
Lino: a tiling language for arrays of processors

Paul Cockshott
Department of Computer Science

University of Glasgow
wpc@dcs.gla.ac.uk

Greg Michaelson
School of Mathametical and Computer Sciences

Heriot-Watt University
G.Michaelson@hw.ac.uk

Lino is language for tiling large arrays of processor, in particular for multi-core. Lino is oriented to the
coordination and communication aspects of multi-processing, and is otherwise implementation neutral, thus
naturally facilitating the composition of large systems from heterogeneous software components. The need
for Lino is motivated, and Lino’s design and implementation are surveyed.

Lino, multi-core, tiling, coordination language

1. INTRODUCTION

Moore’s Law implies that as the scale of transistors
shrinks, the number of gates that can be fitted onto a
chip of a standard size, say of the order of 1cm2, will
double every two years. Historically this has been used
by processor manufactures to increase the complexity of
individual processor cores. The word length has grown
from 4 bits in the first chips back in the 1970s to 128 bits
on Intel machines circa 2000. In an orthogonal direction,
the pipeline depths have increased, as has the logic to
exploit instruction level parallelism: dual isssue, out of
order issue, etc.

A reduction in feature sizes potentially allows the speed
of gates to rise, allowing a rise in clock speeds. This rise
was pretty continuous until the last few years since when
it has leveled off. The levelling off has been due to :

1. Higher clock speeds increase the heat dissipation
per cm2 due to capacitive losses, at around 3Ghz
the heat losses are at the limit of what can be
sustained with air cooling, even with heat pipes etc.

2. As clock speeds rise, clock skew accross the die
becomes a significant factor which ultimately limits
the ability to construct synchronous machines.

A result of these pressures has been that the mode
of elaboration of chips has switched from complexifying
individual cores, to the adding of multiple cores to each
chip. We can now expect the number of cores to grow
exponentially: perhaps doubling roughly every two years.
This implies that in 10 years time a mass produced
standard PC chip could contain around 256 or 512 cores.

As if the growth in the number of cores were not enough
to worry about, one also has to think of what the

implications of this are for memory access. Although it
has proven possible to shrink the feature sizes on chip,
providing an increased number of pins comming off the
chip has proven much harder. The number of pins on
chips has grown, but at slower exponential rate than the
number of gates on chip. If this trend continues, then it
will be increasingly difficult to provide all of the cores on
the chip with an adequate bandwidth to a single unified
main memory. Caches can help up to a degree with this,
but they can only disguise and partially delay the onset of
a bandwidth bottle-neck in communication with a unified
main store. We are likely to see an increasing reliance
on each of the cores having its own private high speed
memory on chip. We can already see this with the Cell
in which each vector core has its own completely private
memory. The Intel Larabee attempts to make these.

Most recently, Intel has announced an experimental CPU
with 48 cores, as shown in Figure 1. This is intended to
support what they term “Single-chip Cloud Computing”.

This growth in the number of cores and the problems
of communicating between arbitrary processors is going
to require a fundamental rethink in the way we design
programming languages. In this paper, we present Lino,
a novel notation for programming arbitrarily large arrays
of processors, based on abstractions over patterns
of process adjacencies. In the following sections we
explore the limitations of current approaches, present the
Lino designs and explore a first Lino implementation.

2. BACKGROUND

Multi-processing requirea programmings mechanisms
for creating processes, communicating between them
and coordinating their behaviours.

c© The Authors. Published by the British
Informatics Society Ltd. 1
Proceedings of ACM-BCS Visions of Computer Science 2010

Cockshott and Michaelson

Figure 1: Intel Rock Creek CPU.

We may discern three main approaches to such
programming. Fully automated parallelisation aims to
extract useful parallelism implicit in programs. Here
the compiler and run-time system are responsible
for all apsects of process creation, communication
and coordination. Despite many years research,
most success has still been enjoyed with loop/array
parallelisation in Fortran(KL+94). Even with very
sophisticated program analysis, in general parallism
is restricted to regular patterns of processing across
regular data structures.

A second approach is to develop new languages with
integrated parallel constructs. There have been numer-
ous proposals for parallel programming languages. How-
ever, because of the enormous investment required to
deploy and maintain a new language in the teeth of
existing code base investments, few make it beyond
the PhD without significant industrial support. Probably
the most succesful contemporary parallel language is
Erlang(AVWW96). The highly promising Occam(Inm87),
which died for reasons of economy rather than technol-
ogy, remains very influential.

