LOW-RATE, FLOW-LEVEL PERIODICITY DETECTION

Genevieve Bartlett¹, John Heidemann¹, Christos Papapdopoulos²

¹USC/Information Sciences Institute Marina del Rey, CA ²Colorado State University, Ft. Collins, CO

MOTIVATION

- It's 10pm, do you know what your computer's doing??
- Automatic computer initiated communication
- More complex systems = more computer initiated communication

LOW-RATE AND PERIODIC CONNECTIONS

- Subset of computer initiated: periodic connections
- Find periodic series in aggregate traffic with signal processing
- Flow-level
 - Event = connection start
 - Our methods could apply to many other events
- Low-Rate: 2s to several hours (Days? Weeks?)

APPLIES TO MANY APPLICATIONS

• Many applications are low-rate periodic:

- User services (30-120 mins)
 - WeatherEye
 - MacOS Dashboard apps
 - Clock applet in Gnome (Linux)
- RSS News Feeds (30-60mins)
- Web Counters (5-30mins)
 http refresh
- Peer-to-Peer (~20-30 mins)
- Adware (minutes to hours)
- Spyware
- Botnet Command & Control

- Low-rate periodicity as a phenomenon of interest
- Low-rate periodicity prevalent in realworld traffic
- Novel method for detection
- Demonstration of applications
 - Self-surveillance (GI paper)
 - Pre-filtering for detection triage

- Low-rate periodicity as a phenomenon of interest
- Low-rate periodicity prevalent in realworld traffic
- Novel method for detection
- Demonstration of applications
 - Self-surveillance (GI paper)
 - Pre-filtering for detection triage

- Low-rate periodicity as a phenomenon of interest
- Low-rate periodicity prevalent in realworld traffic
- Novel method for detection
- Demonstration of applications
 - Self-surveillance (GI paper)
 - Pre-filtering for detection triage

ARE PERIODIC APPLICATIONS PREVALENT?

• Pick an interesting application

- Malware!
- How do we confirm periodic malware exists at USC?
 - No payload
 - Blacklisted sites
 - Aggregate traffic (groups of ~ 20)
 - Determine which groups show periodic communication

How Prevalent is Periodic Communication?

	Blacklisted		Unique IPs	
Group	Destinations		(users)	
active to anywhere	_	_	$128,\!614[$	100%]
active to blacklisted	181	(100%)	_	_
Non-periodic	120	(66%)	n/a	n/a
Periodic	61	(44%)	n/a	n/a
User Services	5	(3%)	22	[0%]
Web Counters	15	(8%)	$16,\!405$	[13%]
Ad Servers	36	(20%)	$31,\!277$	[24%]
Other	5	(3%)	6	[0%]

Nearly a third show periodic behavior!

... We can find 1/3 blacklisted servers on our network looking at periodic behavior as a first pass.

8

- Low-rate periodicity as a phenomenon of interest
- Low-rate periodicity prevalent in realworld traffic

• Novel method for detection

- Demonstration of applications
 - Self-surveillance (GI paper)
 - Pre-filtering for detection triage

TYPICAL APPROACH TO FINDING PERIODIC EVENTS

Network events > time series > FFT > analysis

WHAT ARE WE LOOKING FOR?

• Given network data:

- Is there a periodic event?
- If so, what is the period?
- Location in time: Start/Stop of events

GOALS AND DESIGN

Preserve time information	wavelets	
Simple representation and implementation	Haar wavelet basis: differencing/averaging match for sharp changes	
Low-rate periods	Coarse time bins ~1min+	
Large range of frequencies	Iterative filter-bank Full decomposition	

MULTIRESOLUTION ANALYSIS: SINGLE PATH

Different paths give different frequency splits.

Can focus in on a frequency range, if we know which we want a priori.

MULTIRESOLUTION ANALYSIS: FULL

Full decomposition
We examine multiple frequency ranges
Level of decomp determined by length and sample rate of original data

17

VISUALIZATION: REAL-WORLD EXAMPLE

BitTorrent client communicating with tracker

AUTOMATIC DETECTION

• Detection of period

- Empirically derived threshold on energy
- Threshold dependent on frequency range and decomposition level
 - Too few decompositions, not focused on frequency range

• Too many decompositions, energy spreads out

• Detection of *when* a change occurs

- Start and stop of a periodic series of events
- Move backwards on levels of decomposition to get more time resolution

• Details in techreport

- Low-rate periodicity as a phenomenon of interest
- Low-rate periodicity prevalent in realworld traffic
- Novel method for detection
- Demonstration of applications
 - Self-surveillance (GI paper)
 - Pre-filtering for detection triage

APPLICATIONS

• Self-surveillance

- Desktop user
- Changes indicate problems: stop in OS updates, addition of adware etc.

• Pre-filtering

- Target apps with low-rate periodic com.
- Reduce set of hosts to investigate
- Eg. Target BitTorrent trackers

SELF-SURVEILLANCE DEMONSTRATION

- Detect start or stop of periodic communication
- Here we look at unwanted communication: installation of a keylogger
- Applies to stop of wanted periodic communication too!
- Detect install of Keyboard Guardian on Windows
 - Set to report every 3 hours
- 3 day monitoring
 - 1st day, no keylogger
 - 2nd day, install keylogger

NUMERICAL DETECTION OF EVENT

27

VISUAL DETECTION OF CHANGE

SUMMARY OF SELF-SURVEILLANCE

• Automatic detection

- Identifies a periodic series of events
- Identifies changes in events and when those changes occur
- Demonstrated
 - Keylogger: Addition of a bad series of periodic communication
 - OS updates: Removal of a good series of periodic communication (techreport)

SENSITIVITY TO NOISE

• Signal-to-Noise ratio

- 1 signal connection:10-20 unrelated connections
- Easily achievable with periods of user inactivity
- Watch for a long enough window

SUMMARY

- Variety of applications show periodic behavior
- New wavelet based approach to finding periodic behavior in aggregate traffic
- Demonstrated use for self-surveillance
- Techreport & GI paper:
 - <u>http://www.isi.edu/~bartlett/pubs/</u> <u>Bartlett09a.html</u>
 - <u>http://www.isi.edu/~bartlett/pubs/</u> <u>Bartlett11a.pdf</u>

HOW TO QUANTIFY SENSITIVITY?

• Why?

- Know when we work and when we won't
- Quantify sensitivity to noise
 - Fixed amount of background traffic
 - Vary frequency
 - Study base frequency energy

• With background/No background

IS EVASION POSSIBLE?

• Yes: Jitter

• How much jitter is enough?

• Experiment: vary jitter, study detection

- Artificial signal
- Jitter varies by Gaussian random

EVALUATING JITTER FOR EVASION

