
Challenging Multi-cores

Paul Cockshott1

1School of Computer Science

Paul Cockshott, And the SICSA multi-core challenge

Motivation

Moore's Law implies that as the scale of transistors shrinks, the
number of gates that can be �tted onto a chip of a standard size,
say of the order of 1cm2, will double every two years. Historically
this has been used by processor manufactures to increase the
complexity of individual processor cores.
A reduction in feature sizes potentially allows the speed of gates to
rise, allowing a rise in clock speeds. This rise was pretty continuous
until the last few years since when it has leveled o�.

Paul Cockshott, And the SICSA multi-core challenge

How parallelism is changing

1 Higher clock speeds increase the heat dissipation per cm2 due
to capacitive losses, at around 3Ghz the heat losses are at the
limit of what can be sustained with air cooling, even with heat
pipes etc.

2 As clock speeds rise, clock skew accross the die becomes a
signi�cant factor which ultimately limits the ability to
construct synchronous machines.

A result of these pressures has been that the mode of elaboration of
chips has switched from complexifying individual cores, to the
adding of multiple cores to each chip. We can now expect the
number of cores to grow exponentially: perhaps doubling roughly
every two years. This implies that in 10 years time a mass produced
standard PC chip could contain around 256 or 512 cores.

Paul Cockshott, And the SICSA multi-core challenge

The SCC

Paul Cockshott, And the SICSA multi-core challenge

Inside the SCC

Paul Cockshott, And the SICSA multi-core challenge

The Development Board

Paul Cockshott, And the SICSA multi-core challenge

Need new types of languages

This growth in the number of cores and the problems of
communicating between arbitrary processors is going to require a
fundamental rethink in the way we design programming languages.
In this talk I present Lino, a novel notation for programming
arbitrarily large arrays of processors, based on abstractions over
patterns of process adjacencies.

Paul Cockshott, And the SICSA multi-core challenge

Lino Tiles and Tilings

Lino programs describe arrays of square tiles. Figure shows an
atomic square tile and an array of tiles. A tile has one input stream
and one output stream on each face, with inputs numbered 0..3

and outputs 4..7 in clockwise face order starting at the
top\footnote{This is the convention for all face orderings.}. Faces
are identi�ed as North, East, South and West.

Paul Cockshott, And the SICSA multi-core challenge

Syntax of Lino

comm::= dev | alias commands
comms::= comm[;comms] command seq
prog ::= coms;main = exp a program is a sequence of commands

ending with a nominated main expression
def ::= id :faces <− path de�ne tile id

faces ::=
((ty0,ty4),...(ty3,ty7) I/O stream types

ty ::= ... type
path::= ... �le path
alias ::= id = exp id aliases exp

A command is a tile de�nition or an aliased expression. A
de�nition provides the tile name, the types of the input and output
for each face, and a path to an executable body.

Paul Cockshott, And the SICSA multi-core challenge

Syntax continued

block ::= [redir [; redir]] shell block
redir ::= path dirio[dirio] redirected shell command
dirio::= inout direction

inout ::= < | > standard redirections
direction::= North | South | East | West direction names
exp::= ... expressions
id name of de�ned tile or

aliased expression

Paul Cockshott, And the SICSA multi-core challenge

More syntax

I identity
Mirror redirects face I/O
0 sink
(exp) bracketing for priority
exp1|exp2 process row
exp1_ exp2 process column
exp * int horizontal replication
exp^int vertical replication
Flip exp re�ection about vertical axis
Rotate exp rotate 90 degrees clockwise

As in

b) mirrora) identity c) null

3
0

5 1

6

4

7

2

a) flip b) rotate

0 4

6 2

5

7

3

1

Paul Cockshott, And the SICSA multi-core challenge

Lino programs

A program is a sequence of commands ending with a nominated
main expression. A command is a tile de�nition or an aliased
expression. A de�nition provides the tile name, the types of the
input and output for each face, and a path to an executable body.

Paul Cockshott, And the SICSA multi-core challenge

Transform rules

input output

1 e*1 e

e*N e|(e*N-1)

2 e^1 e

e^N e^(e*N-1)

3 Flip I I

Flip Mirror Mirror

Flip 0 0

Flip(e|f) Flip f| Flip e

Flip (e_f) (Flip e)_(Flip f)

Paul Cockshott, And the SICSA multi-core challenge

Transform rules continued

input output

4 Rotate I I

Rotate Mirror Mirror

Rotate 0 0

Rotate (e|f) (Rotate f) _ (Rotate e)

Rotate (e_f) (Rotate f)|(Rotate e)

5 Flip Flip e e

6 Rotate Rotate Rotate Rotate e e

7 (a_b)|(c_d) (a|c)_(b|d)

Paul Cockshott, And the SICSA multi-core challenge

What the rules mean

The rules shown apply to expressions.

Horizontal and vertical replication apply a �xed (and known)
number of times (1 and 2).

Flip and rotate preserve identity, mirror and null tiles (3 and 4).

Flipping a row creates a row of �ipped elements in reverse
order; �ipping a column creates a column of �ipped elements
(3).

Rotating a row creates a column of rotated elements; rotating
a column creates a row of rotated elements in reverse order (4)

Two �ips cancel (5).

Four rotates cancel (6).

Columns distribute over rows (7).

