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ABSTRACT
The increasing complexity of modern and future multi-core/multi-
threaded processors rises the question of how to best utilize pro-
cessor resources. On one side, Amdahl’s Law limits the max-
imum theoretical speedup of parallel applications while, on the
other side, the increasing complexity of runtime programming lan-
guage may introduce implicit serialization points. Several studies
demonstrated that it is often more convenient to use some of the
hardware threads to assist execution than running supplementary
application threads.

Assisted execution approaches, however, may lead to low pro-
cessor utilization: in this paper, we explore fine-grained hardware
resource allocation techniques to assign hardware resources to ap-
plication and auxiliary threads at runtime, according to their actual
computing power demand. As a test case, we apply fine-grained
resource allocation to STM2, the first parallel STM system that of-
fload STM management operations to auxiliary threads. We im-
plemented an integrated hardware/software solution in which each
level performs well-defined tasks efficiently: 1) STM2 is enriched
with a runtime mechanism to express computing power require-
ments of application and auxiliary threads; 2) the hardware en-
forces dynamic resource partitioning among running threads; 3) the
operating system provides a simple and efficient interface between
STM2 and the hardware resource allocation mechanism.

In this paper, we leverage the IBM POWER7 hardware thread
prioritization mechanism to bias the allocation of hardware resources
in favor of computing intensive application threads or overloaded
auxiliary threads. We test fine-grained resource allocation solutions
on a real IBM POWER7 system running a simple and malleable
TM benchmark (Eigenbench) and applications from the STAMP
benchmark suite. Results show that the proposed integrated so-
lution achieves up to 65% and 11% of performance improvement
over the standard STM2 design for Eigenbench and STAMP appli-
cations, respectively.

1. INTRODUCTION
In order to achieve high performance, modern chip multi-core

processors (CMP) and chip multi-threaded (CMT) processors re-
quire programmers to parallelize their applications. The increased
complexity of writing efficient parallel algorithms for CMP/CMT
processors motivated the development of several novel program-
ming models to help programmers expose thread level parallelism,

by hiding low level synchronization details and leaving program-
mers free to focus on their algorithm implementations. Transac-
tional memory (TM) [8, 11, 12] is one of such programming mod-
els. TM allows programmers to mark compound statements in par-
allel programs as atomic (in C++, transaction), with the expecta-
tion that the underlying run time implementation will execute such
transactions concurrently whenever possible, generally by means
of speculation – optimistic but checked execution, with rollback
and retry when conflicts arise. The principal goal of TM is to sim-
plify synchronization by raising the level of abstraction, breaking
the connection between semantic atomicity and the means by which
that atomicity is achieved. Secondarily, TM has the potential to im-
prove performance, most notably when the practical alternative is
coarse-grain locking.

Unfortunately, TM systems generally introduce run time over-
head (especially for software transactional memory implementa-
tions, STM): read- and write-set management, read-set validation,
and conflict detection may introduce implicit serialization points
that may reduce applications speedups. The limited scalability of
some TM applications, together with the fact that the theoretical
speedup computed with the Amdahl’s Law may not justify the use
of all available cores/hardware threads, suggest that some of the
computing elements (cores or hardware threads) could be used to
support computation rather than being devoted to running addi-
tional application threads (assisted execution model). The intu-
ition behind this is that some of the computing elements can ac-
celerate sequential part of the application and/or relieve applica-
tion threads from handling runtime functionalities, therefore push-
ing further the theoretical Amdahl’s Law’s speedup and reducing
runtime overhead. Several examples of auxiliary threads are avail-
able in the literature, including exception handling [30], memory
prefetching [16] and dynamic check in Java Script [21]. The draw-
back of this approach is the generally low processor utilization and
the waste of resources, especially in cases when an application
could use more cores.

This paper explores the use of fine-grained hardware resource al-
location to increase overall processor utilization and application’s
performance when a static partition of hardware resource among
application and auxiliary hardware threads leads to sub-optimal
performance and processor underutilization. As opposed to coarse-
grained resource allocation (adding or removing cores/hardware
threads to a particular task) that can be implemented at software
level, fine-grained resource allocation (partitioning renaming regis-
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ters, load/store queue entries, ROB slots, etc.) requires a collabora-
tion between the software and the underlying hardware. Although
fine-grained resource allocation is more complicated to implement,
it has the potential to provide higher performance and better adapt
to frequent changes in the application’s behavior.

