
Automatic Vectorising Compilation At Glasgow
University

Paul Cockshott

University of Glasgow

January 18, 2011



Summary

I Vector Pascal : a sort of merger of APL and Pascal, which is
targeted at SIMD multi-cores and uses the most developed of
our compiler technologies.

I Our FORTRAN 95 to IBM Cell experiments.



The growth of data parallelism

CPU year regs clock clock/ins cores speed data rate

bits MHz MIPS MB/s

4004 1971 4 0.1 8 1 0.0125 0.00625

8080 1974 8 2 8 1 0.25 0.25

8086 1978 16 5 8 1 0.33 0.66

386 1985 32 16 3 1 5.0 20

MMX 1997 64 200 0.5 1 400 3,200

Harpertown 2007 128 3400 0.25 4 54,400 870,400

Larrabee 2010 512 2000 0.5 16 64,000 4096,000

I Instruction speed si = pc/i where p is processor cores, c is the
clock and i clocks per instruction

I data throughput d = siw where w is the register width in
bytes



Note how much of the increase in performance comes from
increasing data parallelism.
Key points: use the wide data registers, use multiple cores.



Importance of Graphics Operations

The driving force in processor data throughput over the last decade
has been graphics. We can see 4 stages in this evolution:

1. Intel introduce saturated parallel arithmetic for working on
pixel arrays with the MMX instruction set.

2. AMD and Intel introduce parallel operations on 32 bit �oats
for working on co-ordinate transformations for 3D graphics in
games.

3. Nvidia and ATI develop programmable Miltie-core GPUs able
to operate on 32 bit �oats for games graphics.

4. Sony1and Intel2 respond by developing general purpose multi
core CPUs optimised for 32bit �oating point vector operations.

1Cell
2Larrabee



Use the right types!

To get the best from current processors you have to be able to
make use of the data-types that they perform best on : 8 bit
saturated integers, and 32 bit �oats. Parallel operations are
possible on other data-types but the gain in throughput is not
nearly so great.



Operate on whole arrays at once

The hardware is capable of operating on a vector of numbers in a
single instruction
processor byte int �oat double

Vector Lengths

MMX 8 2 - -

SSE2 16 4 4 2

Cell 16 4 4 2

Larrabee 64 16 16 8
Thus a programming language for this sort of machine should
support whole array operations. Provided that the programmer
writes the operation as operating on a whole array the compiler
should select the best vector instructions to achieve this on a given
architecture.
Use multiple cores

If the CPU has multiple cores the compiler should parallelise across
these without the programmer altering their source code.



Working with Pixels

When operating with 8 bit pixels one has the problem that
arithmetic operations can wrap round. Thus adding two bright
pixels can lead to a result that is dark. So one has to put in guards
against this. Consider adding two arrays of pixels and making sure
that we never get any pixels wrapping round in C:

#define LEN 6400

#define CNT 100000

main()

{

unsigned char v1[LEN],v2[LEN],v3[LEN];

int i,j,t;

for(i=0;i<CNT;i++)

for (j=0;j<LEN;j++) {t=v2[j]+v1[j];if( t>255)t=255; v3[j]=t;}

}

[wpc@maui tests]$ time C/a.out

real 0m2.854s

user 0m2.813s

sys 0m0.004s



Assembler
SECTION .text ;

global main

LEN equ 6400

main: enter LEN*3,0

mov ebx,100000 ; perform test 100000 times for timing

l0:

mov esi,0 ; set esi registers to index the elements

mov ecx,LEN/8 ; set up the count byte

l1: movq mm0,[esi+ebp-LEN] ; load 8 bytes

paddusb mm0,[esi+ebp-2*LEN] ; packed unsigned add bytes

movq [esi+ebp-3*LEN],mm0 ; store 8 byte result

add esi,8 ; inc dest pntr

loop l1 ; repeat for the rest of the array

dec ebx

jnz l0

mov eax,0

leave

ret

[wpc@maui tests]$ time asm/a.out

real 0m0.209s

user 0m0.181s

sys 0m0.003s



Now lets use an array language compiler

program vecadd;

type byte=0..255;

var v1,v2,v3:array[0..6399]of byte;

i:integer;

begin

for i:= 1 to 100000 do v3:=v1 +: v2;

{ +: is the saturated add operation }

end.