Typically, such languages offer new constructs for
expressing patterns of processing and communication.
Thus both Occam and Erlang provide explicit processes
with explicit channel communication. In addition, Occam
provided the potentially language independent notion of
wiring where processes are explicitly associated with
processors.

The contemporary Hume(Hammond03) has concurrent
boxes as the locus of processing with explicit wire
interconnections. Hume is novel in explicitly separating
a rich control language for describing individual boxes

from a simple coordination language for describing their
interconnections. Hume is also novel in offering implicit
type driven inter-process communication: data of known
type is automatically serialised and unserialised without
programmer intervention. Like Occam, however, Hume
is a flat language and lacks abstractions over processes
and communication.

The most common approach to programming multi-
processor systems is through specialised libraries in
extant languages. Such libraries may be language
and platform independent, as with MPI(Gro00) and
PVM(PVM93) for distributed memory systems based
on high speed interconnects, Pthreads(LB98) and
OpenMP(CJP07) for shared memory systems now
typically based on multi-core assemblies. There are
also language specific, platform independent libraries,
like the very widely used Java threads(Hyd99), and
platform specific, language independent libraries, like
Intel threads (Rei07). Such libraries tend to be relatively
low level. They also tend to require deep understanding
of an often opaque multi-processor model, and its
interactions with the host programming language. As
with parallel languages, in the absence of appropriate
abstraction mechanisms, it is not clear how such libraries
use can scale effectively to open-endedly large systems.

An approach increasingly adopted by large companies,
to manage processing on very large farms of proces-
sors, is to provide highly scalable but architecturally re-
stricted frameworks for parallelism. These often draw on
ideas from the algorithmic skeleton community(Cole02)
to provide standard patterns of multi-process com-
putation. Thus, Google uses their proprietary map-
reduce(Dean08) approach, where Yahoo has adopted
the closely comparable open-source Hadoop(Apache08)
from Apache. In turn, Microsoft deploys the somewhat
more general Dryad framework(Isard07).

3. LINO DESIGN

We think that the increasing heterogeneity of contem-
porary systems, both in software and hardware com-
ponents, requires a high degree of language and plat-
form independence. In turn, the growing complexity of
contemporary systems requires a very high degree of
automation; programmers should focus on defining com-
putations and their patterns at an abstract level and the
implementation should realise the underlying glue. Next,
the sheer scale of contemporary systems, as seen in
industrial processor farms of tens of thousands of CPUs,
requires some restriction in the generality of any viable
approach to constructing them. Finally, we observe a
high degree of regularity of pattern of computational ele-
ments in contemporary systems, where complex compu-
tations at a low level are massively replicated in simple
formations at a high level.

2

Lino: a tiling language for arrays of processors

North

South

EastWest

in

in

in

out

out
out

in out

a) Tile b) Tile array

Figure 2: Tile and tile array

Thus, our new language Lino 1 is aimed at:

• tiling large conceptual two-dimensional arrays of
procesing elements with patterns of computations;

• facilitating hierachies of pattarns of such arrays;

• language and platform independent implementa-
tion;

• minimising “glueware” between procesing ele-
ments.

The implications of these design decisions are explored
in the following sections.

4. TILES AND TILINGS

Lino programs describe arrays of square tiles. Figure 2
shows an atomic square tile and an array of tiles. A tile
has one input stream and one output stream on each
face. Faces are identified as North, East, South and
West.

Figure 3 shows the syntax of Lino.

A program is a sequence of commands ending with
a nominated main expression. A command is a tile
definition or an aliased expression. A definition
provides the tile name, the types of the input and output
for each face, and a path to an executable body.

Atomic tiles, shown in Figure 4 include identity (I), which
sends all inputs to the outputs on the opposite faces,
Mirror, which sends the input to the output on each face,
and null (∅), which has no outputs and absorbs inputs.

