
Automatic SIMD/MIMD Compilation of tensor
expressions

Paul Cockshott

University of Glasgow

June 22, 2009

cpu year regs clock clock/ins cores speed datarate

bits Mhz Mips MB/s

4004 1971 4 0.1 8 1 0.0125 0.00625

8080 1974 8 2 8 1 0.25 0.25

8086 1978 16 5 8 1 0.33 0.66

386 1985 32 16 3 1 5.0 20

MMX 1997 64 200 0.5 1 400 3,200

Harpertown 2007 128 3400 0.25 4 54,400 870,400

Larrabee 2010 512 2000 0.5 16 64,000 4096,000

I Instruction speed si = pc/i where p is processor cores, c is the
clock and i clocks per instruction

I data throughput d = siw where w is the register width in
bytes

Growth of clock speed versus maximum throughput

Note how much of the increase in performance comes from
increasing data parallelism.
Key points: use the wide data registers, use multiple cores.

Importance of Graphics Operations

The driving force in processor data throughput over the last decade
has been graphics. We can see 4 stages in this evolution:

1. Intel introduce saturated parallel arithmetic for working on
pixel arrays with the MMX instruction set.

2. AMD and Intel introduce parallel operations on 32 bit �oats
for working on co-ordinate transformations for 3D graphics in
games.

3. Nvida and ATI develop programmable Miltie-core GPUs able
to operate on 32 bit �oats for games graphics.

4. Sony1and Intel2 respond by developing general purpose
multicore CPUs optimised for 32bit �oating point vector
operations.

1
Cell

2
Larrabee

Use the right types!

To get the best from current processors you have to be able to
make use of the data-types that they perform best on : 8 bit
saturated integers, and 32 bit �oats. Parallel operations are
possible on other data-types but the gain in throughput is not
nearly so great.

Operate on whole arrays at once

The hardware is capable of operating on a vector of numbers in a
single instruction
processor byte int �oat double

Vector Lengths

MMX 8 2 - -

SSE2 16 4 4 2

Cell 16 4 4 2

Larrabee 64 16 16 8
Thus a programming language for this sort of machine should
support whole array operations. Provided that the programmer
writes the operation as operating on a whole array the compiler
should select the best vector instructions to achieve this on a given
architecture.
Use multiple cores

If the CPU has multiple cores the compiler should parallelise across
these without the programmer altering their source code.

Working with Pixels

When operating with 8 bit pixels one has the problem that
arithmetic operations can wrap round. Thus adding two bright
pixels can lead to a result that is dark. So one has to put in guards
against this. Consider adding two arrays of pixels and making sure
that we never get any pixels wrapping round in C:

#define LEN 6400

#define CNT 100000

main()

{

unsigned char v1[LEN],v2[LEN],v3[LEN];

int i,j,t;

for(i=0;i<CNT;i++)

for (j=0;j<LEN;j++) {t=v2[j]+v1[j];if(t>255)t=255; v3[j]=t;}

}

[wpc@maui tests]$ time C/a.out

real 0m2.854s

user 0m2.813s

sys 0m0.004s

Doing it with the hardware

Intel provide an instruction PADDUSB which can add 8 pixels in
one cycle simultaneously ensuring that there is no wrap around. If
we code the same program up in assembler we get much better
performance.

Assembler
SECTION .text ;

global main

LEN equ 6400

main: enter LEN*3,0

mov ebx,100000 ; perform test 100000 times for timing

l0:

mov esi,0 ; set esi registers to index the elements

mov ecx,LEN/8 ; set up the count byte

l1: movq mm0,[esi+ebp-LEN] ; load 8 bytes

paddusb mm0,[esi+ebp-2*LEN] ; packed unsigned add bytes

movq [esi+ebp-3*LEN],mm0 ; store 8 byte result

add esi,8 ; inc dest pntr

loop l1 ; repeat for the rest of the array

dec ebx

jnz l0

mov eax,0

leave

ret

[wpc@maui tests]$ time asm/a.out

real 0m0.209s

user 0m0.181s

sys 0m0.003s

Why the di�erence?

I Semantic gap between source language and hardware
capabilities.

I C is a von Neuman single word at a time language.
I Machine is a vector machine.

I Compiler tends to select the scalar instructions not the vector
ones.

I Operator set of the language does not match the operator set
of the hardware � it is less powerful than the hardware.

Now lets use an array language compiler

program vecadd;

type byte=0..255;

var v1,v2,v3:array[0..6399]of byte;

i:integer;

begin

for i:= 1 to 100000 do v3:=v1 +: v2;

{ +: is the saturated add operation }

end.

[wpc@maui tests]$ time vecadd

real 0m0.094s

user 0m0.091s

sys 0m0.005s

So the array language code is about twice the speed as the
assembler.