[wpc@maui tests]$ time vecadd

real 0m0.094s

user 0m0.091s

sys 0m0.005s

So the array language code is about twice the speed as the
assembler.



Vector Pascal

I I will focus on the language Vector Pascal, an extension of
Pascal that allows whole array operations, and which both
vectorises these and parallelises them across multiple CPUs. It
was developed speci�cally to take advantage of SIMD
processors whilst maintaining backward compatibility with
legacy Pascal code. It stands in a similar relationship to ISO
Pascal as FORTRAN 95 stands to FORTRAN 77.

I It is heavily in�uenced by languages like J, APL and ZPL.

I It aims to be a complete programming language - super set of
ISO Pascal, and to semantically extend all operations to data
parallel form, and then automatically parallelise them
automatically at compile time and run time.



Extend array semantics

Standard Pascal allows assignment of whole arrays. Vector Pascal
extends this to allow consistent use of mixed rank expressions on
the right hand side of an assignment. For example, given:

r1:real; r1:array[0..7] of real;

r2:array[0..7,0..7] of real;

s:real;

then we can write to mean

r1:= 1/2; assign 0.5 to each element of r1
r2:= r1*3; assign 1.5 to every element of r2
r1:= r1+r2[1]; add row 1 of r2 to r1

s:= \ + r1 s ←
∑

ι0
r[ι0]

r1 = \ * r2 ∀ι0r1[ι0]←
∏

ι1
r2[ι0, ι1]

r1 := r1 * iota[0] ∀ι0r1[ι0]←r2[ι0]*ι0



Implicit mapping

Maps are implicitly de�ned on both operators and functions.
If f is a function or unary operator mapping from type T1 to type
T2

I a: array[ To ] of T2

I g(p,q:T1): T2,

I x,y:array[To] of T1 ,

I B: array[T1] of T2

statement means
a:=f(x) ∀i∈To

a[i]=f(x[i])

a:=g(x,y) ∀i∈To
a[i]=g(x[i],y[i])

a:=B[x] ∀i∈To
a[i]=B[x[i]]



Support array slices and dynamic arrays

I ISO Pascal only supported arrays whose size was known at
compile time.

I ISO-extended Pascal93 allows array sizes to be dynamically
de�ned.

I Vector Pascal extends this with array sections in Algol68 or
Fortran95 style.

Given a:array[0..10,0..15] of t; then

a[1] array [0..15] of t

a[1..2] array [0..1,0..15] of t

a[][1] array[0..10,0..0] of t

a[1..2,4..6] array[0..1,0..3] of t



Sectioning in graphics

type window(maxrow,maxcol:integer)=

array[0..maxrow,0..maxcol]of pixel;

procedure clearwindow(var w:window);

begin

w:=black;

end;

var screen:array[0..1023,1..800] of pixel;

begin

clearwindow(screen[20..49,0..500]);

end;



Data reformatting

Given two conformant matrices a, b
the statement

a:= trans b;

will transpose the matrix b into a.
For more general reorganisations you can permute the implicit
indices thus

a:=perm[1,0] b ;{ equivalent to a:= trans b }

z:=perm[1,2,0] y;

In the second case z and y must be 3 d arrays and the result is such
that z[i,j,k]=y[j,k,i]



Convolution example



Performance
I The convolution example in Vector Pascal runs in 32ms on an

image of 1024x1024 pixels
I A C (gcc) implementation of the convolution operation takes

352ms on the same image
I Both done on the same computer ( Fujitsu Laptop, with

Centrino Duo, dating from 1996).

I Key factors
I removal of all array temporaries by the compiler,
I the evaluation of the code in SIMD registers across both cores.

Algorithm Implementation Target Processor MOPs

conv Borland Pascal 286 + 287 6
Vector Pascal Pentium + MMX 61
DevPascal 486 62
Delphi 4 486 86

pconv Vector Pascal 486 80
Vector Pascal Pentium + MMX 820

Measurements done on a 1 core 1GHz Athlon, running Windows
2000.



Similar gains on eliminating set temporaries

1 2 3

secs secs

Maxlim Vector Prospero ratio

Pascal Pascal

20000 0.73 42 57 to 1

25000 0.91 63 69 to 1

40000 1.30 315 242 to 1

Seive of Erastostenes
Measurements taken using my old 700 MHz Trans-Meta Crusoe laptop. Vector

Pascal compiled to the MMX instruction-set. Columns 1 and 2 give total run

time in seconds to �nd the primes excluding time to print them. Column 3

shows the speed ratio between the two compilers.



