
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pattern maddrmode(addrform f)
means[mem(f) ] assembles[ ’[’ f ’]’ ];
This gives us a way of including non terminals as parameters to pat-

terns.
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Implementation strategy

4.1 The package ilcg.tree

The package ilcg.tree provides java classes to support the code generation
process. These fall into two broad categories, classes which implement
the interface ilcg.tree.Node , and classes which are descended from
ilcg.tree.Walker .

4.1.1 Nodes

The classes implementing the Node interface are used to build ILCG trees.
These classes are in 1 to 1 correspondance with the constructs of the ILCG
grammar. Thus for any expression defining the semantics of a machine
instruction in ILCG there is a corresponding tree structure which matches
it.

These trees can either be directly constructed by a Java program, or
can be loaded from a .tree file, which is basically a postfix flattened bi-
nary encoding of the tree. Such .tree files can be generated by front
ends written in languages other than Java. Each class implementing the
interface Node must have a method

toBinary(java.io.DataOutputStream out)
which saves a node in postfix binary notation on the output stream. A

utility class ilcg.tree.Loader can be used to load postfix binary trees
stored in files into memory.

4.1.2 Walkers

The other classes in the package are tree walkers which travese ilcg trees
emitting assembler code as they do so.

The base class ilcg.tree.Walker provides strategic methods to carry
out

• register assignment and spilling,

Implementing Classes for Node:
Assign, Block, Cast, CharLit, Dyad, For, Format, Goto, If ,
Integer, Label, Location, Memref, Monad, Op, Real,
Register, RegisterStack, Statement, Type

25
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Walker

IA32Pentium

IA32CGPentiumCG

9 z

??

Machine Generated

Hand written by user

Provided as stanard part of package

Figure 4.1: How machine generated and hand written walkers descend
from ilcg.tree.Walker

• constant expression evaluation,

• transformation of high level to low level control structures

• pre-evaluation of repeated sub-expressions within statements

• transformation of array arithmetic to sematically equivalent for loops

It also includes declarations of the variables used in the code generation
process. Each time Walker encounters a statement it invokes the match
method. This is an abstract method that must be provided in subsidiary
classes, which are machine generated by the program ILCG from CPU
specification files. They implement the match method in a form appro-
priate for that CPU.

Finally, the machine generated walker classes can be further specialised
by hand written classes which override the behaviour of the standard tree
walker. Typically these specialisations will be to handle things like proce-
dure call mechanisms which may be specific to a given processor and a
given language.

4.1.3 Generation of array arithmetic code

The algorithm for effectively using SIMD instructions for array arithmetic
depends upon the decoration of ILCG trees with appropriate type informa-
tion. The parsermust produce a syntax tree in which casts are applied to
memory referencing subtrees to specify the types that they point to, as il-
lustrated in figure 4.2. The statement is passed to the instruction matcher
which fails, as there is no built in instruction capble of adding operands of
type uint8 vector(6400) .

4.2 The ILCG code-generator generator

The code-generator generator ILCG is invoked by the command line
java ilcg.ILCG src.ilc dest.java classname
It parses the .ilc file and for each pattern p in the file generates a

recognising method. These methods take a single parameter n of type
�ilcg.tree.Node and return true if n matches p.

Figures 4.3 and 4.4 illustrate an instruction pattern and the recogniser
method that is generated for it. It can be seen that the recogniser for the
assignment statement invokes subsidiary recognisers for the left and right
hand side of the assignment.
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program vecadd;
type byte=0..255;
var v1,v2,v3:array[0..6399]of byte;
i:integer;
begin

v3:=v1 + v2;
end.

(ref uint8 vector ( 6400 ))mem(+(̂((ref int32)ebp),-19200)):=
+(̂((ref uint8 vector ( 6400 ))mem(+(̂((ref int32)ebp),-6400))),
(̂(ref uint8 vector ( 6400 ))mem(+(̂((ref int32)ebp),-12800)))
)

Figure 4.2: Translation of an array expression into ILCG

instruction pat-
tern RMR(operator op,addrmode rm,immedreg r1,int t)

means[ (ref t) rm :=op( ˆ((ref t) rm),( t) r1)]
assembles[op ’ ’ t ’ ’ rm ’,’ r1];

Figure 4.3: The specification of the register to memory form of x86 instruc-
tion

