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1 Introduction

This paper concerns the optimal allocation of bits to indi-
vidual video frames when compressing a video sequence,
where the average number of bits per frame is given as
a prior constraint. The optimization algorithm developed
here is suitable for offline compression; it requires multi-
ple passes through the video sequence.

The raw information content of frames in a video se-
quence differs. Some frames have high redundancy,
showing large expanses of uniform colour. Others show
lots of detail, and as such, inherently require more infor-
mation to encode them. The conditional information of
framen in a sequence given framen � 1 also varies. It
is high when a sharp scene change occurs or where there
is a lot of rapid motion, lower for fades and wipes, and
almost zero for continuous and unchanging scenes. The
general problem we are addressing in this paper is how
to optimally adjust the bit rate of a compressor to acco-
modate these changes in conditional information accross
a complete video.

Video compression is used in a number of distinct
fields, in digital television broadcasting, in video-phone
applications, in web-video streaming and in the prepa-
ration of recorded video sequences on CDs and DVDs.
These applications differ both in bandwidth and in their
temporal characteristics.

Television broadcasting is high bandwidth, but has con-
tinuous delivery, but need not be real time. Many pro-
grams are pre-recorded and are compressed off-line.

Video phone applications are low bandwidth and con-
versational. This requires real-time compression and low
latency.

Web video is low bandwidth, has bursty delivery, and is
generally pre-recorded and compressed off-line.
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CD and DVD video recording is medium to high band-
width, always compressed offline, and stored on drives
which typically have a sustained delivery rate higher than
the bandwidth of the video signal.

The bandwidths and temporal characteristics of the de-
livery vehicles enforce constraints on how a compres-
sor/decompressor pair can interact with the varying in-
formation content of the input signal. MPEG I and II,
designed in the high bandwidth context of broadcast dig-
ital television attempt to deal with the variation by the
use of key-frames and inter-frames. This is a local op-
timization strategy constrained by the limited buffer ca-
pacity of the decoder. It accomodates adequately to scene
changes but does not allow the transfer of bits from long
sequences with relatively little change, to other more de-
manding parts of a video.

Conversational video-phones have to have low latencies
to allow fluent interaction between users. In these circum-
stances the delivery of a constant number of bits per frame
may be the best trade-off between the conflicting require-
ments for quality and of latency.

Web video along with video distributed on CDs offers
a wider range of rate control choices. Such sequences are
typically delivered at a mean bitrate that is small com-
pared to the buffering capacity of the RAM on a modern
PC, or are delivered from a drive whose peak transfer rate
is several times the mean bitrate of the compressed signal.
This means that the rate-control algorithms used are less
constrained and can attempt more global optimisations.

Our algorithm was developed in the context of the
Strathclyde Compression Transform (SCT) [4, 5], a hi-
erarchical vector quantisation codec. To date the SCT has
employed a rate control that minimizes end-to-end delay
rather than maximizing perceptual quality. On the basis
that it takes a finite time to transmit each bit in a “real-
time” mode of operation, each frame is compressed up
to the point where it utilizes the bits available per sec-
ond (bandwidth) divided by the frames encoded per sec-
ond (frame rate). While suitable for applications such as
video phones where delay is critical, the minimal delay
rate control is inappropriate for off line operation where
file size rather than transmission delay is an issue.

This research was motivated by the hypothesis that a
significant improvement in quality ought to be obtainable
by varying the allocation of bits to frames in the light of
a well-defined optimization procedure, based on the eco-
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nomic principle of equalization of marginal return. For
reasons given in section 2.1 below, the SCT is particularly
suitable for such a form of rate control.

Section 2 presents the relevant theoretical argument,
describes the optimization algorithm, and discusses the
properties of the algorithm. Section 3 presents experimen-
tal results, and section 4 concludes.

2 Error and marginal error

As progressively more bits are allocated to the com-
pressed representation of a given video frame the rep-
resentation should, converge towards the original image.
This is illustrated in Figure 1.

As more bits are devoted to the current frame the to-
tal error falls and the marginal error per bit sent rises. The
marginal error is the increment in the total error associated
with the addition of one bit to the compressed representa-
tion of the given image. It is negative since the addition
of bits reduces total error. On different frames the total
and marginal error curves may approach zero at different
rates, as shown in Figure 2.

