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Abstract—Push message delivery, where a client maintains an
“always-on” connection with a server in order to be notified of a
(asynchronous) message arrival in real-time, is increasingly being
used in Internet services. The key message in this paper is that
push message delivery on the World Wide Web is not scalable
for servers, intermediate network elements, and battery-operated
mobile device clients. We present a measurement analysis of a
commercially deployed WWW push email service to highlight
some of these issues. Next, we suggest content-based optimiza-
tion to reduce the always-on connection requirement of push
messaging. Our idea is based on exploiting the periodic nature
of human-to-human messaging. We show how machine learning
can accurately model the times of a day or week when messages
are least likely to arrive; and turn off always-on connections
these times. We apply our approach to a real email data set and
our experiments demonstrate that the number of hours of active
always-on connections can be cut by half while still achieving
real-time message delivery for up to 90% of all messages.

I. INTRODUCTION

The Internet is being transformed from a static data repository

to a dynamic and real-time information delivery platform. The

change is driven by the type of content being uploaded and

transmitted through the Internet, particularly via the World

Wide Web (WWW). For example, social networking services

like Twitter and Facebook serve highly dynamic web pages

which may be updated several times every minute. Push email

delivery, made popular by the RIM/Blackberry service, is

now offered by several web-based email services, including

Google’s Gmail. The key benefit of push messaging is that

users automatically receive the message as soon as it arrives

at the server rather than explicitly having to poll the server to

check for new messages.

Web servers serve content to user clients, which may be

web browsers, email software, or other applications running on

users’ computers and mobile devices. Most web traffic uses the

Hyper Text Transmission Protocol (HTTP) [1] protocol, which

runs over the connection-oriented Transmission Control Proto-

col (TCP) [2]. Real-time message delivery requires an always-

on connection from the server to the client because the arrival

of a new message on the server is an asynchronous event.

This usually means keeping a long-lived TCP connection open

between the server and the client over which a message can

be “pushed” to the client at anytime it arrives.

Several challenges arise while maintaining long-lived TCP

connections on the Internet. First, many network elements,

and in particular HTTP proxies through which a majority

of users connect, have limited memory and TCP ports that

are shared among multiple users. In order to serve more

users, HTTP proxies routinely recycle dormant resources. For

example, a TCP connection that carries no (HTTP) traffic for

a few minutes will be closed by the proxy and this poses a

problem for long-lived connections. Second, an active TCP

connection may prevent a mobile client from entering power-

conserving sleep-modes and thereby reduce its battery life.

Third, servers need to be provisioned in order to maintain

active TCP connections from large populations of user clients.

In this work we explain some of the commonly used meth-

ods to implement push messaging given the above mentioned

challenges. We discuss why each method falls short on the

scalability front for network elements, clients and servers. We

then analyze a real-world push message service for mobile

devices to illustrate the scalability bottlenecks of implementing

real-time messaging over the global Internet. Next, we suggest

an approach that trades the real-time aspect of push-based mes-

saging for scalability and efficiency. By relaxing the condition

that all messages are delivered to the client in real-time, we

drastically reduce the always-on connection requirement. Our

approach is based on applying machine learning for identifying

temporal periodicity patterns in message arrivals and using this

information to mitigate the always-on connection requirement

of push messaging. We experiment on a publicly-available

email data set to test our approach and demonstrate its benefits.

The paper is organized as follows. In Section II-A we

present some related work around push messaging in academia

and industry. We explain the common algorithms for WWW

push messaging in Section II-B and describe some of the

scalability challenges in these algorithms. In Section III we

present a measurement study of Google’s Android cloud-to-

device-messaging (c2dm) push messaging system and report

on its underlying always-on TCP connection mechanisms.

We then motivate the case for content-based optimization in

Section IV based on email arrival time data from the publicly

available Enron email data set [3, 4]. Next, we implement our

ideas using simple machine-learning algorithms and demon-

strate their benefits in Section V. Conclusions and future work

directions are discussed in Section VI.

II. BACKGROUND

In this section we present pointers to relevant academic and

engineering literature about push-based protocols. We then

describe different approaches to implementing push messaging

protocols between clients and servers on the Internet.
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Fig. 1. An HTTP client-server interaction over the Internet. The HTTP proxy
and NAT complicate maintaining long-lived TCP connections on arbitrary
TCP ports between clients and servers.