We propose to apply fine-grained hardware resource partitioning
to STM2 (Software Transactional Memory for Simultaneous Multi-
threading processors) [15], the first parallel software transactional
memory system that uses additional auxiliary threads to offload
TM operations. With STM2, transactional operations are divided
between application and auxiliary threads: application threads op-
timistically perform computation, while time-consuming TM man-
agement operations (such as read-set validation, read- and write-
set management, conflict detection, etc.) are handled by auxil-
iary threads. Application and auxiliary threads run on separate but
paired hardware threads, thus computation and TM management
operations are effectively performed in parallel. In order to increase
processor utilization and overall performance through fine-grained
resource allocation, we used an integrated hardware/software ap-
proach. We divide system functionalities among three different
components: 1) STM2 is enriched with a runtime mechanism that
expresses the expected computing demand of application and aux-
iliary threads; 2) the hardware provides actuators to dynamically
partition hardware resources at run time; 3) the operating system
(Linux in our case) provides an interface between STM2 and the
dynamic hardware resource allocation mechanism.

A wide range of mechanisms to control hardware resources al-
located to a particular core or hardware thread have been proposed
in the literature [6, 7, 17, 18]. Some of these proposals have also
been implemented in real IBM [10, 26, 27] or Intel [14] processors,
thus fine-grained resource allocation solution can be also imple-
mented on real systems. We leverage the IBM POWER7 (a 8-core,
4-way SMT processor design) hardware thread prioritization [26,
29] mechanism to allocate hardware resources (e.g., renaming reg-
isters or load/store queue entries) to application or auxiliary threads
at run time. Each hardware thread is associated with a hardware
thread priority and receives an amount of hardware resources pro-
portional to this value: the higher the hardware thread priority, the
larger the amount of hardware resources assigned [2, 5]. By mod-
ifying the hardware thread priorities of application and auxiliary
threads, we are able to efficiently and dynamically partition proces-
sor resources and improve overall performance. In particular we
reduce the priority of auxiliary threads when their corresponding
application threads are not performing any transaction (auxiliary
threads are idle), which increase application threads’ performance.
Similarly, hardware resources can be dynamically distributed be-
tween application and auxiliary threads according to the degree of
computing power required when execution transactions.

Our first contribution in this study is the impact of the POWER7
hardware priority mechanism on STM2’s performance: Although
the mechanism has been extensively studied for IBM POWER5 [2]
processors, this work is, to the best of our knowledge, the first that
uses the hardware thread prioritization mechanism for POWER7
processors which, to the contrary of previous IBM multithreading
processors, have four hardware threads per core, rather than two.
We show, with simple scenarios, what is the extent of performance
improvements that this mechanism allows us to achieve for STM2.
The second contribution of this work is the exploration of all possi-
ble opportunity to apply fine-grained resource allocation for STM2

and the performance implication. We propose a set of techniques
that can be applied when configuring STM2 to partition hardware

resources between application and auxiliary threads.1

We test our proposals on a real IBM POWER7 system using
two sets of benchmarks: first, we explain the potentialities of fine-
grained resource allocation using Eigenbench [13] (a malleable TM
micro-benchmark developed to explore TM systems’ corner cases)
and then we apply our solutions to STAMP applications [23]. Our
results show performance improvement for both Eigenbench and
STAMP applications up to 65% and 11%, respectively. Our work
spans the full hardware/software stack, for example we use a spe-
cial version of Linux 2.6.33 patched to enable the full range of hard-
ware priorities from within user level programs. More specifically,
we use the htm_set() system call to set the hardware priority from
within a language runtime system dynamically.