/** recog-
nises ( ref t ) rm := op ( ˆ ( ( ref t ) rm ) , ( t ) r1 ) */
public boolean pAAssign1126(Node n){

dlog("( ref t ) rm := op ( ˆ ( ( ref t ) rm ) , ( t ) r1 ) ",n);
if(!(n instanceof Assign))return false;
Assign a=(Assign)n;
enterRhs();

boolean rhsok= pADyadicValue1132(a.src);
leaveRhs();
if(!rhsok)return false;
enterLhs();

boolean lhsok=pARefcastRefval1127(a.dest);
leaveLhs();
return lhsok;

}

Figure 4.4: The recogniser method for the meaning part of the instruction
pattern shown in figure 4.3
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Where a pattern is defined as a set of alternatives, the alternatives are
tried in the order in which they are listed in the .ilc file. The matching
functions for alternative patterns are implemented as memofns. That is to
say, each such function has a hash table in which it stores the trees that it
has successfully matched and which alternative they matched. This hash
table is consulted whenever a new tree is encountered.
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The grammer for processor
definition

/*

5.1 ILCG grammar

This is a definition of the grammer of ILCG using the Sable grammar specification
lanaguage. It is input to Sable to generate a parser for machine descriptions in ilcg

*/

Package ilcg;
/*

5.1.1 Helpers

Helpers are regular expressions macros used in the definition of terminal symbols
of the grammar.

*/
Helpers

letter = [[’A’..’Z’]+[’a’..’z’]];
digit = [’0’..’9’];
alphanum = [letter+[’0’..’9’]];
cr = 13;
lf = 10;
tab = 9;

digit_sequence = digit+;
fractional_constant = digit_sequence? ’.’ digit_sequence | digit_sequence ’.’;
sign = ’+’ | ’-’;
exponent_part = (’e’ | ’E’) sign? digit_sequence;
floating_suffix = ’f’ | ’F’ | ’l’ | ’L’;

eol = cr lf | cr | lf; // This takes care of different platforms
not_cr_lf = [[32..127] - [cr + lf]];
exponent = (’e’|’E’);
quote = ’’’;
all =[0..127];
schar = [all-’’’];

29
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not_star = [all - ’*’];
not_star_slash = [not_star - ’/’];

/*

5.1.2 Tokens

The tokens section defines the terminal symbols of the grammar.

*/
Tokens

floating_constant = fractional_constant exponent_part? floating_suffix? |
digit_sequence exponent_part floating_suffix?;

/*

terminals specifying data formats

*/
void =’void’;
octet = ’octet’; int8 = ’int8’; uint8 = ’uint8’;
halfword = ’halfword’; int16 = ’int16’ ; uint16 = ’uint16’ ;
word = ’word’; int32 = ’int32’ ;
uint32 = ’uint32’ ; ieee32 = ’ieee32’;
doubleword = ’doubleword’; int64 = ’int64’ ;
uint64 = ’uint64’; ieee64 = ’ieee64’;
quadword = ’quadword’;

/*

terminals describing reserved words

*/
function= ’function’;
flag = ’flag’;
location = ’loc’;
procedure=’instruction’;
returns =’returns’;
label = ’label’;
goto=’goto’;
for =’for’;
to=’to’;
step=’step’;
do =’do’;
ref=’ref’;
const=’const’;
reg= ’register’;
operation = ’operation’;
alias = ’alias’;
instruction = ’instruction’;
address = ’address’;
vector =’vector’;
stack = ’stack’;
sideeffect=’sideeffect’;
if =’if’;
reserved=’reserved’;
precondition =’precondition’;

instructionset=’instructionset’;
/*

terminals for describing new patterns
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*/
pattern = ’pattern’;
means = ’means’;
assembles = ’assembles’;

/*

terminals specifying operators

*/
colon = ’:’;
semicolon= ’;’;
comma = ’,’;
dot = ’.’ ;
bra =’(’;

ket =’)’;
plus = ’+’;
satplus = ’+:’;
satminus = ’-:’;
map=’->’;
equals = ’=’;
le = ’<=’;
ge=’>=’;
ne=’<>’;
lt=’<’;
gt=’>’;
minus = ’-’;
times = ’*’;
exponentiate = ’**’;
divide = ’div’;
and = ’AND’;
or = ’OR’ ;
xor = ’XOR’;
not = ’NOT’;
sin=’SIN’;
cos=’COS’;
abs=’ABS’;
tan=’TAN’;
remainder = ’MOD’;
store = ’:=’;
deref = ’ˆ’;
push =’PUSH’;
pop =’POP’;
call=’APPLY’;
full=’FULL’;
empty=’EMPTY’;
subscript=’SUBSCRIPT’;
intlit = digit+;

vbar = ’|’;
sket=’]’;
sbra=’[’;
end=’end’;
typetoken=’type’;
mem=’mem’;
string = quote schar+ quote;