Tile constructs may be placed next to each other with
the operators | to form rows and _ to form columns. Tile
constructs may be replicated horizontally (*), to forms
rows, and vertically (^), to form columns, a fixed integer
number of times.
1c.f. linoleum tiles.

comm ::= def | alias commands
comms ::= comm [; comms] command sequence
prog ::= comms ; main = exp program

def ::= id : faces <- path define tile id
faces ::=

((ty0,ty4),...(ty3,ty7)) I/O stream types
ty ::= ... type
path ::= ... file path

alias ::= id = exp id aliases exp

block ::= [redir[; redir]] shell block
redir ::= path dirio [dirio] redirected shell command
dirio ::= inout direction
inout ::= > | < standard i/o redirection
direction ::= North|East|South|West face labels
exp ::= ... expressions
id name of defined tile

or aliased exp
I identity
Mirror reflects face I/O
∅ sink
(exp) brackets
exp1|exp2 row
exp1_exp2 column
exp * int horizontal replication
exp ^ int vertical replication
Flip exp horizontal mirror image
Rotate exp rotate 90 degrees clockwise

Figure 3: Lino syntax

b) mirrora) identity c) null

Figure 4: Atomic tiles

North

South

East West

a) flip

South

West

North

East

b) rotate

Figure 5: Flip and rotate

3

Cockshott and Michaelson

1. e*1 ⇒ e
e*N ⇒ e|(e*N -1)

2. e^1 ⇒ e
e^N ⇒ e_(e^N -1)

3. Flip I ⇒ I
Flip Mirror ⇒ Mirror
Flip ∅ ⇒ ∅
Flip (e|f) ⇒ Flip f|Flip e
Flip (e_f) ⇒ Flip f_Flip e

4. Rotate I ⇒ I
Rotate Mirror ⇒ Mirror
Rotate ∅ ⇒ ∅
Rotate (e|f) ⇒ Rotate f_Rotate e
Rotate (e_f) ⇒ Rotate f|Rotate e

5. Flip Flip e ⇒ e
6. Rotate Rotate

Rotate Rotate e ⇒ e
7. (a_b)|(c_d) ⇒ (a|c)_(b|d)

Figure 6: Transformation rules

Finally tile constructs may be fliped through 180
degress horizontally, or rotated clockwise through
90 degrees, with the corresponding reordering of
face/stream correspondences. See Figure 5.

5. TRANSFORMATION RULES

The rules shown in Figure 6 apply to expressions.
Horizontal and vertical replication apply a fixed (and
known) number of times (1 and 2). Flip and rotate
preserve identity, mirror and null tiles (3 and 4). Flipping
a row creates a row of flipped elements in reverse order;
flipping a column creates a column of flipped elements
(3). Rotating a row creates a column of rotated elements;
rotating a column creates a row of rotated elements in
reverse order (4) Two flips cancel (5). Four rotates cancel
(6). Columns distribute over rows (7).

6. IMPLEMENTATION

Implementation proceeds in two stages. First, the main
expression is fully expanded to column-major order.
Then, the overall column of rows drives the generation
of an equivalent shell script in which, for each tile
position, approprite executable calls are made with
stream redirection to linking FIFOs.

To expand a main expression:

1. replace every alias identifier with the correspond-
ing expresssion;

2. expand up all replication;

3. push all flips and rotates inwards;

4. cancel flips and rotates;

5. distribute columns over rows.

The effect of this is to reduce the tree to normal form
comprised of horizontal and vertical join operations
on tiles which may themselves contain flip and rotate
operations.

A depth first traversal of the tree is then performed to
build up a two dimensional array of these atomic tile
expressions.

An atomic tile translates into a [1,1] tile array. x|y will
result in an [n,m] tile array when the translation of x is
an [n,p] tile array and that of y an [n,q] tile array with
m=p+q and generates a tiling error otherwise.

Similarly x y gives an [n,m] tile array where the
translation of x is an [p,m] tile array and that of y an [q,m]
tile array assuming n=p+q and again generates a tiling
error otherwise.

Given a tiling array, it can be translated into a shellscript
in the following stages.

1. Generate 4 output fifos for each tile thus:

mkfifo fifos/North0_0
mkfifo fifos/East0_0
mkfifo fifos/South0_0
mkfifo fifos/West0_0
mkfifo fifos/North0_1
mkfifo fifos/East0_1
mkfifo fifos/South0_1
mkfifo fifos/West0_1

etc which generates fifos for row 0, tiles 0 and 1.
These Linux fifos are to all appearances just files
in the file system. They can be opened by two
process one as a reader and the other as a writer,
using normal file open calls and the operating
system then ensures that they operate as blocking,
buffered channels.