Vector Pascal

I will focus on the language Vector Pascal, an extension of Pascal
that allows whole array operations, and which both vectorises these
and parallelises them across multiple CPUs. It was developed
speci�cally to take advantage of SIMD processors whilst
maintaining backward compatibility with legacy Pascal code. It
stands in a similar relationship to ISO Pascal as FORTRAN 95
stands to FORTRAN 77.

Extend array semantics

Standard Pascal allows assignment of whole arrays. Vector Pascal
extends this to allow consistent use of mixed rank expressions on
the right hand side of an assignment. For example, given:

r1:array[0..7] of real;

r2:array[0..7,0..7] of real

then we can write:

1. r1:= 1/2;

2. r2:= r1*3;

3. r1:= \+ r2; {\� reduces using operator �}
4. r1:= r1+r2[1];

Line 1 assign 0.5 to each element of r1.
Line 2 assign 1.5 to every element of r2.
In line 3, r1 gets the totals along the rows of r2.
In line 4, r1 is incremented with the corresponding elements of row
1 of r2.

Data reformatting

Given two con-formant matrices a, b
the statement

a:= trans b;

will transpose the matrix b into a.
For more general reorganisations you can permute the implicit
indices thus

a:=perm[1,0] b ;{ equivalent to a:= trans b }

z:=perm[1,2,0] y;

In the second case z and y must be 3 d arrays and the result is such
that z[i,j,k]=y[j,k,i]
Given a:array[0..10,0..15] of t; then
a[1] array [0..15]of t

a[1..2] array [0..1,0..15]of t

a[][1] array[0..10,0..0] of t

a[1..2,4..6] array[0..1,0..3] of t

Equivalent loops

These are de�ned to be equivalent to the following standard Pascal
loops:

1'. for ι0:=0 to 7 do r1[ι0]:=1/2;
2'. for ι0:=0 to 7 do

for ι1:=0 to 7 do r2[ι0, ι1]:=r1[ι1]*3;
3'. for ι0:=0 to 7 do

begin

t:=0;

for ι1:=7 downto 0 do t:=r2[ι0, ι1]+t;
r1[ι0]:=t;

end;

4'. for ι0:=0 to 7 do r1[ι0]:=r1[ι0]+r2[1,ι0];

The compiler has to generate an implicit loop. In the above ι0, ι1,t
are temporary variables created by the compiler. The implicit
indices ι0, ι1 etc are accessible to a coder using the syntax
iota[0], iota[1] etc.

Implicit mapping

Maps are implicitly de�ned on both operators and functions.
If f is a function or unary operator mapping from type T1 to type
T2 and x : array of T1

then a:=f(x) assigns an array of T2 such that a[i]=f(x[i]).
Similarly if we have g(p,q:T1): T2,
then a:=g(x,y)

for x,y:array of T1

gives a[i]=g(x[i],y[i])

Method of translation

compiler code generator
machine

pascal source → ILCG tree → speci�c
assembler

ILCG

Intermediate language for code generation.
It is a machine level array language which provides a semantic
abstraction of current processors.

1. We can translate source code into ILCG.

2. We can describe hardware in ILCG too.

This allows the automatic construction of vectorising code
generators.

Translation from source to ILCG

Pascal

v3:=v1 +: v2;

ILCG

mem(ref uint8 vector (6400), +(PmainBase, -25600)):=

+:(^(mem(ref uint8 vector (6400), +(PmainBase, -12800))),

^(mem(ref uint8 vector (6400), +(PmainBase, -19200)))))

Note that all operation are annotated with type information, and all
variables are resolved to explicit address calculations in ILCG �
hence close to the machine, but it still allows expression of parallel
operations.
^ is the dereference operation.

Key instruction speci�cations in ILCG

These are taken from the machine speci�cation �le gnuPentium.ilc
saturated add

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)

means[(ref uint8 vector(8))m :=

(uint8 vector(8))+:((uint8 vector(8))^(m),

(uint8 vector(8))^(ma))]

assembles ['paddusb 'ma ',' m];

vector load and store

instruction pattern MOVQL(maddrmode rm, mreg m)

means[m := (doubleword)^(rm)]

assembles['movq ' rm ',' m'\n prefetchnta 128+'rm];

instruction pattern MOVQS(maddrmode rm, mreg m)

means[(ref doubleword)rm:= ^(m)]

assembles['movq 'm ','rm];

Automatically build an optimising code generator

ILCG Java
Compiler Compiler

Pentium.ilc → Pentium.java → Pentium.class
Opteron.ilc → Opteron.java → Opteron.class

To port to new machines one has to write a machine description of
that CPU in ILCG. We currently have the Intel and AMD machines
post 486 plus Beta versions for the PlayStation 2 and PlayStation 3.