The rest of this paper is organized as follows: Section 2 pro-
vides a short background on IBM POWER7 hardware thread prior-
ity mechanism. Section 3 details our techniques and the impact of
POWER7 hardware thread prioritization on STM2. Section 4 pro-
vides our experimental results for Eigenbench and for applications
from the STAMP benchmark suite. Section 5 details the related
work. Finally, Section 6 concludes this work.

2. HARDWARE THREAD PRIORITIZATION
IBM POWER7 [1, 29] processors are out-of-order, 8-core design

with each core having up to 4 SMT threads (32 hardware threads
in total). Each core region (or “chiplet”) contains a 32KB 4-way
set associative L1 I-cache and a 32KB 8-way set associative L1 D-
cache, a private per-core 256KB L2 cache and a 4MB portion of
the shared 32MB L3 cache. The L2 is fully inclusive of both the
local D/I L1 caches.

Table 1: Hardware thread priority levels in the IBM POWER7 pro-
cessor

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -
1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Besides multi-core and multithreading capabilities, IBM POWER7
processors provide a mechanism to bias hardware resource parti-
tioning in favor of some hardware threads in the same core [26].
Each hardware thread in a core has a hardware thread priority,
an integer value in the range of 0 (hardware thread off) to 7 (the
core is running in single thread mode), as illustrated in Table 1.
The amount of hardware resources assigned to a hardware thread
(and therefore its performance) is proportional to the difference be-
tween the thread’s priority and the priorities of the other hardware
threads. In general, the higher the priority of a hardware thread, the
higher the amount of hardware resources assigned to that thread (if
the other hardware thread priorities are constant). POWER7 cores
implicitly assign hardware resources to each hardware thread by
fetching and decoding more instructions from one hardware thread
than from the others [26].
1No application’s source modification is required in order to apply
these techniques. Since STM2 is transparent to applications (which
are not aware of auxiliary threads), using these techniques from
within the application would result in a very complicated task and
requires compiler assistance.
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The priority value of a hardware thread in POWER7 processors
can be controlled by software and dynamically modified during the
execution of an application. IBM POWER7 processors provide two
different interfaces to change the priority of a thread: issuing an
or-nop instruction or using the Thread Status Register (TSR). The
current thread priority of a hardware thread can be read from the
local TSR register using a mfspr instruction. As Table 1 shows,
not all hardware thread priority values can be set by applications:
user software can only set priority levels 2, 3, 4; the operating sys-
tem (OS) can set 6 out of 8 levels, from 1 to 6; the Hypervisor
can span the whole range of priorities. In order to use all possible
levels of priorities, we use a special Linux 2.6.33 kernel patched
with the Hardware Managed Threads priority (HMT) patch [2, 3,
4]. This custom kernel provides two interfaces (a sysfs and a
system call) through which the users can set the current hardware
thread priority, including the ones that require OS or Hypervisor
privilege (the OS issues a special Hypervisor call to set priority 0
and 7). The system call interface (hmt_set()) is more suitable for
our purpose than the sysfs interface because it allows us to dy-
namically change the application and auxiliary thread priority with
lower overhead.

3. INTEGRATED FINE-GRAINED
RESOURCE PARTITIONING

STM2 is mainly designed to run applications that spend a con-
siderable amount of time performing transactions and for which
the overhead of TM operations limits scalability. For these cases,
STM2 provides higher speedups over canonical STM systems. How-
ever, real applications are complex and may not present the same
structure throughout the whole execution. For example, an appli-
cation could spend most of its execution time in an embarrassingly
parallel section (in which the application does not need to use trans-
actions to protect concurrent accesses to shared memory locations)
or alternate phases in which it heavily accesses shared locations
through transactions with accesses to private variables.