/*

identifiers come after reserved words in the grammar
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*/
identifier = letter alphanum*;
blank = (’ ’|cr|lf|tab)+;
comment = ’/*’ not_star* ’*’+ (not_star_slash not_star* ’*’+)* ’/’;

Ignored Tokens
blank,comment;
/*

5.1.3 Non terminal symbols
*/
Productions

program = statementlist instructionlist;
instructionlist =instructionset sbra alternatives sket;

/*

non terminals specifying data formats

*/
format = {octet} octet| {halfword} halfword |

{word} word | {doubleword} doubleword |
{quadword} quadword|{tformat}tformat;

/*

non terminals corresponding to type descriptions

*/
reference = ref type ;
array = vector bra number ket;
aggregate={stack} stack bra number ket |{vector}array |{non};

type= {format} format | {typeid} typeid|{array}type array|
{cartesian}sbra type cartesian* sket|

{map}bra [arg]:type map [result]:type ket;
cartesian = comma type;

tformat = {signed} signed|{unsigned}unsigned|{ieee32}ieee32|
{ieee63}ieee64;

signed = int32 | {int8} int8 | {int16} int16 | {int64} int64;
unsigned = uint32 | {uint8} uint8 | {uint16} uint16 |

{uint64} uint64;

/*

non terminals corresponding to typed values

*/
value = {refval}refval |{rhs}rhs|{void}void|{cartval}cartval|

{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. record initialisers

*/
cartval=sbra value carttail* sket;
carttail = comma value;

/*
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conditions used in defining control structures

*/
condition={dyadic} dyadic bra[left]:condition comma[right]:condition ket|
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;

rhs= {number}number| {cast}bra type ket value|{const}const identi-
fier |

{deref}deref bra refval ket;

refval = loc| {refcast} bra reference ket loc;
loc = {id}identifier|{memory}mem bra value ket ;

/*predeclaredregister = {fp}fp|{gp}gp;*/
number = {reallit} optionalsign reallit|

{integer} optionalsign intlit;
optionalsign = |{plus}plus|{minus}minus;
reallit= floating_constant;

/*

operators

*/
dyadic = {plus} plus| {minus} minus |
{identifier} identifier|{exp}exponentiate|
{times} times | {divide} divide|
{lt}lt|{gt}gt|{call}call|
{le}le|{ge}ge|{eq}equals|{ne}ne|{push}push|{subscript}subscript|
{satplus}satplus|{satminus}satminus|

{remainder} remainder|{or}or|{and}and|{xor}xor;
monadic ={not}not|{full}full|{empty}empty|{pop}pop|
{sin}sin|{cos}cos|{tan}tan|{abs}abs ;
/*

register declaration

*/
registerdecl = reservation reg aggregate format identifier
assembles sbra string sket ;
reservation = {reserved}reserved|{unreserved};
aliasdecl =

alias reg aggregate format [child]:identifier equals
[parent]:identifier bra [lowbit]:intlit colon [highbit]:intlit ket
assembles sbra string sket;

opdecl = operation identifier means operator assembles sbra string sket;
operator = {plus}plus|{minus}minus|{times}times|{lt}lt|{gt}gt|
{le}le|{ge}ge|{eq}equals|{ne}ne|{divide} divide|
{remainder}remainder|{or}or|{and}and|{xor}xor;

/*

pattern declarations

*/
assign = refval store value ;
meaning = {value}value|{assign}assign|

{goto}goto value|
{if}if bra value ket meaning|
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{for} for refval store [start]:value
to [stop]:value step [increment]:value do meaning|

{loc}location value;
patterndecl = pattern identifier paramlist means sbra meaning sket
assemblesto
sideeffects
precond

|{alternatives} pattern identifier means sbra alternatives sket;

paramlist = bra param paramtail* ket|{nullparam}bra ket;
param = typeid identifier|
{typeparam} typetoken identifier|
{label}label identifier;
typeid = identifier;
paramtail = comma param;
alternatives = type alts*;
alts = vbar type;
precond = precondition sbra condition sket|{unconditional};
asideeffect= sideeffect returnval;
sideeffects = asideeffect*;
assemblesto=assembles sbra assemblypattern sket;
assemblypattern = assemblertoken*;
assemblertoken = {string} string | {identifier} identifier;
returnval = returns identifier;
/*

statements

*/
statement = {aliasdecl} aliasdecl|

{registerdecl} registerdecl |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdecl|
{flag} flag identifier equals intlit|
{typerename}typetoken format equals identifier|
{patterndecl} patterndecl;
statementlist = statement semicolon statements*;
statements = statement semicolon;