2. Then for each tile allocate a 4 element array of
output fifonames. The elements of this array initially
correspond to ”North”,”East”,”South”,”West”.

3. Next visit each tile and perform any flips and
rotates that are required on the array of output fifos
associated with that tile. A rotate is done by a cyclic
shift of the array, and a flip by exchanging the East
and West fifo names.

4. Next create an empty 4 element array of input fifo
names for each tile. Initialise these by following a
path out from the current tile, normal to the edges
until you encounter a tile capable of generating
output. Thus you must pass over identity cells.

A mirror cell counts as a potential source of data as
it is actually implemented as 1 or more processes

4

Lino: a tiling language for arrays of processors

that copy output to input. It might appear that
one could simply reverse ones path on reaching a
mirror cell, but that would result in a source process
both writing to and reading from a fifo, which would
cause it to hang when trying to open the fifo.

5. Apply the flips and reverses to the 4 element array
of input fifo names just as they were applied to the
output fifo names.

6. As a last stage traverse the tiling and for every
non routing tile output a shell command to run
the process with appropriate i/o redirection and
command line parameters specifying the positions
in the array at which the tile is running. The
successive shell commands are separated by &s
to spawn parallel processes.

7. EXAMPLE: GAME OF LIFE ON 8 CORES

Consider an implementation of the Game of Life, written
in C. Suppose now we wish to run it on an eight-core
platform such that there are, conceptually, four rows of
two life tiles. We surround the central eight life tiles with
mirror tiles to provide a boundary condition:

lifecell:((int,int),(int,int),(int,int),(int,int))

<- ./lifeprog;

liferow = Mirror | lifecell | lifecell | Mirror;

mirrorrow = Mirror * 4;

main = mirrorrow _ (liferow^4) _ mirrorrow;

A lifecell has integer input and output streams on all
faces and is implemented by the exceutable program
lifeprog. A liferow is two lifecells bounded by
Mirrors. A mirrorrow is four Mirrors. The whole tileing
(main) is four liferows between two mirrorrows.

In this case, the expansion to normal form is
straightforward. First of all, macro-substitution occurs to
replace all occurrences of mirrorrow and liferow:

main = Mirror * 4 _

(Mirror | lifecell | lifecell | Mirror) ^ 4 _

Mirror * 4

And next, the replications are expanded out, to reveal the
final tiling:

main = Mirror | Mirror | Mirror | Mirror _

Mirror | lifecell | lifecell | Mirror _

Mirror | lifecell | lifecell | Mirror _

Mirror | lifecell | lifecell | Mirror _

Mirror | lifecell | lifecell | Mirror _

Mirror | Mirror | Mirror | Mirror

The second stage, compilation, generates FIFOs as
above, followed by a shell program. The shell script
generated by the compiler for this example is shown in
Figure 7.

Note that the corner mirrors are ommitted.