In this section we describe fine-grained resource allocation tech-
niques that can be applied at compile time to improve processor
utilization and efficiency when auxiliary threads are mostly idle or
overloaded. Applying these techniques, however, requires an un-
derstanding of the IBM POWER7 hardware thread priority mech-
anism. Previous studies [2, 19, 22] focus on IBM POWER5 pro-
cessor generations which, to the contrary of POWER7, feature only
two hardware threads per core rather than four. In order to better
explain the performance implication of POWER7 hardware thread
prioritization mechanism and the effects of fine-grained resource
partitioning, we follow a step-by-step approach and use Eigen-
bench [13], a simple TM micro-benchmark that allows program-
mers to tune orthogonal TM characteristics (e.g., the number of
local accesses outside or inside transactions, the conflict level, the
number of transactional operations per transaction). Eigenbench
performs N consecutive iterations of a computation block, where
each block consists of an embarrassingly parallel computation part
and a transaction. We properly tune Eigenbench to create chal-
lenging scenarios for STM2. We then leverage the IBM POWER7
hardware thread priority mechanism described in the previous sec-
tion to improve STM2’s performance in these challenging scenar-
ios. In the following sections, ATp denotes the priority of an ap-
plication thread, AxTp the priority of an auxiliary thread, and ∆p =
ATp −AxTp the difference between the priority of an application
thread and its corresponding auxiliary thread. Positive values of ∆p
denote that an application thread has higher priority than its paired
auxiliary thread, whereas negative values of ∆p indicate that the
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Figure 1: Performance impact of reducing the priority of auxiliary threads for vary-
ing the percentage of time spent performing embarrassingly parallel (EP) computation
and for varying values of ∆p. The graph shows that the performance improvement
obtained by reducing the priority of the idle auxiliary threads is proportional to the
percentage of time the application spends in embarrassingly parallel phases and to ∆p.

auxiliary thread has higher priority than its corresponding applica-
tion thread.

3.1 Embarrassingly parallel phases
During embarrassingly parallel phases, threads perform compu-

tation on private data and do not need to protect accesses to mem-
ory locations. In STM2, auxiliary threads paired with application
threads not performing transactions at a given time sit idle, waiting
for a new transaction to start. Since each thread runs on a dedicated
hardware thread and the system is not over-provisioned, this de-
sign may lead to overall processor under-utilization. In fact, wait-
ing auxiliary threads do not perform any useful work, but consume
hardware resources that could be used by application threads. Al-
though spinning usually guarantees higher responsiveness, a wait-
ing auxiliary thread could spin at a lower speed, i.e., consuming
fewer hardware resources, without suffering performance degrada-
tion. We thus reduce the hardware priority of waiting auxiliary
threads (AxTp) and restore it to its initial value as soon as their cor-
responding application threads start a new transaction.

The impact of reducing auxiliary threads priority during embar-
rassingly parallel computation phases on the performance of the
whole application depends on 1) the percentage of time the ap-
plication spends performing embarrassingly parallel computation,
and 2) the amount of extra hardware resources assigned to appli-
cation threads (∆p). Figure 1 shows the performance improvement
of Eigenbench when running 1000 iterations per thread, with one
transaction per iteration. In this experiment, the number of trans-
actional operations per iteration is fixed to 20.2 We then vary the
percentage of time spent by Eigenbench in embarrassingly parallel
computation phases from 25% to 95% and the value of the hard-
ware thread priority of the auxiliary threads (AxTp) while keep-
ing ATp = 6. In this graph we only focus on the performance
improvement obtained from reducing the hardware thread prior-
ity of auxiliary threads during embarrassing parallel phases and
we maintain ATp = AxTp = 6 inside transactions. As expected,
Figure 1 shows that reducing AxTp during embarrassingly parallel
computation phases provides performance improvements propor-
tional to the percentage of time the application spends in embar-
rassingly parallel computation. The graph also shows that the best
2Here, and in the rest of the paper, Eigenbench is configured to
perform 10% of transactional writes.
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Transaction length

(a) Standard case.

Transaction length

(b) Static allocation of extra hardware resources to application threads.