Paul Cockshott, And the SICSA multi-core challenge

Status

A prototype implementation was completed last autumn.
Implementation proceeds in two stages. First, the main expression
is fully expanded to column-major order. Then, the overall column
of rows drives the generation of an equivalent shell script in which,
for each tile position, approprite executable calls are made with
stream redirection to linking FIFOs.
This �rst version runs on standard multi-core linux. It translates
directly into shell script to generate the parallelism using &
operations.
A new implementation is to be made targeted explicitly at the SCC.

Paul Cockshott, And the SICSA multi-core challenge

An example script

lifecell:((int,int),(int,int),(int,int),(int,int)) <- ./lifeprog;

liferow = Mirror|(Flip (lifecell *3))|I|Mirror;

lifeblock = Flip (liferow ^ 3);

mirrorrow = Mirror * 6;

main = Rotate(mirrorrow _ lifeblock _ mirrorrow

Paul Cockshott, And the SICSA multi-core challenge

SICSA Multicore Challenge
Concordance

The aim of the SICSA MultiCore Challenge is to compare several
approaches to parallel computation in terms of achieved
performance and ease of implementation. We plan to specify one or
more representative applications to be implemented and assessed
on state-of-the-art multi-core machines. We invite system
developers to apply their systems on these benchmark applications.
We invite software developers to put forward their applications as
benchmarks for this challenge.
The �rst application proposed was a �le concordance application.

Paul Cockshott, And the SICSA multi-core challenge

Speci�cation of the Concordance application.

Given: Text �le containing English text in ASCII encoding. An
integer N.
Find: For all sequences of words, up to length N, occurring in the
input �le, the number of occurrences of this sequence in the text,
together with a list of start indices. Optionally, sequences with only
1 occurrence should be omitted.

Paul Cockshott, And the SICSA multi-core challenge

Is it a good parallel problem?

I think this is a very hard programme to get good parallelism out of.
This is because a well designed serial programme to do concordance
will spend a large part of its time reading in text or printing results.
This was not immediately apparent to the proposers, probably
because they started out with a poorly written Haskell serial
implementation.
When looking at any problem the �rst thing to do is get an
estimate of the complexity order of the problem.
My intuition was that this was roughly O(N).

Paul Cockshott, And the SICSA multi-core challenge

Quick Hack

Prior to doing any parallelisation it is advisable to initially set up a
good sequential version. I was initially doubtfull that this challenge
would provide an e�ective basis for parallelisation because it
seemed such a simple problem. Intutively it seems like a problem
that is likely to be of either linear or at worst log linear complexity,
and for such problems, especially ones involving text �les, the time
taken to read in the �le and print out the results can easily come to
dominate the total time taken. If a problem is disk bound, then
there is little advantage in expending e�ort to run it on multiple
cores.
However that was only an hypothesis and needed to be veri�ed by
experiment. In line with our school motto of programming to an
interface not an implementation, the interface above rather than
the Haskell implementation was chosen as the starting point. In
order to get a bog standard implementation, C was chosen as the
implementation language.

Paul Cockshott, And the SICSA multi-core challenge

Serial results

The �rst thing to note is the C is much faster than the initial
Haskell. The di�erence in speed is far greater than could be
accounted for in terms of the relative e�ciencies of the compilers.
Instead it indicates that the Haskell is a poor algorithm.
Initial runs on windows
version input �le size time

haskell 3kb 0.82 sec

c 3kb 0.24 sec

haskell 4.9mb timed out after 3 hours

c 4.9mb 3.67 sec

Paul Cockshott, And the SICSA multi-core challenge

Algorithm Structure

The algorithm used had the following basic structure

1 Read the inut �le to a bu�er.

2 Tokenize it to a sequence of integers corresponding to words.

3 Make a single pass through the tokenized data building a
hashed index.

4 Make a �nal pass throught the index printing out the results.

It is clear that this algorithm is basically or order N as it has 3
sequential passes. andd that steps 1 and 4 are likely to take a
signi�cant fraction of the time.
How can it be parallelised accross cores?

Paul Cockshott, And the SICSA multi-core challenge

What you can not do

You can not simply split the �le into two halves, produce a
concordance for each half and merge them. The aim is to produce
a list of words and positions for all repated words. If you split the
�le in two halves you are not guaranteed to �nd repetitions unless
you do something smart.
So how to proceed?
Recall we tokenize the �le mapping it to integers.
How about two processes one of which deals with all the odd words
and one with all the even words?

Paul Cockshott, And the SICSA multi-core challenge

Two versions

I tried two versions

Use pthreads, read �le in and tokenize once, then get two
processes to go through and build two disjoint indices and
print them to two �les. Then use cat to join the �les.

Use the shell & operator to run two copies of the original C
lightly modi�ed to process either even or odd words to two
�les and cat them.

How did these perform:
Tests were done on Linux using the same processor as the previous
example, using the 4.9meg World English Bible as data. This time
the C was optimised with -O3

example runtime

serial version in C 2.12 secs

dual thread version using Pthreads 2.45 secs

dual process version using bash 1.93 secs

Paul Cockshott, And the SICSA multi-core challenge

Lessons

The old bash shell is actually better than pthreads

this is good news for Lino since it compiles to bash shell

commands

Overall speedup minor because task i/o limitedhat

Paul Cockshott, And the SICSA multi-core challenge

What next

On the SCC

Try to run the concordance bash style on say 32 cores

Port Lino to the SCC

On the SICSA front

Encourage you all to try your hand at it

Report results in december

Propose better examples to SICSA

Mandelbrot

Convolution

Disparity matcher

Paul Cockshott, And the SICSA multi-core challenge