//
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An example machine
specification

/*

6.1 Pentium machine description

*/ /*
Basic ia32 processor description int ilcg copyright(c) Paul Cockshott, University

of Glasgow Feb 2000

6.1.1 Declare types to correspond to internal ilcg types

*/

type word=DWORD;
type uint32=DWORD;
type int32=DWORD;
type ieee64=QWORD;
type octet=BYTE;
type int16=WORD;
type int8=BYTE;
type octet=BYTE;
type uint8=BYTE;
type halfword=WORD;

/*

6.1.2 compiler configuration flags

*/
flag realLitSupported = 0;
/*

6.1.3 Register declarations

*/
register word EAX assembles[’eax’] ;
register word ECX assembles[’ecx’] ;
register word EBX assembles[’ebx’] ;
reserved register word EBP assembles[’ebp’] ;

35
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alias register word FP = EBP(0:31) assembles [’ebp’];
reserved register word ESP assembles[’esp’];
alias register word SP = ESP(0:31) assembles [’esp’];
register word ESI assembles[’esi’] ;
register word EDI assembles[’edi’] ;
register word EDX assembles[’edx’];

alias register octet AL = EAX(0:7) assembles[’al’];
alias register octet BL = EBX(0:7) assembles[’bl’];
alias register octet CL = ECX(0:7) assembles[’cl’];
alias register octet DL = EDX(0:7) assembles[’dl’];

alias register octet AH = EAX(8:15) assembles[’ah’];
alias register octet BH = EBX(8:15) assembles[’bh’];
alias register octet CH = ECX(8:15) assembles[’ch’];
alias register octet DH = EDX(8:15) assembles[’dh’];

pattern reg means [ EBP| EBX|ESI|EDI|ECX |EAX|EDX|ESP] ;
pattern areg(reg r) means[(ref int32)r] assembles[ r ];
pattern breg means[ AL|AH|BL|BH|CL|CH|DL|DH];
pattern abreg(breg b) means[(ref int8)b] assembles[b];
pattern anyreg means[ breg|reg];
pattern acc means[EAX];
pattern creg means [ECX];
pattern sreg means [ESI];
pattern dreg means [EDI];
pattern modreg means [EDX];
pattern bacc means [AL];
/*

6.1.4 Operator definition

This section defines operations that can be used to parameterise functions.

*/
operation add means + assembles [ ’add’];
/* */operation and means AND assembles[ ’and’];
operation or means OR assembles[’or’];
operation xor means XOR assembles[’xor’];/* */
operation sub means - assembles [ ’sub’];
operation mul means * assembles [’mul’];
operation imul means * assembles [’imul ’];
operation lt means < assembles [’l’];
operation gt means > assembles [’g’];
operation eq means = assembles [’z’];
operation le means <= assembles [’le’];
operation ge means >= assembles [’ge’];
operation ne means <> assembles [’nz’];

pattern condition means[ne|ge|le|eq|gt|lt];
pattern operator means[add | sub|imul|and|or|xor];
pattern commuteop means[add|and|or|xor];
/*
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6.1.5 Data formats
Here we define ilcg symbols for the types that can be used as part of instructions.

*/
pattern unsigned means[uint32|uint8|uint16];
pattern signed means[int32 | int8 | int16 ];
pattern int means[signed|unsigned];
pattern double means[ieee64] ;
pattern float means[ieee32];
pattern real means [ieee64|float];

pattern dataformat means[octet|word];
pattern longint means [int32|uint32];
pattern two(type t) means[2] assembles[’2’];
pattern four(type t) means[4] assembles[’4’];
pattern eight(type t) means[8] assembles[’8’];

pattern scale means[two|four|eight];

/**

Define the address forms used in lea instructions these differ from the address
forms used in other instructions as the semantics includes no memory reference.
Also of course register and immediate modes are not present.