A. Related Work

The work on Broadcast Disks [5, 6] used push data dis-

semination, although not in the Internet/WWW push context.

Push-based Internet message delivery was first made popular

by the Pointcast messaging service [7] in 1996. The first

academic treatment of Internet push was in [8], where the

authors presented an overview of the push techniques and

challenges of Internet/WWW push.

The idea of pushing information to clients has been an

enabler for publish-subscribe mechanisms [9, 10]; RSS (real

simple syndication), the canonical publish-subscribe example,

employs a form of short polling (Section II-B) by clients in

order to download content updates. Web-based push messaging

took flight with the advent of AJAX [11] technology which

allows content dynamic updates within a web page without

reloading the whole web page. Studies such as [12] have

pointed toward a noticeable shift in HTTP network traffic

properties due to the automatic page reloading characteristics

of AJAX. Our work specifically looks at how push messaging

is implemented over HTTP and then suggests methods to

reduce the overhead of message push.

B. Web Client-Server Architecture and Push Protocols

Fig. 1 depicts a typical WWW client-server connection.

User clients are usually located behind a NAT (Network

Address Translation) device or firewall, which may be a home

router or a corporate firewall with a HTTP proxy that disallows

non-HTTP(S) TCP ports and protocols for security reasons.

Most wireless cellular data services for mobile devices use

HTTP proxies and NAT devices. Proxies serve as content

caches and are used to enforce content policing and user mon-

itoring policies. HTTP proxies act as intermediaries between a

client and server during HTTP data exchange but they are not

configured to maintain long-lived TCP connections between

the client and server.

HTTP proxies may buffer data and thereby introduce un-

bounded latency for WWW push messaging. This can be

circumvented using HTTPS [13] connections that are trans-

parently tunneled (without buffering) by most proxies. The

Android c2dm service discussed in Section III sets up HTTPS

connections in order to traverse HTTP proxies transparently.

�
�
�
�
�
�
�
��
�
�

�	�	�A�

����

B
�
�
C
D
E
�
�
�F
��
�
�
�

�
�
�
�
�
�
�
��
�
�

��������

�
�
�
�
�
�
�
��
�
�

B
�
�
C
D
E
�
�
�F
��
�
�
�

�
�
�
�
�
�
�
��
�
�

����D	���

�������������

������

��F����

�������

�

�
�
�
���

�
�
�

������A

B��CDE��

������

�����	

 

!

"

# $ %

&

������E�

Fig. 2. Time-line of a long polling interaction between a client and server.

But even HTTPS cannot prevent proxies from closing seem-

ingly dormant connections and protocols have to be engineered

to overcome this limitation. Moreover, HTTPS increases the

protocol and computational overhead as compared to plain

HTTP on servers and clients.

We now briefly describe some common algorithms for

implementing push message delivery [14].

Short polling is commonly used to implement push mes-

sage delivery. Each client periodically polls the server for new

messages. The advantage of short polling is that it does not

require long-lived TCP connections. The whole transaction of

connecting to the server and retrieving any waiting messages

can be completed in one HTTP interaction, making short

polling a stateless alternative to long-lived TCP connections.

The polling period T can be chosen according to application

requirements. For a time interval (0, t), a short-polling client

will connect to the server t

T
times. If message arrival times are

independent and uniformly distributed in (0, t) then a message

will suffer an expected delay of T

2
before it is delivered to the

client. Further, if n clients connect to the server then the server

receives n t

T
requests in the time interval (0, t).

Long polling Fig. 2 shows the interaction between a client

and server during long polling. At time 0 the client sends a

(HTTP) request to the server for new messages - labeled (1).

The TCP connection carrying the HTTP request is kept open

(while the client waits for a response). The server sends back

a response containing messages that were queued up before

the client came on-line (2). After receiving the messages

the client closes the TCP connection, and immediately sends

another request for new messages to the server (3). But no

new messages have arrived at the server and it delays sending

a response (4) to the client until the time a new message is

available, at which time (5) it simply transfers the new message

to the client. Again, the HTTP transaction is now complete

and the TCP connection is closed. The client restarts the long

polling process immediately thereafter.

Ideally, if m messages arrive in the time interval (0, t) then
the client sends at most m polling requests to the server. In

reality if the server response is delayed beyond a few minutes

then the open TCP connection is reset (6) and the message

request is re-sent by the client (7). Long polling algorithms
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Fig. 3. Histograms of (a) longevity of TCP connections and (b) number of
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Fig. 4. Number of simultaneously open ports between the Android client
and the c2dm server(s)

are employed in the “Comet” [15] APIs and in the Android

c2dm service discussed in Section III.

