
Fast and Scalable Method for 
Resolving Anomalies in Firewall 

Policies 

Hassan Gobjua                             Kamal Ahmat 
                       Verizon                      City University of New York 



Introduction  
!   Firewalls   
!   Types of Anomalies 
!   Related Work 
!   Data Structure and Algorithm 
!   Experimental Results 
!   Conclusion 



Firewalls 
!   Firewall 

!   System acting as an 
interface of a network to 
one or more external 
networks.  

!   Implements the security 
policy of the network  
!   By deciding which 

packets to let through  
!   Based on rules defined 

by the network 
administrator. 



Example 



Protection Methods 
!   Firewalls – Firewall policy rules should be 

designed carefully! 
!   Challenges 

!   Rules are created by multiple people 
!   Rules are created over extended period of time 
!   Number of rules in a firewall policy can be 5K+! 
!   Rules are dynamic! 



Relationships Between Rules - 
Disjoint Rules 

 Example: 
 <IN, TCP, 64.233.179.104, 80, 192.168.20.*, ANY, ACCEPT> 
 <IN, TCP, 64.233.179.104, 80, 172.16.20.*, ANY, REJECT> 

!   Two rules r and s are 
disjoint if they have at 
least one criterion for 
which they have 
completely disjoint 
values 



Relationships Between Rules - 
Exactly Matching 

  Two rules r and s are 
exactly matched if 
each criterion of the 
rules match exactly. 

 Example: 
 <IN, TCP, 64.233.179.104, 80, 192.168.20.*, ANY, ACCEPT> 
 <IN, TCP, 64.233.179.104, 80, 192.168.20.*, ANY, ACCEPT> 



Relationships Between Rules - 
Inclusively Matching (Shadowing) 

 Example: 
 <IN, TCP, 64.233.179.104, 80, 192.168.20.3, ANY, ACCEPT> 
 <IN, TCP, 64.233.179.104, ANY, 192.168.20.*, ANY, ACCEPT> 

!   Two rules r is a subset, or 
inclusively matched of 
another rule s if there exists 
at least one criterion for 
which r’s value is a subset of 
s’s value and for the rest of 
the attributes r’s value is 
equal to s’s values. 



Relationships Between Rules - 
Correlated 

!   Two rules r and s 
are correlated if r 
and s are not 
disjoint, but neither 
is the subset of the 
other. 

 Example: 
 <IN, TCP, 64.233.179.104, ANY, 192.168.20.3, ANY, ACCEPT> 
 <IN, TCP, 64.233.179.104, 80, 192.168.20.*, ANY, REJECT> 



Existing Work 

!   E. W. Fulp – O(n^3) algorithm to order 
rules in a given policy; it doesn't discover 
correlated ones.  

!   E. Al-Saher et al. – Method for selecting 
rules based on their probability.  

!   A. Liu – Method to discover and remove 
redundant rules (Exact matching).    



Our Approach 
!   We aim at removing few troublesome 

rules from given policy to resolve 
anomalies. 

!   Design a data structure to represent 
dependencies among rules. 

!   Remove troublesome rules. 
!   Return a subset of consistent rules and 

correlated rules (for editing). 



Our Approach 
!   Design a data structure to represent 

dependencies among rules. 
!   Graph D is directed, and U is undirected. 

!   Each node in U represents a rule 
!   Two nodes are connected in U if there is 

shadowing or correlation relationship 
between these two rules. 

!   Graph D describes dependency among 
rules. 



Our Approach 
!   Select a rule that doesn’t depend on any 

other rule (terminal node) from D. 
!   Remove corresponding links from U and 

links/nodes from D. 
!   If graph U is disconnected and new 

component formed, continue, else there is 
correlation 

!   If there is correlation, choose the rule with 
highest probability. 



Example 



Example – Our Approach 



Complexity 
!   O(n^2) to construct graphs D and U 
!   O(2log n) to discover dependencies 
!   Algorithm complexity O(n^2 log n)  



Experimental Results 
!   Two sets of test experiments executed: 

!   Real-life tests: five policies of size 107, 361, 647, 881, 
and 1385 over a month period on Verizon firewall using 
the original (non-improved) approach. 

!   Tests done over the same period using improved 
approach. 

!   Five test sets have been executed on synthetic 
policies of sizes 10K – 30K. 



Experimental Results – Real-Life 
Policies 



Experimental Results – Synthetic 
Policies 



Current & Future Work 

!   Find exact minimum number of rules to 
eliminate all anomalies from policy. 

!   Modify algorithm to handle dynamic-
policies. 

!   Improve the algorithm performance. 



Thank You All! 

Questions? 