Figure 2: Frequently idle auxiliary threads. (a) In this scenario, application threads
issue transactional operations at a low rate, thus, auxiliary threads are frequently idle.
In this, trace white denotes local computation within a transaction while gray bars
denote transactional read or write. (b) Application threads receive more hardware
resources (AxTp = 1 and ATp = 6) but auxiliary threads are still able to complete all
TM operations before the corresponding application threads reach the commit phase,
hence, the transaction’s total execution time is reduced. The elapsed time in both traces
is the same.

performance values are obtained with ∆p = 5 (i.e., ATp = 6 and
AxTp = 1). This is an important design point because this value
of ∆p can only be achieved through the HMT Linux patch. Had
we limited the use of priority to the user-available levels, the maxi-
mum ∆p would have been 2 (ATp = 4 and AxTp = 2), which would
provide a performance improvement of 16.8% (in the 95% case)
instead of 22.3% obtained with ∆p = 5. Finally, this performance
improvement comes essentially free of any drawbacks, as reducing
hardware resources does not have any impact on the performance
of waiting auxiliary threads.

3.2 Load imbalance inside transactions
Load imbalance [3, 4, 25, 28] is a well-known problem for par-

allel applications that need to synchronize at certain determined
points, such as at barriers or fork/join constructs. Load imbalance
happens when one or more tasks in a parallel application have more
work to perform than the others with the result that the whole ap-
plication proceeds at the speed of the slowest tasks, which may
severely limit overall performance.

In STM2, each application/auxiliary thread pair needs to syn-
chronize at the end of each transaction (commit()) before mov-
ing to the next phase. Load imbalance may occur because: 1) the
application thread issues TM operations at a low rate, thus the cor-
responding auxiliary thread is frequently idle (Section 3.2.1), and
2) the auxiliary thread has not completed all TM management oper-
ations when the corresponding application thread reaches the com-
mit phase (Section 3.2.2). The next sub-sections explain these sce-
narios with details.

3.2.1 Overloaded application threads
Figure 2 shows a partial execution trace (one transaction) of a

scenario in which application threads perform TM operations at
a low rate. In this figure, local computation (operations on pri-
vate variables) is depicted in white and TM operations are drawn
as gray bars. In order to obtain these execution traces, we in-
strumented STM2 and produced traces that can be visualized with
Paraver [24], a performance analysis tool commonly used to study
parallel applications. We tuned Eigenbench in such a way that ap-
plication threads perform Nlocal local operations for every shared
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Figure 3: Performance impact of reducing the priority of auxiliary threads in pres-
ence of load imbalance (overloaded application threads). In this graph, we vary the
number of local accesses per transactional operation (Nlocal ) and the value of ∆p. The
results show that the best value of ∆p is not always the same and that aggressive values
of ∆p provide performance improvement only when Nlocal is large.

access (Nshared). In the example shown in Figure 2, Nlocal = 300
and Nshared = 20 (thus, the total number of operations is Nlocal ×
Nshared +Nshared = 6,020), which results in the auxiliary thread be-
ing idle for 95% of the time during the execution of a transaction.

Figure 2a shows the standard STM2 case: the auxiliary thread
is frequently idle but consumes hardware resources by spinning on
the communication channel for incoming messages (MSG_READ or
MSG_WRITE). The application thread, on the other hand, can only
use a partial amount of the shared hardware resources, with the
results that its speed is limited. In this simple scenario the pro-
grammer could configure STM2 to reduce the priority of the auxil-
iary thread (AxTp), therefore assigning more hardware resources
to the application thread. Figure 2b shows the effect of setting
ATp = 6 and AxTp = 1 (∆p = 5): by reducing AxTp and assigning
extra hardware resources to the application thread, performance im-
proves considerably. In fact, although the auxiliary thread proceeds
at slower speed than the one in Figure 2a (the trace shows that each
STM operation now takes longer), the application thread does not
have to wait and can proceed with its computation. On the other
hand, the auxiliary thread has still enough time to complete all TM
operations before its corresponding application thread reaches the
commit phase (thus, the application thread does not wait to com-
plete the transaction).

Unfortunately, setting the correct values of ATp and AxTp is not
always straightforward: since the internal design of the IBM POWER7
hardware thread priority mechanism is not symmetric [2], the per-
formance degradation of the lower priority thread is usually higher
than the performance improvement of the higher priority thread.
This design does not lead to performance degradation if we re-
duce the priority of auxiliary threads that are actually not doing
any progress, like in embarrassingly parallel computation phases.
However, applying the wrong set of priorities when both threads
are performing useful work may reverse the imbalance, with the
final effect of worsening the overall performance.