*/
pattern regindirf(reg r)

means[ˆ(r) ]
assembles[ r ];

pattern baseplusoffsetf(reg r, signed s)
means[+( ˆ(r) ,const s)]
assembles[ r ’+’ s ];

pattern scaledIndexPlusOffsetf(reg r1, scale s, signed offs)
means[+(*(ˆ(r1),s),const offs)]
assembles[r1 ’*’ s ’+’ offs];

address pattern basePlusScaledIndexf(reg r1,reg r2,scale s)
means[+(ˆ(r1),*(ˆ(r2),s))]

assembles[ r1 ’+’ r2 ’*’ s ];
address pattern basePlusScaledIndexPlusOffsetf(reg r1,reg r2,scale s,signed off)

means[+(+(ˆ(r1),const off),*(ˆ(r2),s))]
assembles[ r1 ’+’ r2 ’*’ s ’+’off ];

address pattern basePlusIndexPlusOffsetf(reg r1,reg r2,signed off)
means[+(+(ˆ(r2),const off),ˆ(r1))]

assembles[ r1 ’+’ r2 ’ +’off ];

address pattern basePlusIndexf(reg r1,reg r2)
means [+(ˆ(r1),ˆ(r2))]
assembles[ r1 ’+’ r2 ];

pattern directf(unsigned s)
means[const s]
assembles[ s ];

pattern immediate(signed s)
means[const s]
assembles[ s ];

pattern labelf(label l)
means [l]
assembles[l];

/*
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6.1.6 Choice of effective address

This contains the useful formats for the load effective address instruction. The
pattern regindirf is excluded here as it adds nothing we do not have already from
mov instructions.

*/
pattern eaform means[directf |
labelf|

scaledIndexPlusOffsetf|
basePlusScaledIndexPlusOffsetf|
basePlusIndexPlusOffsetf|
basePlusScaledIndexf|
baseplusoffsetf |
basePlusIndexf];
/*

6.1.7 Formats for all memory addresses

*/
pattern addrform means[eaform| regindirf];

/**

define the address patterns used in other instructions

*/

pattern maddrmode(addrform f) means[mem(f) ] assembles[ ’[’ f ’]’ ];
pattern addrmode means[maddrmode|anyreg];
pattern regderef(anyreg r) means[ˆ(r)] assembles[r];
pattern derefmaddrmode (maddrmode a,type t) means[(t)ˆ(a)] assembles [t ’ ’ a];
pattern immedmem means[immediate|derefmaddrmode];
pattern immedaddrmode means[immediate|derefmaddrmode|regderef];
pattern immedreg means[immediate|regderef];
/*

6.1.8 Instruction patterns for the 386

*/

instruction pattern STORE(addrmode rm, immedreg r1, type t)
means[ (ref t) rm:=(t)r1 ]

assembles[’mov ’t rm ’,’ r1];

instruction pattern NULMOV(reg r3)
means[r3:=ˆ(r3)]

assembles[’;nulmov ’ r3 r3];

instruction pattern INC(addrmode rm,type t)
means[(ref t)rm:= + (ˆ((ref t)rm),1)]
assembles[’inc ’ t ’ ’ rm];

instruction pattern DEC(addrmode rm,type t)
means[(ref t)rm:= + (ˆ((ref t)rm),-1)]
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assembles[’dec ’ t ’ ’ rm];

instruction pattern LOAD(immedmem rm, anyreg r1, type t)
means[ r1:= ( t)rm ]

assembles[’mov ’ r1 ’,’ ’ ’ rm];
instruction pattern MOVE(immedaddrmode rm, anyreg r1, type t)

means[ r1:= ( t)rm ]
assembles[’mov ’ r1 ’,’ ’ ’ rm];

instruction pattern MOVZXB(reg r1, addrmode rm)
means[ r1:=(int32)ˆ((ref octet)rm)]
assembles[’movzx ’ r1 ’, BYTE ’rm];

instruction pattern MOVZXW(reg r1, addrmode rm)
means[ r1:=(int32)ˆ((ref halfword)rm)]
assembles[’movzx ’ r1 ’, WORD ’rm];

instruction pattern LEA(reg r1, eaform ea)
means [r1:=ea]

assembles [’lea ’ r1 ’,[’ ea ’]’ ];

instruction pattern Negate(reg r1,type t)
means[r1:= -((t)0,ˆ((ref t)r1))]
assembles [’neg ’ r1];

instruction pattern NEG(reg r1)
means[r1:= *(ˆ(r1),-1)]
assembles[’neg ’r1];

instruction pattern RMR( operator op,addrmode rm,immedreg r1,int t)
means[ (ref t) rm :=op( ˆ((ref t) rm),( t) r1)]