2.1 Marginal principle

Consider first the allocation of bits between two frames.
Given two marginal error curves,e0

1
ande0

2
, for frames 1

and 2 respectively, an optimal allocation of bits between
frames,(b1; b2), must satisfy the condition that

e0
1
(b1) = e0

2
(b2):

Were this not the case the pair of pictures could be improved by
shifting bits from the frame with the greater (absolute) marginal
error to the frame with the lower marginal error.

This principle is a commonplace of economics, where it ap-
pears in many guises, notably neoclassical production theory.
In this theory the alternative inputs to production are viewed as
continuous variables. The production function itself is viewed
as a continuous function, differentiable in all of its inputs. In
addition all of the alternative production processes to which re-
sources could be allocated are taken to be differentiable func-
tions. The condition for optimal resource allocation is then that
all resources are so distributed that each faces the same marginal
return in every utilized production process.

We view each frame of the video sequence as a production
process; the bits allocated to the frame are the continuously dis-
tributable resource. This is an idealization because the encoding

process allocates an integral number of bits to each frame. The
granularity of bit allocation is, however, sufficiently small that
the abstraction of continuity remains reasonable.

Marginalist economic techniques have already influenced the
literature on rate control. Fox [2] first introduced the marginal
principle to problems of discrete optimization. Shoham and Ger-
sho [3] extended to rate control the principle that, given a finite
set of quantizers, the optimal bit allocation involves all quantiz-
ers being at a common slope� of a rate–distortion curve.

Gersho’s work borrows from economic optimization theory
[1] the technique of Lagrange multipliers. The use of La-
grangians has continued in recent literature [6, 7, 9] addressed to
the problem of rate control in DCT type codecs. These codecs
differ from the SCT in that the within-frame compression algo-
rithms typically do not follow a “best first” approach. The best
first algorithm sorts possible differential updates that could be
applied to construct framet from framet� 1 in descending or-
der with respect to the reduction in frame error they will produce.
To a first approximation, this gives a monotonic marginal error
curve of the sort shown in Figure 2. (but see the further discus-
sion in section 2.4.1). It is this property of the SCT that makes
it a particularly fruitful field for the application of neoclassical
optimization techniques. It may be noted that Fox’s original pre-
sentation of the application of marginal analysis to problems of
discrete optimization essentially involved the use of best-first.

2.2 The algorithm

Returning to the two-frame example, in addition to the equaliza-
tion of marginal error we know that the sum of the bits allocated
to the two frames,b1+b2, must not exceedB, the total available
bits. The optimality condition is therefore fully constrained, and
may be readily extended to more than two frames. All frames
must have the same marginal error on the last bit sent for that
frame and the sum of allocated bits must be less than or equal
to the total bit budget. (In a practical situation it is likely that
the optimal solution will involve exhausting the bit budget.) An
algorithm to arrive at such an allocation is set out below.2

1. Make an initial guess at the threshold marginal error to be
used as a cutoff, i.e. the common value ofe0. Call thisT0.

2. Compress all frames in the sequence usingT0 as a cutoff
for the allocation of bits to frames. While compressing
each frame record the number of bits allocated.

3. At the end of the run, find the total number of bits allocated
to the whole sequence,̂B0.

2The idea of using an iterative algorithm to arrive at an optimum
allocation goes back a long way in the economics literature—see the no-
tion of “tâtonnement” in Leon Walras [8] (first French edition Lausanne,
1874).
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4. If B̂0 differs significantly from the available bit budget,B,
set a new threshold using negative feedback from the bit
allocation error:

Tj+1 =

�
1� �

B � B̂j

B

�
Tj (1)

wherej indexes the steps of the iteration and� (> 0) is an
“acceleration” parameter.

5. Repeat steps 2 to 4 until the total number of bits used is
acceptably close toB.3

The first step of such an iteration is shown in Figure 3. The
parameter� is set to 1.0 (as was the case in our experimental
work, so that equation (1) simplifies toTj+1 = (B̂j=B)Tj .

Two questions arise in relation to this algorithm. Does it nec-
essarily converge? And if it does converge, is it guaranteed to
find the optimal allocation of bits between frames?