cat < fifos/North1_1 > fifos/South0_1 &

cat < fifos/North1_2 > fifos/South0_2 &

cat > fifos/East1_0 < fifos/West1_1 &

./lifeprog 8< fifos/East1_0 3> fifos/East1_1

1> fifos/North1_1 6< fifos/North2_1

0< fifos/South0_1 5> fifos/South1_1

7> fifos/West1_1 4< fifos/West1_2 1 1&

./lifeprog 8< fifos/East1_1 3> fifos/East1_2

1> fifos/North1_2 6< fifos/North2_2

0< fifos/South0_2 5> fifos/South1_2

7> fifos/West1_2 4< fifos/West1_3 1 2&

cat < fifos/East1_2 > fifos/West1_3 &

cat > fifos/East2_0 < fifos/West2_1 &

./lifeprog 8< fifos/East2_0 3> fifos/East2_1

1> fifos/North2_1 6< fifos/North3_1

0< fifos/South1_1 5> fifos/South2_1

7> fifos/West2_1 4< fifos/West2_2 2 1&

./lifeprog 8< fifos/East2_1 3> fifos/East2_2

1> fifos/North2_2 6< fifos/North3_2

0< fifos/South1_2 5> fifos/South2_2

7> fifos/West2_2 4< fifos/West2_3 2 2&

cat < fifos/East2_2 > fifos/West2_3 &

cat > fifos/East3_0 < fifos/West3_1 &

./lifeprog 8< fifos/East3_0 3> fifos/East3_1

1> fifos/North3_1 6< fifos/North4_1

0< fifos/South2_1 5> fifos/South3_1

7> fifos/West3_1 4< fifos/West3_2 3 1&

./lifeprog 8< fifos/East3_1 3> fifos/East3_2

1> fifos/North3_2 6< fifos/North4_2

0< fifos/South2_2 5> fifos/South3_2

7> fifos/West3_2 4< fifos/West3_3 3 2&

cat < fifos/East3_2 > fifos/West3_3 &

cat > fifos/East4_0 < fifos/West4_1 &

./lifeprog 8< fifos/East4_0 3> fifos/East4_1

1> fifos/North4_1 6< fifos/North5_1

0< fifos/South3_1 5> fifos/South4_1

7> fifos/West4_1 4< fifos/West4_2 4 1&

./lifeprog 8< fifos/East4_1 3> fifos/East4_2

1> fifos/North4_2 6< fifos/North5_2

0< fifos/South3_2 5> fifos/South4_2

7> fifos/West4_2 4< fifos/West4_3 4 2&

cat < fifos/East4_2 > fifos/West4_3 &

cat > fifos/North5_1 < fifos/South4_1 &

cat > fifos/North5_2 < fifos/South4_2 &

Figure 7: Shell script generated by the lino compiler from the
Game of Life example

5

Cockshott and Michaelson

lifecell 0 0 lifecell 0 1

lifecell 1 0 lifecell 1 1

area read by cell 0 0
area updated by cell 0 0

Figure 8: Each process has an area it updates and a larger
area it reads from, which overlaps those written by other
processes.

The programme lifeprog maintains a 2D array of cells
which keep the current states of a square region of the
plain of automata that are being emulated. It could be
written in a variety of languages, but in what follows we
give an example in C.

Its basic control structure is a loop which performs
communication and then updates the states of the
automata:

for(count=0;count<ITER;count++)

{ /* communications */

writestates();

readstates();

exchangecorners();

/* updateing */

updatestates();

}

As Figure 8 shows, each process has an area of the
array which it updates and a larger area that it reads
from. The array of states is defined as:

char state[EDGE+2][EDGE+2];

to allow for this. The subarray
state[1..EDGE][1..EDGE] is actually updated by the
program, the outer rows and outer columns are obtained
from it’s neighbours. A process talks over the garden
fence to it’s neighbours is via fifos. To prevent blocking,
each process must write before it reads. A secondary
sequence of io operations, exchangecorners(), is
needed to access the diagonal corner cells, as these
come from processes with which the current process
is not in direct contact. The actual reading and writing
is done using standard Posix system calls as shown in
Figure 9. Thus no special runtime library or harness is
needed to run C code within a lino tiling.

writestates()

{

char westbuf[EDGE];char eastbuf[EDGE];int i;

/* write out rows */

write(NORTHOUT,&(state[1][1]),EDGE);

write(SOUTHOUT,&(state[EDGE][1]),EDGE);

/* copy cols to buffers */

for(i=0;i<EDGE;i++){

westbuf[i]=state[i+1][1];

eastbuf[i]=state[i+1][EDGE];

}

write(EASTOUT,eastbuf,EDGE);

write(WESTOUT,westbuf,EDGE);

}

Figure 9: Input and output from fifos is done using standard
system calls, with the channels NORTHOUT etc, being defined
by the include file lino.h.

mux

basecell

Figure 10: Mapping a hexagonal tiling to a rectilinear one. In
both tilings each tile has 6 neighbours.

6

Lino: a tiling language for arrays of processors

W M

W

W

W

W

M 0

W

W

W

W

M 0

W

W

W

W

M 0

M

I

I I

I

I

I

I

I

C

Tee peice Worker Mirror Identity

Data collctor

Figure 11: A process farm tiling, with worker cells W and Tee
pieces that connect these to the data collector C.