Websockets are part of the emerging HTML 5 [16] speci-

fication. The idea behind websockets is to use one long-lived

TCP connection to multiplex several back-to-back HTML poll

requests and pushed messages from a server to the client. In

contrast to long polling, websockets do not close the TCP con-

nection after a message is pushed from the server to the client.

Nevertheless, the requirement for long-lived and always-on

connections remains unchanged and TCP connections have to

be restarted every few minutes [17].

III. CASE-STUDY: ANDROID PUSH MESSAGING

Large web service providers, notably Google, have deployed

application layer push protocols over HTTP(S) to implement

push messaging. In Google’s case, all push messages destined

for a particular user (email, calendar updates, etc.) are deliv-

ered to a push server, which in turn delivers them to the user.

At the time of writing this paper, this push infrastructure is

also available to third-party services via the c2dm API for the

Android 2.2 mobile operating system. Aggregating all push

connections via a single push server reduces the number of

push connections to one per device (instead of one per service).

We now present the interaction between Android clients

and Google’s servers. Our measurement consisted of capturing

network traces of exchanges between Google’s servers and a

client running the Android 2.2 operating system. We used the

Android Gmail application as the target push-based applica-

tion. The Wireshark network protocol analyzer was used to

capture TCP conversations between Google servers and the

Android client over a 24 hour period. All communication

between the Android client and the Google servers occurred

over an encrypted HTTPS connection. Therefore we are unable

to report specific packet-level protocol details. Instead, we

extracted several connection-level statistics that are presented

below.

Android c2dm uses long polling to implement push mes-

saging. Fig. 3 shows histograms of the longevity of TCP

connections and the number of (IP) packets exchanged during

each TCP connection. A total of 335 TCP connections were

recorded over a 24 hour period with a mean longevity of 663
seconds. Almost all TCP connections lasted for about less

than a second or 7, 11, 15 or 19 minutes. Almost all TCP

connections exchanged 19, 20 or 22 packets. The regularity in

both the histograms clearly indicates that the TCP connections

are being opened and closed via algorithms running on the

server and client (and not through random network events).

Fig. 4 shows the number of simultaneous ports (TCP

connections) open between the Android client and the c2dm

server(s). It is interesting that 2-3 ports were open at most

times; this could be for introducing redundancy (in case a

TCP connection becomes non-responsive) or to avoid the

TCP slow-start latency issue by opening multiple parallel TCP

connections.

The Android c2dm algorithms kept sustained active connec-

tions between Google servers and the Android client for almost

the entire duration of the experiments. But only 8 emails

arrived in the 24 hour period. The scalability of this approach

with increasing number of clients is suspect; the client needs

to keep multiple TCP ports open, the server needs to run the

long-polling algorithm for ever client, and the intermediate

proxies need to tunnel multiple HTTPS connections per client

on a sustained basis.

IV. CONTENT-BASED OPTIMIZATION

In Section II-B we explained common techniques for imple-

menting push messaging on the WWW and also described the

weaknesses of each approach. The Android c2dm case study

in Section III illustrated a real implementation of long polling

and highlighted the engineering challenges of maintaining an

always-on connection between the client and the push server.

The scalability of any WWW push protocol is limited by the
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Fig. 5. Periodic nature of email reception - one user’s weekly email reception
(averaged over 110 weeks). Days-of-the-week are also marked.

necessity of long-lived TCP connections. Network components

like HTTP proxies cannot maintain long-lived stateful TCP

connections (expected grow linearly with the number of users

and the number of different push servers to which a client

is connected). The present workaround is to repeatedly create

and tear down TCP connections and to use HTTPS to tunnel

push-traffic.

But this does not address the core scalability issue of main-

taining always-on connections. We propose an algorithmic ap-

proach, implementable at the client and without any additional

changes in the network, that reduces the need for always-on

TCP connections, enabling current network infrastructure to

support many more users and applications using message push.

Our key idea is to reduce the time for which a client is

connected to the server by analyzing past message arrival

patterns. We show how past message reception times are good

predictors of future message arrival times due to the periodic

and repetitive nature of human communication. Fig. 5 shows

the average number of email arrivals in a user’s office email

inbox during different times of the week (the data-set for this

example is described in Section V-A). Unsurprisingly, there is

an innate periodicity in message arrivals according to the time

of the week.