2.3 Convergence of the algorithm

The algorithm as stated above is not guaranteed to converge for
all video sequences. Consider the case of� = 1:0 in (1), and
suppose that at iteration stepj the bit budget is in surplus (̂Bj <
B) to the extent of 5 percent ofB. In that case the marginal error
threshold will be adjusted upward by 5 percent at stepj + 1.
Suppose the curvature of the aggregate marginal error schedule
is such that this throws the bit budget into deficit to the extent of
10 percent ofB. Then the threshold will be adjusted downward
by 10 percent at stepj + 2, overshooting its value at stepj and
starting a divergent movement.

To preclude such divergence the rule given above is modified
as follows. WritingT̂j+1 for the threshold value derived by ap-
plication of (1), the actual threshold is limited thus:

� If B̂j < B andT̂j+1 > Tmax thenTj+1 = (Tmax+Tj)=2.

� If B̂j > B andT̂j+1 < Tmin thenTj+1 = (Tmin+Tj)=2.

� ElseTj+1 = T̂j+1.

Tmax is initialized to zero at the start of iteration, andTmin
to a large negative number. ThereafterTmax is updated to equal
the lowest (i.e. largest absolute)Tj value for whichB̂j is found
to exceedB, while Tmin is updated to equal the highest (i.e.
smallest absolute)Tj for which B̂j is found to fall short ofB.

3If the sequence of frames to be compressed is large and there is a
concern with the speed of the computation of the optimal allocation it
may make sense to operate with a sample of the frames rather than the
entire set, at least in the earlier rounds of the iteration.

2.4 Optimality of the algorithm

Given convergence, the following two conditions are jointly suf-
ficient for the algorithm set out above to produce the optimal
allocation of bits between frames.

1. The marginal error curve for each frame is everywhere
monotonically increasing.

2. There is no interdependency among frames, in the sense
that the marginal error curve for framet is unaffected by
the allocation of bits to the build of frames, s 6= t.

Let us consider these conditions in turn.

2.4.1 Monotonicity of marginal error curve

If the condition of monotonicity of the per-frame marginal error
curve is not met, that means that the build of a given frame may
be cut off, by the threshold condition, when there remain un-
exploited opportunities for making improvements with a greater
absolute marginal error than the chosen threshold.

As mentioned above, the SCT uses a best-first algorithm
when selecting the next incremental improvement to make to the
representation of any given frame. It would seem that this ought
to ensure that the marginal error curve is strictly monotonic but
that is not the case, for two reasons.

First, the marginal unit of information, so far as the SCT’s
best-first algorithm is concerned, is not the individual bit but
rather the “packet” of bits required to code some definite im-
provement to the image, chosen from its repertoire of vector
quantization and motion compensation. These packets are not
all of the same size; typically they vary in the range of 15–
32 bits but some packets may fall outside of that size range.
When calculating the marginal error for the purposes of opti-
mization, however, what matters is the improvement per bit. If
the marginal error curve is monotonic when expressed on a per-
packet basis, it need not be monotonic when expressed in per-bit
terms.

This might seem to be a readily remediable weakness in the
SCT, but matters are not so simple. It is cheaper, in terms of
the information required for addressing, to code improvements
in the neighbourhood of existing “build”. If best-first is set
to operate strictly on a per-bit basis this tends to produce spa-
tial clustering of high-frequency detail in the compressed im-
age, which is perceptually inferior to a relatively even spread
of detail. In principle it ought to be possible to overcome this
unwanted side effect by amending the objective function appro-
priately. For instance, instead of using the simple minimand of
mean squared error, pixel by pixel, one could use a combination
of mean squared error and a measure of the dispersion of error
such as variance and/or spatial autocorrelation. This may be a
topic for future work.
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The second reason for non-monotonicity in the marginal er-
ror curve relates to interdependencies in the build process for a
given frame. Best-first selects the option that makes the largest
possible improvement to the frame, given the menu of compres-
sion possibilities open at that particular stage of the build. Due
to phenomena such as block occlusion in the context of variable
dimension vector quantization, however, it may be that while im-
provementI is the best available at steps of the build, carrying
out I then makes possible a larger improvement at steps+ 1.