Method of translation

compiler code generator
machine

pascal source → ILCG tree → speci�c
assembler



ILCG

Intermediate language for code generation.
It is a machine level array language which provides a semantic
abstraction of current processors.

1. We can translate source code into ILCG.

2. We can describe hardware in ILCG too.

This allows the automatic construction of vectorising code
generators.



Translation from source to ILCG

Pascal

v3:=v1 +: v2;

ILCG

mem(ref uint8 vector ( 6400 ), +(PmainBase, -25600) ):=

+:(^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -12800))),

^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -19200)))))

Note that all operation are annotated with type information, and all
variables are resolved to explicit address calculations in ILCG �
hence close to the machine, but it still allows expression of parallel
operations.
^ is the dereference operation.



Key instruction speci�cations in ILCG

These are taken from the machine speci�cation �le gnuPentium.ilc
saturated add

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)

means[(ref uint8 vector(8))m :=

(uint8 vector(8))+:((uint8 vector(8))^(m),

(uint8 vector(8))^(ma))]

assembles ['paddusb 'ma ',' m];

vector load and store

instruction pattern MOVQL(maddrmode rm, mreg m)

means[m := (doubleword)^(rm)]

assembles['movq ' rm ',' m'\n prefetchnta 128+'rm];

instruction pattern MOVQS(maddrmode rm, mreg m)

means[(ref doubleword)rm:= ^(m)]

assembles['movq 'm ','rm];



Automatically build an optimising code generator

ILCG Java
Compiler Compiler

Pentium.ilc → Pentium.java → Pentium.class
Opteron.ilc → Opteron.java → Opteron.class

To port to new machines one has to write a machine description of
that CPU in ILCG. We currently have the Intel and AMD machines
post 486 plus Beta versions for the PlayStation 2 and PlayStation 3.



Vectorisation process
Basic array operation broken down into strides equal to the
machine vector length. Then match to machine instructions to
generate code.
ILCG input to Opteron.class

mem(ref uint8 vector ( 6400 ), +(PmainBase, -25600) ):=

+:(^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -12800))),

^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -19200)))))

Assembler output by Opteron.class

leaq 0,%rdx ; init loop counter

l1:cmpq $ 6399, %rdx

jg l3

movq PmainBase-12800(%rdx),%MM4

prefetchnta 128+PmainBase-12800(%rdx) ; get data 16 iterations

; ahead into cache

paddusb PmainBase-19200(%rdx),%MM4

movq %MM4,PmainBase-25600(%rdx)

addq $ 8,%rdx

jmp l1

l3:



Extend to Multi-cores

Vectorisation works particularly well for one dimensional data in
which there is locality of access, since the hardware wants to work
on adjacent words.
But newer chips have multiple cores. For the Opteron and Pentium
family, the compiler will parallelise across multiple cores if the
arrays being worked on are of rank 2 rather than 1.



2 D example.

program partest;

procedure sub2d;

type range=0..127;

var x,y,z:array[range,range] of real;;

begin

x:=y-z;

end;

begin

sub2d;

end;

Suppose we want to run this on an Opteron that has 2 cores and 4
way parallelism within the instructions we compile as follows

$ vpc prog -cpuOpteron -cores2

and it performs the following transformation



Individual task procedure
The statement x:=y-z is translated into a procedure that can run as
a separate task, the ILCG rendered as Pascal for comprehensibility!

procedure sub2d;

type range=0..127;

var x,y,z:array[range,range] of real;

procedure label12(start:integer);

var ι;array[0..1] of integer;

begin

for ι0:=start to range step 2 do

for ι1:=0 to range step 4 do

x[ι0,ι1..ι1+3]:=y[ι0,ι1..ι1+3]-z[ι0,ι1..ι1+3];
end;

begin

post_job(label12, %rbp ,1); (* send to core 1 *)

post_job(label12, %rbp ,0); (* send to core 0 *)

wait_on_done(0); wait_on_done(1};

end;



Memory structure

link

x,y,z

Stack of main thread

Fp 

Sp 

Fp 

Sp 

link
ι

Sp 

link
ι

Fp 

Stack of thread 0

Stack of thread 1

x,y,z appear as if in 
enclosing stack frame



Parallelism on Heterogeneous Multiprocessors

Cell has

I Two way threaded main processor 128 bit Power PC

I main memory

I 8 vector processors (SPE) 128 bits

I run in private 256k memory each
I no instruction access to main memory
I dma block transfers to/from main memory

I Main and vector processors use di�erent instruction sets

We have tried 2 approaches to compiling to this

I Virtual SIMD machines

I Mapping to O�oad blocks in C++



Virtual SIMD

This is the model we compile to: SIMD with load store architecture



Implemented Split over SPEs



How do we compile to it?