Fig. 6 shows histograms of email inter-arrival times (iits) of

the fastest and slowest user (in terms of average iits) among the

150 users contained in the data set. The plot shows that there

are substantial time gaps between email arrivals. Moreover, the

mean and standard deviation values of the iits suggest that the

iits are not exponentially distributed and therefore the email

arrivals process is not Poisson (An exponential distribution

with rate parameter λ has mean 1

λ
and corresponding standard

deviation 1

λ
, but this is certainly not the case here). Intuitively

this means that continuous TCP connections between the

client and push server yield little benefit for many hours in

an average week because message arrivals are not “spread

out”; instead they are clustered in certain hours. Closing push
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Fig. 6. Relative frequency of inter-arrival times (iits) for (a) the fastest user
and for (b) the slowest user. Time is reported in hours. The means, averages,
and number of messages is also reported on the plots.

connections during anticipated periods of low activity would

improve the overall scalability of push messaging.

It would be impossible to avoid some messages from being

queued at the server should they arrive at the server when no

push connection is active between the client and server. Our

task is to design machine learning algorithms that minimize

possibility of this occurrence, or equivalently, maximize the

number of messages that are delivered in real-time (meaning,

an active push connection exists between the client and server

when the message arrives) given a fixed quota of push connec-

tions per unit time. Our machine learning algorithms should

tell us when to turn on or turn off push connections.

In addition to past arrival times, there may be other infor-

mation in past messages that can assist in coming up with the

best times to maintain a push connection. For example, a user

may want to unequally weigh the importance of messages from

certain people or with certain semantic content. Information

about message size, its spam score, etc. can also provide

additional information. In this work we consider message

arrival times only. Our goal is to demonstrate the possible

gains of content-based optimization rather than achieving the

best and most optimal push connection “on-times” for a

specific user.

V. EXPERIMENTS

In this Section we apply machine learning techniques to decide

when the always-on connection can be turned off. We test

our approach on the publicly available Enron email data set,

described below.

A. Enron Email Data Set

The Enron email data set [3, 4], publicly released by the

US Federal Energy Regulatory Commission, contains ap-

proximately 500, 000 email messages of 150 senior Enron

employees (with email addresses ending in ‘@enron.com’)
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Fig. 7. Single user, α = 0.9 for adaptive learning

over a span of about 4 years. We extracted the sending time

of each email from its header and used this information to

build lists of email-reception times for each employee. We

assumed that the network transmission time of each email

is negligible (so the sending time was the receiving time

at the recipient’s inbox in the corporate email server); this

assumption is reasonable for the data-set because most of the

emails were sent by Enron employees to Enron employees over

the corporate Enron network, resulting in near instantaneous

email delivery at the recipient’s inbox.

Our learning algorithms are based on the assumption that

past email arrival rates at a certain time of the week are good

predictors of email arrival rates at the same time in a future

week. We use the past email arrival rates in order to rank

the benefit of keeping push connections alive (or not) at a

certain time (compared to other times). Given the fixed cost of

setting up a TCP connection we assume that a TCP connection

is kept alive for a minimum time (at least one hour in our

experiments). We binned the email arrival times for each user

into 1-hour bins over each 1 week period (168 hours) in order

to capture the daily and weekly email arrival periodicity. After

ranking each hour of the week, our algorithm simply picks up

the top-k ranked hours (0 ≤ k ≤ 168) as the hours of the

week when the push connection is to be kept active.

B. Learning Approaches

We now describe two simple machine learning approaches

for ranking the hours of the week. We emphasize that these

learning approaches are rather simplistic and better ranking

should be possible with more advanced machine learning

algorithms, for example, using neural networks. The objective

of our experiments here is to show the first order savings

possible through even simple learning techniques.

Fixed Learning In fixed learning we use a pre-determined

fraction of past email arrival times in order to learn the relative

email arrival rates for each hour-of-the-week for a user. For

example, if the data set contains 100 weeks of email arrival

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of hours of active connection/week (168 hrs total)

F
ra

c
ti
o

n
 o

f 
re

a
l−

ti
m

e
 e

m
a

il 
d

e
liv

e
ry

Averaged across 150 users, with errorbars

 

 

Adaptive Learning

Fixed Learning

Fig. 8. 150 users, α = 0.9 for adaptive learning

data for a user and we choose the pre-determined fraction to

be 0.1, then we use the first 10 weeks’ email arrival data to

generate a 168-element vector (with the index corresponding

to the hour-of-the week) containing the relative frequency of

email arrival for each hour. We use this relative frequency to

rank hours-of-the-week according to email arrival activity. The

other part of the arrival data (the last 90 weeks) is used to test

the learning algorithm.