At any rate, while the SCT does not produce a strictly mono-
tonic marginal error curve, it does produce a reasonably close
approximation—close enough for the bit-allocation algorithm to
be effective, if not demonstrably optimal. For practical purposes,
to avoid the situation where the build of a given frame is cut off
prematurely owing to a local upspike in the marginal error curve,
we specify the cutoff condition as follows: rather than building
to the point where a single improvement step yields a marginal
error of smaller absolute value than the threshold, we require
two consecutive such steps before cutting off.

2.4.2 Interdependency between frames

If marginal error curves are monotonic and there is no inter-
dependency between frames—i.e. if the allocation of extra bits
to framet leaves the marginal error curve for frames, s 6= t,
unaffected—then we can be sure that compression of all frames
up to a common marginal error threshold produces the lowest
possible error, for any given bit budget, for the sequence as a
whole. In general, interdependence removes this certainty. Take
the simple case of two frames,F1 andF2, and suppose these
frames are compressed up to a common marginal error, at which
point the bit allocation(b1; b2) just exhausts the bit budgetB.
Now consider the effect of moving�b bits fromF2 toF1. Given
independence this is sure to increase the aggregate error, since
the reduction in error forF1 will be more than offset by the in-
crease in error forF2. If, however, devoting additional bits toF1
shifts the marginal error curve forF2 it seems we can no longer
be sure that the effect of the reallocating of�b bits must be to
raise the aggregate error.

It is clear that the independence condition is not in fact sat-
isfied by the SCT. Various subtle forms of dependence may be
present, but the most obvious form derives from the fact that the
compressed representation of framet�1 forms the starting point
for the build of framet. Thus if framet does not differ radically
from t�1, allocating more bits to framet�1 is likely to reduce
the starting value of the error in the build oft, and hence is also
likely to raise (reduce the absolute value of) the marginal error
schedule for framet.

Fortunately, this sort of interdependence is not damaging to
the procedure advocated above. Note that dependency is both

uni-directional and localized: uni-directional, because it is in
the nature of the SCT’s linear procedure that the degree of build
for a given frame cannot have any effect on the marginal error
curve for previous frames; and localized, because the slate is
wiped clean, so to speak, at every scene change. Frames are
interdependent only to the extent that they share visual elements.
This means we can partition each frame into two components,
the elements that are shared with the previous frame and those
that are new: each of these components will have an associated
marginal error curve. For the shared elements, the marginal error
curve in framet will be a continuation of that in framet� 1. If
a threshold marginal errorT cut off construction of the shared
elements afterbt�1 bits in framet� 1, then that same threshold
will cause no bits to be allocated to handle the shared elements
in framet. It follows that all bits used in framet will relate to
the building of non-shared elements, which are independent of
the previous frame, and hence the marginal principle retains its
validity.

As with the issue of monotonicity of the marginal error curve,
therefore, our view is that while the independence condition is
not strictly satisfied, neither is it violated in a way that jeopar-
dizes the effectiveness of the proposed procedure.

2.5 Mean Squared Error and PSNR

Optimization via equalization at the margin is a very general
method; it can be used to find the extremum of any chosen fig-
ure of merit within a budget constraint. Our work has concen-
trated on marginal error defined as the change in Mean Squared
Error (MSE), and hence on the minimization of MSE for the
sequence of frames as a whole. It is also possible to work in
terms of PSNR; in this case one compresses each frame in the
sequence up to a common threshold value of marginal PSNR,
which will produce the effect of maximizing the mean of the
per-frame PSNRs across the sequence as a whole. The latter ap-
proach is of some interest, particularly since PSNR is the most
commonly quoted figure of merit in the video compression liter-
ature, and we show results of this sort below. We are doubtful,
however, that this approach will give results as good to the eye
as those obtained via minimization of MSE.