assembles[op ’ ’ t ’ ’ rm ’,’ r1];
/* commuting version of the rmr form */
instruction pattern ComRMR( commuteop op,addrmode rm,immedreg r1,int t)

means[ (ref t) rm :=op( (t)r1,ˆ((ref t) rm))]
assembles[op ’ ’ t ’ ’ rm ’,’ r1];

instruction pattern RRM(operator op, anyreg r1, immedaddrmode rm, int t)
means [r1:=(t) op( ˆ((ref t)r1),(t) rm)]
assembles[op ’ ’ r1 ’,’ rm ] ;

instruction pattern PLANT(label l)
means[l]
assembles[l ’:’];

instruction pattern PLANTRCONST( double r)
means[loc r]
assembles[ ’SECTION .data\n dq ’ r ’\n SECTION .text’];

instruction pattern GOTO(label l)
means[goto l]
assembles[’jmp ’ l];

/*

6.1.9 Multi Instruction Templates

These are sequences of instructions that are designed to look like single instruc-
tions
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*/

pattern dacc means[DH|DL];
instruction pattern ADDUSB(bacc r1,dacc r2 )

means[ r1 := +:(ˆ(r1),ˆ(r2))]
assembles[’ push ebx\n push ecx\n mov bl,al\n mov cl,’ r2

’\n xor ch,ch\n xor bh,bh\n add bx,cx\n cmp cx,255’
’\n jl $+5\n mov cl,255\n nop\n mov al,cl\n pop ecx\n pop ebx’];

instruction pattern IDIV(reg r1,reg r2)
means[r1:= div(ˆ(r1),ˆ( r2)) ]

assembles[’push edx\nxchg eax,’ r1
’\ncdq\ndiv ’ r2
’\npop edx\nxchg eax,’ r1];

instruction pattern MOVSD(eaform i,creg cx, sreg si, dreg di,type t)
means[for (ref t)mem(i) :=0 to ˆ(cx) step 1 do
mem(+(ˆ(di),*(ˆ(mem(i)),4))):= (word)ˆ(mem(+(ˆ(si),*(ˆ(mem(i)),4))))]
assembles[’cld \n mov ’ t’[’i’],ecx\n rep\n movsd’];

instruction pattern
MOVSB(eaform i,creg cx, sreg si, dreg di,type t)

means[for (ref t)mem(i):=0 to ˆ(cx) step 1 do
mem(+(ˆ(di),ˆ(mem(i)))):=(octet)ˆ(mem(+(ˆ(si),ˆ(mem(i)))))]

assembles[’cld \n mov ’ t’[’i’],ecx\n rep\n movsb’];

instruction pattern
SETCC(addrmode d,reg r1,immedaddrmode r2,condition c)

means[(ref octet)d:=(octet) c(ˆ(r1),r2)]
assembles[’cmp ’ r1 ’,’ r2 ’\n set’ c ’ BYTE ’ d];

instruction pattern
IFGOTO(label l,reg r1,immedaddrmode r2,condition c)

means[if(c(ˆ(r1),ˆ(r2)))goto l]
assembles[’cmp ’ r1 ’,’ r2 ’\n j’ c ’ NEAR ’ l];

instruction pattern
IFLITGOTO(label l,addrform a,signed r2,condition c,type t)

means[if(c( ˆ((ref t) mem(a)),const r2))goto l]
assembles[’cmp ’ t ’[’ a ’]’ ’,’ r2 ’\n j’ c ’ NEAR ’ l];

instruction pattern CALL(label l)
means[APPLY( l,void)]
assembles[’call ’ l];

instruction pattern IMOD( modreg r1,reg r2)
means[r1:= MOD(ˆ(r1),ˆ( r2)) ]

assembles[’push eax\nmov eax,’ r1 ’\ncdq\ndiv ’ r2 ’\npop eax’];