Adaptive Learning In this approach the hour ranking is

updated for every week tested based on all previous weeks

(and not just a pre-determined fraction of the total arrival-

time data available). More recent data is given a higher weight

than older data. In particular, if Fi is the 168-element vector

of relative frequencies of email arrival for weeks 0 through

i − 1 and fi is the vector of relative frequency arrivals for

week i then,

Fi+1 = αFi + (1− α)fi (1)

Where 0 ≤ α ≤ 1 determines the relative importance of

more recent email arrival times as compared to earlier email

arrival times.

C. Results

We now present results that demonstrate the trade-off be-

tween real-time message delivery and adopting a content-based

optimization approach on when to keep the push connection

alive as opposed to the always-on approach of keeping push

connections alive at all times. Fig. 7 shows results for the

fastest user (highest average number of message arrivals per

unit time) among the 150 users. The figure shows that about

90% of messages can be delivered in real-time by keeping

the push-connection alive for only 50% of the time. It is

interesting to note that the difference between the fixed and

adaptive learning algorithms is marginal in this case because

10% of the data used for fixed learning is enough to generate

a reasonable model for this user. Still, adaptive learning tracks
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changes in email arrival patterns over time and outperforms

fixed learning consistently.

Fig. 8 has the same axes as the previous figure but this

figure is plotted for all the 150 users in the Enron email data

set. Error bars are also plotted. Here the limitation of using

only 10% data in the fixed learning algorithm is apparent. In

particular, for users with sparse arrival data (only few message

arrivals), the fixed learning algorithm is not able to capture

the periodic weekly variation based on just 10% of the arrival

data. In particular, the algorithm does not adequately learn that

some hours-of-the-week have very low email arrival rates. This

results in a dip in the learning accuracy at about 100 hours.

This corresponds to 48 weekend hours plus about 4 hours per

weekday during the dead of night (168−48−4×5 = 100). In
contrast, the adaptive algorithm does not suffer this limitation.

VI. CONCLUSION AND FUTURE WORK

In this paper we investigated the scalability challenge in real-

time push message delivery on the Internet. We highlighted

the lack of scalability with respect to network limitations

(tied up IP addresses and HTTP proxy resources), the battery

life of mobile devices (always-on TCP connections that are

repeatedly setup and torn-down), and increased CPU process-

ing on mobile devices (HTTPS connections to transparently

connect through HTTP proxies in the network). Next, we

analyzed the Android (Gmail) push-based message delivery

service in order to exemplify some of these scalability issues.

Finally, we showed how content-based optimization can be

used to remedy the always-on connection requirement, a key

scalability limiter, at the price of a few messages not being

delivered in real-time.

In particular, we showed how simple machine learning

approaches can detect temporal periodicity in past message

arrival frequencies and then use this information to turn off the

push connection when the probability of receiving a message

is low. We demonstrated this approach by applying it to

the publicly-available Enron email data set. Our results show

that the always-on connections can be cut in half while still

achieving real-time message delivery for about 90% of all

messages.

Messages that arrive during the times when there is no

active push connection between the client and the server will

be queued up at the server and their delivery will be delayed.

But because the temporal periodicity extracted by the machine

learning algorithms roughly corresponds to periods of low

human activity (e.g. nights and weekends), users may not

be averse to adopting this approach. Messages marked urgent

might also be delayed, but mobile devices offer other asyn-

chronous signaling mechanisms (e.g. short messaging service

- SMS) to remedy this situation. For example, applications can

be designed so that a the server could send an SMS message

to the client in case a message marked urgent arrives at a time

when there is no active push connection.

This work can be extended in multiple ways. Other mes-

sage arrival data sets can be analyzed for periodic patterns

(e.g. social network updates from services such as Twitter

or Facebook). More advanced machine-learning algorithms

may yield higher savings (e.g. neural networks) as compared

to the approaches investigated in this paper. Finally, more

information can be extracted from messages than just arrival

information. For example, a user may want to the machine

learning algorithm to unequally weigh the importance of a

message based on the sender, content, etc.
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