The reason for this doubt is illustrated in Table 1. Consider
two compressed images with current MSE values of 100 and
1000 respectively, relative to their uncompressed counterparts.
We have�b additional bits to allocate to these images and we
wish to decide which frame should get them. Adding the extra
bits to frame 1 would reduce its MSE to 90, while adding the
same number of bits to frame 2 would reduce its MSE to 980.
According to the criterion of minimum MSE, the bits should
clearly go to frame 2, where they achieve a greater reduction in
squared error.
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The formula for frame PSNR is10 log(k=MSE), where the
log is to the base 10 andk is a constant that depends on the
number of bits per pixel. The change in PSNR that results from
devoting extra bits to a frame, and hence lowering the frame’s
MSE from MSE0 to MSE1, is then

�PSNR= 10 log
�

k

MSE1

�
� 10 log

�
k

MSE0

�

= 10(� logMSE1 + logMSE0) = 10 log
�

MSE0
MSE1

�
The numerical results of this calculation for the example are
shown in Table 1: the criterion of maximum PSNR will lead to
the allocation of the extra bits to frame 1. This seems wrong: the
bits are going to where they achieve a smaller reduction in MSE,
and to a frame that is already relatively “good” in the sense that
its MSE is low, rather than being used to achieve a bigger error
reduction for a frame that is substantially in error. Mathemat-
ically, the reason why the maximum PSNR criterion gives the
bits to frame 1 is that they achieve a largerpercentagereduction
in MSE there, but we are sceptical that this is the right thing to
do on perceptual grounds.4

Frame 1 Frame 2

MSE0 100 1000

MSE1 90 980

�MSE �10 �20�

�PSNR 10 log
�
100

90

�
10 log

�
1000

980

�
= 0:458� = 0:088

Table 1: Minimization of MSE versus maximization of
PSNR

3 Experimental results

We show the results of applying the algorithm in compressing
100 frames from Strathclyde University’s “Tour of Glasgow” se-
quence. Here we used a tight bit budget of 2400 bits per frame.
The frame rate is 12 frames per second. The three lines in Fig-
ure 4 show the PSNR for each of the 100 frames, for each of

4On theoretical grounds the minimization of MSE should also max-
imize the sequence PSNR, while the maximization of the mean of the
per-frame PNSRs will not achieve this effect. If one is calculating per-
centages globally, rather than frame by frame, the incremental compres-
sion step that achieves the greatest reduction in MSE will also achieve
the greatestpercentagereduction in MSE, and hence the greatest in-
crease in PSNR of the sequence.

three compression variants: a constant bit rate, compression to a
common threshold for marginal squared error, and compression
to a common threshold for marginal PSNR.

Summary statistics relating to the same three compression
runs are given in Table 2.

Perhaps the most striking difference made by rate control
based on the equalization of marginal squared error across
frames is the big reduction in the variance (or standard deviation)
of the PSNR. This is evident both from Table 2 and Figure 4. It
is also quite clear from watching the respective sequences: the
rate-controlled version looks much smoother. The tendency for
a sharp deterioration in perceived quality at each scene change,
characteristic of constant bit-rate compression, is substantially
mitigated. This comes at the cost of a somewhat lesser degree
of build of detail (lower PSNR) for frames appearing at a later
stage in each scene, but this is much less noticeable to the eye.
These preliminary results are quite encouraging.

4 Conclusion

We believe that the algorithm described here is of quite general
use in the optimisation of pre-recorded video sequences for dis-
tribution either on optical media or, with suitable pre-buffering
in the receiving PC, for webcasts. Whilst we have demonstrated
it in the context of a vector quantisation based codec, the basic
principles are independent of the codec used. The same basic
algorithm could be applied to streams compressed by wavelets
or the DCT.

The algorithm borrows from well established principles of
neo-classical economic theory, just one example of the fruitful
transplant of ideas from another discipline to computer engineer-
ing.
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5 Figures
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Figure 1: Error and marginal error against bits allocated to a given frame
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Figure 2: Error and marginal error for two hypothetical frames
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Figure 3: Iteration towards the correct bit allocation

mean s.d. min median max bits used
No rate control 24.497 1.649 19.986 24.172 27.860 240032
Rate control (SE) 24.603 0.607 23.146 24.490 25.775 241345

Table 2: PSNR statistics, with and without rate control
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Figure 4: PSNR Comparison, 100 frames, budget = 2400 bits/frame

Figure 5:The upper pair of images show successive frames with the rate control algorithm described in the paper. The lower pair
show the same frames at the same average bit rate of 2400 bits per frame but with a constant number of bits per frame.
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