/*

*/
/*

6.1.10 Intel fpu instructions
*/
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register stack(8)ieee64 ST assembles[ ’ST’];

operation fdiv means div assembles[’div’];
pattern foperator means[add | sub|mul|fdiv];

instruction pattern FSTR(maddrmode a,real t)
means[(ref t) a:= (t)POP(ST)]
assembles[’fstp ’t a];

pattern fint means[int16|int32|int64];
instruction pattern FIOP(maddrmode a,fint t,foperator op)

means[PUSH(ST,op(POP(ST),(ieee64)ˆ((ref t)a)))]
assembles[’fi’op’ ’t a];

instruction pattern FIDIVR(maddrmode a,fint t)
means[PUSH(ST,div((ieee64)ˆ((ref t)a),POP(ST)))]
assembles[’fidivr ’t a];

instruction pattern FLDONE()
means[PUSH(ST,1.0)]
assembles[’fld1’];

instruction pattern FLDZ()
means[PUSH(ST,0.0)]
assembles[’fldz’];

instruction pattern FLDPI()
means[PUSH(ST,3.14159265358979)]
assembles[’fldpi’];

instruction pattern FILD(maddrmode a,fint t)
means[PUSH(ST,(ieee64)ˆ((ref t)a))]
assembles[’fild ’t a];

instruction pattern FISTP(maddrmode a,fint t)
means[(ref t)a:=(t)POP(ST)]
assembles [’fistp ’t a];

instruction pattern FLD(maddrmode a, real t)
means[PUSH(ST,(ieee64)ˆ((ref t) a))]
assembles[’fld ’ t a];

instruction pattern FNEG(real t)
means[PUSH(ST, *((t)POP(ST),-1.0))]
assembles[’fchs ’];

instruction pattern FOP(maddrmode a,foperator op)
means[PUSH(ST,op(POP(ST),ˆ((ref ieee64)a) )) ]
assembles[’f’op ’ qword ’ a];

instruction pattern ReversePolishFOP(foperator op)
means[PUSH(ST,op(POP(ST),POP(ST)))]
assembles[’f’op’p’ ’ st1’];

instruction pattern FRNDINT()
means[PUSH(ST,(ieee64)(int64)POP(ST))]
assembles[’frndint’];

instruction pattern FCOS(real t)
means[PUSH(ST,COS((t)POP(ST)))]
assembles[’fcos’];

instruction pattern FSIN(real t)
means[PUSH(ST,SIN((t)POP(ST)))]
assembles[’fsin’];

instruction pattern FTAN(real t)
means[PUSH(ST,TAN((t)POP(ST)))]
assembles[’fptan’];

instruction pattern FABS(real t)
means[PUSH(ST,ABS((t)POP(ST)))]
assembles[’fabs’];



42 6. AN EXAMPLE MACHINE SPECIFICATION

instruction pattern FXM(real t)
means[PUSH(ST,-((t)**(2,(t)POP(ST)),1))]
assembles[’f2xm1’];

instruction pattern FSCALE()
means[PUSH(ST,*(POP(ST),**(2,(int32)POP(ST))))]
assembles[’fscale’];

/*

*/
/*

6.1.11 MMX registers and instructions

Registers

*/

register doubleword MM0 assembles[ ’MM0’];
register doubleword MM1 assembles[ ’MM1’];
register doubleword MM2 assembles[ ’MM2’];
register doubleword MM3 assembles[ ’MM3’];
register doubleword MM4 assembles[ ’MM4’];
register doubleword MM5 assembles[ ’MM5’];
register doubleword MM6 assembles[ ’MM6’];
register doubleword MM7 assembles[ ’MM7’];

pattern mreg means [MM1|MM3|MM4|MM5|MM7|MM6|MM2|MM0];

/*

Addressing modes

*/
pattern mrmaddrmode means[maddrmode|mreg];

/*

MMX instructions

*/
pattern byteint means[int8|uint8];
pattern wordint means[int16|uint16];
instruction pattern PMULLW(mreg m, mrmaddrmode ma)

means[(ref int16 vector(4))m :=
(int16 vector(4))*((int16 vector(4))ˆ(m),(int16 vector(4))ˆ(ma))]
assembles[’pmullw ’ m ’,’ ma];

instruction pattern PADDD(mreg m, mrmaddrmode ma)
means[(ref int32 vector(2))m :=
(int32 vector(2))+((int32 vector(2))ˆ(m),(int32 vector(2))ˆ(ma))]
assembles [’paddd ’m ’,’ ma];

instruction pattern PADDW(mreg m, mrmaddrmode ma)
means[(ref int16 vector(4))m :=
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(int16 vector(4))+((int16 vector(4))ˆ(m),(int16 vector(4))ˆ(ma))]
assembles [’paddw ’m ’,’ ma];

instruction pattern PADDB(mreg m, mrmaddrmode ma)
means[(ref int8 vector(8))m :=
(int8 vector(8))+((int8 vector(8))ˆ(m),(int8 vector(8))ˆ(ma))]
assembles [’paddb ’m ’,’ ma];

instruction pattern PADDUB(mreg m, mrmaddrmode ma,byteint t)
means[(ref uint8 vector(8))m :=
(uint8 vector(8))+((uint8 vector(8))ˆ(m),(uint8 vector(8))ˆ(ma))]
assembles [’paddb ’m ’,’ ma];