8. OTHER TESSELATIONS

It may be necessary in some cases to have a non-square
tiling. For example simulating latice gasses can require
a hexagonal tiling. A hexagonal tiling can be mapped to
a rectilinear tiling with an equivalent adjacency graph
as shown in Figure 10. The basic components are
rectangles with 6 connecting fifos which are then laid
out offset by one cell position. The basic rectangles can
be expressed in lino as hex= mux _ basecell;, where
mux is a process that multiplexes its west, north and east
inputs to its south output and vice versa. The basecell
can then have communications with six neighbours as
required for the hexagonal adjacency graph.

One can also construct processor farm tesselations with
a T piece

T= ((char,char),(char,char),(char, char),(,))teemux

The teemux program runs the following algorithm:

1. Read a character c (either a 0, or a 1) from the
south.

2. Write the character c to the north and read the reply
character rN from the north.

3. If rN = 0 it means no results are available so goto
step 5.

4. If rN =1 read a count byte n, followed by n bytes
of data from the north.

5. Write the sequence (1,n, bytesn) to the south and
goto 1

6. Write the character c to the east. Read reply from
the east rE .

7. If rE = 0 it means no results are available write 0
to the south and terminate..

Cores Tiles Time (s) 8 tiles/2 tiles
2 2 27.14
2 8 106.80 3.94
8 2 14.68
8 8 14.88 1.01

Figure 12: Times obtained for running different numbers of
lifecells in parallel on a 2 and an 8 core machine.

8. If rE =1 read a count byte n, followed by n bytes of
data from the east.

9. Write the sequence (1,n, bytesn) to the south and
goto 1.

This attempts to suck data from the north until there is
no more available, and then such it from the east until
there is no more available. By composing these with
worker cells to their east, it is possible to build up a
network of tiles that will route the results produced by
the worker cells in a determinate order to a collector cell.
An illustration of such a layout is given in Figure ??.

9. EVALUATION

The life program was timed, with each tile processing
a 512∗512 grid, on a two-core and an eight-core CPU.
Figure 12 shows the times.

We observe that, on the two-core machine, eight life tiles
take roughly four s times as long as two life tiles, and
that, on the eight-core machine, both two and eight life
tiles take roughly the same time. Of course this is a highly
uniform example with highly regular processing on each
tile. Nonetheless, these preliminary times suggest that
our simple implementation scheme is robust.

10. CONCLUSION

11. REFERENCES

[Apache08]Apache. Hadoop Map/Reduce Tutorial.
Apache Software Foundation, 2008.
[AVWW96]J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in ERLANG.
Prentice Hall, 2nd edition, 1996.
[CJP07]B. Chapman, G. Jost, and R. van der Pas.
Using OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering Computation).
The MIT Press, 2007.
[Cole02]M. Cole. Bringing Skeletons out of the Closet.
Parallel Computing, 30(3):389–406, 2004.
[Dean08]J. Dean and S. Ghemawat. MapRe-
duce:SimplifiedDataProcessingonLargeClusters.
Communications of the ACM: 50th anniversary issue:
1958 - 2008, Special Issue: Breakthrough research:

7

Cockshott and Michaelson

a preview of things to come, 51(1):107–113, January
2008.
[Gro00]W. Gropp. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT,
2000.
[Hammond03]K. Hammond and G. Michaelson. Hume:
a Domain-Specific Language for Real-Time Embedded
Systems. In Proc. GPCE 2003: Intl. Conf. on Generative
Prog. and Component Eng., Erfurt, Germany, pages 37–
56. Springer-Verlag LNCS 2830, Sep. 2003.
[Hyd99]P. Hyde. Java Thread Programming. Sams,
August 1999. ISBN 0-672-31585-8.
[Inm87]Inmos. Occam2 Reference Manual. Prentice-
Hall, 1987.
[Isard07]M. Isard ,M. Budiu, Y. Yu, A. Birrell and
D. Fetterly. Dryad: Distributed data-parallel programs
from sequential building blocks. In Proceedings of
European Conference on Computer Systems (EuroSys),
pages 59–72, March 2007.
[KL+94]C. H. Koebel, D. B. Loveman, R. S. Schreiber,
G. L. Steele Jr, and M. E Zosel. The High Performance
Fortran Handbook. MIT, 1994.
[LB98]B. Lewis and D.J. Berg. Multithreaded Program-
ming with Pthreads. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1998.
[PVM93]Parallel Virtual Machine Reference Manual.
University of Tennessee, Aug 1993.
[Rei07]J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor Parallelism.
O’REILLY, 2007.

8

