

SICSA Benchmarks in C
SICSA Multi-core challenge Workshop Dec 2010

Paul Cockshott
Glasgow

●First Serial Experiments

●

● Prior to doing any parallelisation it is advisable to initially set up
a good sequential version. I was initially doubtfull that this
challenge would provide an effective basis for parallelisation
because it seemed such a simple problem. Intutively it seems
like a problem that is likely to be of either linear or at worst log
linear complexity, and for such problems, especially ones
involving text files, the time taken to read in the file and print out
the results can easily come to dominate the total time taken. If a
problem is disk bound, then there is little advantage in
expending effort to run it on multiple cores.

●

Algorithm

The algorithm is four pass.

1) Read the file into a buffer

2) Produce a tokenised version of the buffer

3) Build the hash table and prefix trees.

4) If the concordance is to be printed out, perform a traversal of
the trees printing out the word sequences in the format
suggested by the Haskell version.

5) If we want it sorted, pipe through Linux sort

down

Encoded file

hashtable

left right

down
left right

down
left right

down
left right

Serial results

language Filesize OS Time

Haskell 3580 windows 0.82

C 3580 windows 0.03

Haskell 4792092 windows timeout>2hrs

C 4792092 windows 3.67

C 4792092 Linux 2.68

Machine was 2.6ghz Intel, gcc no optimisation

Conclusion from serial test

● As the summary above shows the C version is

● Significantly faster than the Haskell version. This is not surprising
as one would expect C to be more efficient.

● Appears to have a lower complexity order than the Haskell version.
This would indicate that the Haskell version is not a good starting
point.

● Its run time is dominated by the time to ouput the results to file.

● The test files provided in the initial proposal were too short to get a
realistic estimate of performance

● Linux implementations run substantially faster than Windows on the
same processor + gcc.

Parallel Experiments

●

● As a first parallel experiment a dual core version of the C
programme was produced using the pthreads library and it
was tested on the same dual processor machine as the
original serial version of the algorithm.

● A second parallel version used a simple shell script

./l1concordance WEB.txt 4 P 1 0 >WEB0.con&

./l1concordance WEB.txt 4 P 1 1 >WEB1.con

wait

cat WEB1.con >>WEB0.con

●

Parallel timings

Mechanism OS Threads
used

Time sorted
output

opt level

serial windows 1 3.67 no 0

pthreads windows 2 5.63 no 0

serial linux 1 2.68 no 0

pthreads linux 2 2.26 no 0

pthreads linux 2 2.45 yes 3

Shell & linux 2 1.93 yes 3

Conclusions for 2 core
machine

● There was no gain using multithreading on windows. It looks as if
the pthreads library under windows simply multi threads operations
on a single core rather than using both cores.

● On Linux there was a small gain in performance due to
multithreading - about 17% faster in elapsed time using 2 cores.

● Since a large part of the program execution is spent writing the
results out, this proves a challenge to multicore. Parallel version
adopted the strategy of allowing each thread to write its part of the
results to a different file.

● The best performance used the oldest approach, classic
Unix shell scripts along with C

●

SCC 48 core machine
 elapsed time in
seconds
1 core doing full concordance 26.17
1 core doing half concordance 13.48
1 core doing 1/8 concordance 5.59
2 cores doing half each 49.0
8 cores doing 1/8 each 36.0
32 cores doing 1/32 each 34 .0
host processor doing it all 1.03
host processor using both cores 0.685

shell script to run on host to run concordance on 32 scc cores
rm /shared/stdout/*
pssh -t 800 -h hosts32 -o /shared/stdout
/shared/sccConcordance32
cat /shared/stdout/* |sort > WEB.con

Why did it not work on SCC

● Too much i/o
● Coms path to disk for the individual cores

is poor
● Bandwidth of the PCI link to the chip is

slow
● All io has to go through the host anyway

Proposed New Benchmarks

● Nbody problem 1024 bodies under
gravitational attraction.

● Image Bluring 1024 by 1024 pixel 24bit
colour image

● Mandelbrot set for image siz 2048 8 bit
colour resolution.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