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)
means[(ref int8 vector(8))m :=
(int8 vector(8))+:((int8 vector(8))ˆ(m),(int8 vector(8))ˆ(ma))]
assembles [’paddusb ’m ’,’ ma];

instruction pattern PSUBUSB(mreg m, mrmaddrmode ma)
means[(ref int8 vector(8))m :=
(int8 vector(8))-:((int8 vector(8))ˆ(m),(int8 vector(8))ˆ(ma))]
assembles [’psubusb ’m ’,’ ma];

instruction pattern PADDUSW(mreg m, mrmaddrmode ma)
means[(ref int16 vector(4))m :=
(int16 vector(4))+:((int16 vector(4))ˆ(m),(int16 vector(4))ˆ(ma))]
assembles [’paddusw ’m ’,’ ma];

instruction pattern PSUBUSW(mreg m, mrmaddrmode ma)
means[(ref int16 vector(4))m :=
(int16 vector(4))-:((int16 vector(4))ˆ(m),(int16 vector(4))ˆ(ma))]
assembles [’psubusw ’m ’,’ ma];

instruction pattern PSUBD(mreg m, mrmaddrmode ma)
means[(ref int32 vector(2))m :=
(int32 vector(2))-((int32 vector(2))ˆ(m),(int32 vector(2))ˆ(ma))]
assembles [’psubd ’m ’,’ ma];

instruction pattern PSUBW(mreg m, mrmaddrmode ma)
means[(ref int16 vector(4))m :=
(int16 vector(4))-((int16 vector(4))ˆ(m),(int16 vector(4))ˆ(ma))]
assembles [’psubw ’m ’,’ ma];

instruction pattern PSUBB(mreg m, mrmaddrmode ma)
means[(ref int8 vector(8))m :=
(int8 vector(8))-((int8 vector(8))ˆ(m),(int8 vector(8))ˆ(ma))]
assembles [’psubb ’m ’,’ ma];

instruction pattern PSUBUB(mreg m, mrmaddrmode ma,byteint t)
means[(ref uint8 vector(8))m :=
(uint8 vector(8))-((uint8 vector(8))ˆ(m),(uint8 vector(8))ˆ(ma))]
assembles [’psubb ’m ’,’ ma];

instruction pattern PAND(mreg m, mrmaddrmode ma)
means[m := AND(ˆ(m),ˆ(ma))]
assembles [’pand ’m ’,’ ma];

instruction pattern POR(mreg m, mrmaddrmode ma)
means[m := OR(ˆ(m),ˆ(ma))]
assembles [’por ’m ’,’ ma];

instruction pattern MOVDS(addrmode rm, mreg m)
means[(ref int32)rm:= (int32)ˆ(m)]
assembles[’movd ’rm ’,’m];

instruction pattern MOVDL(addrmode rm, mreg m)
means[m := (int64)ˆ((ref int32)rm)]
assembles[’movd ’m ’,’rm];

instruction pattern MOVQS(maddrmode rm, mreg m,type t)
means[(ref t)rm:= (t)ˆ(m)]
assembles[’movq ’rm ’,’m];

instruction pattern MOVQL(addrmode rm, mreg m)
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means[m := (doubleword)ˆ(rm)]
assembles[’movq ’ m ’,’ rm];

instruction pattern CMPXCHG(acc a,reg src,addrmode dest)
means[if(=(ˆ(a),ˆ(dest)))dest:=ˆ(src)]

assembles[’cmpxchg dword’ dest ’,’ src ];

/* \begin{verbatim}*/
instructionset [CMPXCHG|MOVSB|MOVSD|INC|DEC|NEG|Negate|
LEA|LOAD|MOVZXB|MOVZXW|RRM|ADDUSB|

SETCC|IDIV|IMOD|RMR|ComRMR|STORE|MOVE|
PLANT|IFLITGOTO |IFGOTO|GOTO|CALL|
PLANTRCONST|PADDD|PADDW|PADDB|PSUBD|PSUBW|
PSUBB|PSUBUB|PADDUSB|PADDUB|
PSUBUSB|PADDUSW|PSUBUSW|POR|PAND|PMULLW
|MOVDS|MOVDL|MOVQS|MOVQL ]

/*

*/
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