Vectorisation process

Basic array operation broken down into strides equal to the
machine vector length. Then match to machine instructions to
generate code.
ILCG input to Opteron.class

mem(ref uint8 vector (6400), +(PmainBase, -25600)):=

+:(^(mem(ref uint8 vector (6400), +(PmainBase, -12800))),

^(mem(ref uint8 vector (6400), +(PmainBase, -19200)))))

Assembler output by Opteron.class

leaq 0,%rdx ; init loop counter

l1:cmpq $ 6399, %rdx

jg l3

movq PmainBase-12800(%rdx),%MM4

prefetchnta 128+PmainBase-12800(%rdx) ; get data 16 iterations

; ahead into cache

paddusb PmainBase-19200(%rdx),%MM4

movq %MM4,PmainBase-25600(%rdx)

addq $ 8,%rdx

jmp l1

l3:

Extend to Multi-cores

Vectorisation works particularly well for one dimensional data in
which there is locality of access, since the hardware wants to work
on adjacent words.
But newer chips have multiple cores. For the Opteron, the β
version of our compiler will parallelise across multiple cores if the
arrays being worked on are of rank 2 rather than 1.

2 D example.

procedure sub2d;

type range=0..127;

var x,y,z:array[range,range] of real;

begin

x:=y-z;

end;

Top level ILCG translation when compiled for a dual core Opteron

procedure(sub2d,
procedure (label12 ... see below)

post_job[label12,^(%rbp),1]; /* send to core 1 */

post_job[label12,^(%rbp),0]; /* send to core 0 */

wait_on_done[0];

wait_on_done[1];

)

Individual task procedure

The statement x:=y-z is translated into a procedure that can run as
a separate task, the ILCG has been simpli�ed for comprehensibility!
Note the stepsizes of 2 and 4 in the loops rather than 1

procedure (label12 /* internal label*/ ,

for(mem(+(^(%rbp),-24)),^(mem(+(^(%rbp),16))),127 , 2,

/*iota [0] task number limit step*/

var(mem(+(^(%rbp),-32))),/* iota[1] */

for(mem(+(^(%rbp),-32)), 0 ,127, 4 ,

/*iota [1] start limit step*/

mem(ref ieee32 vector (4), /* x[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),

+(*(^(mem(+(^(%rbp),-32))), 4),-131072)),

^(mem(+(^(%rbp),-8))))):=

-(^(mem(ref ieee32 vector (4),/* y[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),

+(*(^(mem(+(^(%rbp),-32))), 4),-196608)),

^(mem(+(^(%rbp),-8)))))),

^(mem(ref ieee32 vector (4),/* z[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp), -24))),512),

+(*(^(mem(+(^(%rbp), -32))), 4),-262144)),

^(mem(+(^(%rbp),-8))))))))),

)

Memory organisation

Old
context

x

y

z

rbp

Original stack
for sub2d

iota[1]

display[1]

iota[0]

Tasknum
Ret addr

Rbp core0

Rsp core0

Stack for task
on core 0

iota[1]

display[1]

iota[0]

Tasknum=0
Ret addr

Rbp core0

Rsp core0

Stack for task
on core 0

iota[1]

display[1]

iota[0]

Tasknum=1
Ret addr

Rbp core1

Rsp core1

Stack for task
on core 1

Practical Example

The example is to write a parallel image blurring program in Vector
Pascal.
The blurring program uses a simple 3x3 separable kernel applied
�rst to the rows and then the columns.
It should use the type pixel for arithmetic since this maps to 8 bit
�xed point numbers which can e�ectively use the MMX
instructions.
It should be expressed in whole array operations if possible.

Horizontal blur

Recall we can blur horizontally if
p′

i
= 0.25pi−1 + 0.25pi+1 + 0.5pi

So to form temporary images b, c from image a thus:
b = 0.5a, c = 0.25a
the horizontal blurred image is then
b + c shifted left one +c shifted right one
2D blur

1. blur horizontally

2. transpose

3. blur horizontally

4. transpose

blurplane

procedure blurplane(var inplane,outplane:plane);

var temp:^plane;

begin

new(temp,maxrow,maxcol); {create buffer}

horizblur(inplane,temp^);

outplane:= trans temp^;

horizblur(outplane,temp^);

outplane:= trans temp^;

dispose(temp);

end;

Horizblur

procedure horizblur(var inplane,outplane:plane);

type tempplane=array[0..maxrow,0..maxcol+2] of pixel;

var temp:^tempplane;

quarter,half:array[0..1024] of pixel;

begin

quarter:=0.25;{ create vectors of pixels }

half:=0.5; { to do parallel arithetic }

new(temp);

temp^ [][1.. maxrow+1]:= inplane * quarter;

outplane:=temp^ + temp^[][2..maxcol+2]

+inplane * half ;

dispose(temp);

end;