1. Augment the ILCG speci�cation of the Power PC with
additional registers

2. Augment with semantic speci�cation of additional OP codes

3. Automatically build parallelising code generator from the
description

4. Implement SIMD op codes as loads of messages into the SPE
input �fos, which act as the instruction fetch bu�ers for the
virtual machine

5. Implement the machine as interpreter running in parallel in n
SPEs each acting on 1/n th of a virtual register

6. Then just use the existing unmodi�ed Vector Pascal compiler

We have also demonstrated that the same technique can be used to
compile VP to a virtual SIMD machine on NVIDIA cards - in this
case performance gain is less.



1) Augment the ILCG speci�cation..........

/* Defining SPE register */

define(VECLEN,1024)

register ieee32 vector(VECLEN) NV0 assembles[' 0'];

register ieee32 vector(VECLEN) NV1 assembles[' 1'];

...

pattern nreg means[NV0|NV1|.... ];

instruction pattern speLOADFLT( naddrmode rm, nreg r1)

means[ r1 :=(ieee32 vector(VECLEN))^(rm)]

assembles['li 3, ' r1

'\n la 4,0(' rm ')'

'\n bl speLoadVec'];

instruction pattern speADDFLT(nreg r0,nreg r1 )

means[r0:= +(^(r0),^(r1))]

assembles['li 3, ' r0

'\n li 4,' r1

'\n bl speAddVec'];



4) Implement SIMD op codes as loads ................

void speLoadVec(unsigned int reg,unsigned int mem ) {

msgs[0]=(LOAD<�<24)+((reg<�<24)>�>24);

broadCast2Msg(mem);

}



Speedups versus the host processor



Explore optimal SIMD register size



Speedups with multiple SPEs used



e# : Fortran to C++

I Fortran; not FORTRAN

I Targeting O�oad C++

I The e# compiler

I Benchmarks



Fortran Overview

I Originally developed in the 1950s at IBM by John Bachus and
others

I An evolving language

I Fortran 2003 : Cray (apart from �International Character
Sets�)

I Fortran 2008 standard due for �nal rati�cation 2011

I A High Performance Language

I Comparable or better performance than C
I Good compatibility with Open-MP and MPI
I Explicit pointer targets; unboxed types; �xed loop iterations



Array Expressions in Fortran 90

I Implicitly Parallel

I Result independent of order of evaluation

I Evaluate right-hand side �rst

I First class arrays

I Mandatory array procedures; e.g. size, lbound

I Elemental operations: e.g. sin, cos, (+), (-)

pure function foo(a,b) result(c)

real :: a(64,64), b(0:63,0:63)

real :: c(size(a,1),size(a,2))

real :: s

c = (a * 2) + sin(b) + s

c = matmul(transpose(c),c)

end function



Fortran to C++ translation

I Compiler written in Haskell

I SYB, Parsec and Pretty packages

I ACL LANL Chasm Interop

I No standard ABI for Fortran Arrays (dope vectors)
I Template ArrayT<C,T,R,D> class interface

I Fortran run time library abstraction layer

I API layer uses C++ function overload resolution to choose e.g.
_gfortran_matmul_r8 given matmul(a,b)

I If using the Gfortran (GCC) run time library

I Backends: O�oad C++ or Pthreads



Parallelising Array Expressions



Mandelbrot Benchmark



Conclusions

I It is possible to e�ectively automatically parallelise data
parallel imperative languages accross, SIMD, multi-core and
hetrogenous multi-core machines.

I Signi�cant speedups can be attained.

I The resulting code can be retargeted without any changes to
the source code

I Parallelising compilers can be retargeted without any change
to the main body of the compilers using automatic code
generator generator techniques.