In order to quantify the effect of fine-grained resource alloca-
tion on applications with imbalanced transactions, we performed
a complete design space exploration, varying the number of ac-
cesses to local variables (Nlocal) per TM operation (Nshared) within
a transaction and the priority values of the auxiliary threads (AxTp);
ATp = 6 in all cases. Figure 3 analyzes the performance improve-
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Transaction length

(a) Standard case.

Transaction length

(b) Spin-only: Static allocation of extra resources to auxiliary threads at commit
phase.

Transaction length

(c) Entire transaction: Static allocation of extra resources to auxiliary threads through-
out the whole transaction.

Figure 4: Overloaded auxiliary threads. In the traces, white denotes transaction
computation (both local and shared accesses) while light gray denotes application
threads’ waiting time at commit phase. In this scenario auxiliary threads are over-
loaded and cannot complete all TM operations before their corresponding application
threads reach the commit phase. Increasing the amount of hardware resources assigned
to auxiliary threads improves overall performance. The elapsed time is the same for
all the traces.

ment (or degradation) on the whole application. As we can see
from the graph, when the number of local accesses is limited or
null, excessively reducing AxTp reverses the imbalance: auxiliary
threads become the bottleneck and application threads have to wait
at commit phase for their auxiliary threads to complete their work.
This often leads to performance degradation, especially when the
priority difference is large (e.g., ∆p = 5 or 4). For Nlocal = 0, re-
ducing the hardware thread priority of auxiliary threads may de-
grade performance up to 63% (ATp = 6 and AxTp = 1, ∆p = 5). As
the number of local accesses per TM operation increases, auxiliary
threads are able to complete their work even with fewer hardware
resources: for Nlocal = 100, we can be aggressive and achieve an
overall performance improvement of 44%.

3.2.2 Overloaded auxiliary threads
Some TM management operations, such as read-set validation

or conflict detection, require a variable amount of time to be com-
pleted. For example, read-set validation overhead depends on the
number of individual shared memory locations read during a trans-
action and the number of concurrent writers. The former deter-
mines the size of the read-set while the latter affects how often
read-set validation has to be performed during a transaction.

STM2 is an eager-conflict detection STM, thus read-set valida-
tion is performed when a potential conflict arises. Note that not all
read-set validations, although required, result in aborting the trans-
action. If an application triggers several read-set validations, auxil-
iary threads may not be able to complete all their TM operations be-
fore the corresponding application threads reach the commit phase.
If such a situation arises, application threads are forced to wait at
commit phase. Figure 4a illustrates this case: the auxiliary thread is
not able to complete all TM management operations before its cor-

responding application thread reaches the commit phase, thus the
application thread is forced to wait, effectively serializing part of
computation and TM management operations. In the trace, appli-
cation thread’s waiting time at commit phase is denoted with light
gray while white depicts the execution of a transaction (both local
computation and transactional operations).

Eigenbench does not allow us to control the number of read-
set validations per transaction,3 thus, in order to create the sce-
nario in Figure 4a, we introduced extra (although not always nec-
essary) read-set validations that allow us to simulate potential con-
flicts induced by large read-sets and large numbers of concurrent
threads. In scenarios such as the one depicted in Figure 4a, we pri-
oritize auxiliary threads with respect to application threads (∆p <
0). This technique can be applied just at commit phase (Spin-only)
or throughout the whole transaction (Entire Transaction).

Spin-only: Figures 4b shows how reducing ATp while an appli-
cation thread is waiting at commit phase allows auxiliary threads to
speed up the execution of TM management operations and achieve
an overall performance improvement. This solution, similarly to
the case described in Section 3.1, is straightforward and does not in-
troduce any performance degradation because the application thread
is not performing useful work while waiting. In particular, the fig-
ure shows the case in which ATp = 1 and AxTp = 6 (∆p = −5).
Comparing Figures 4a and 4b, there is no performance degradation
for the application thread computing phase (white in the traces),
while the spinning time (light gray) is considerably reduced. Per-
formance improvement, in this case, is proportional to the spinning
time reduction. As for the case in Section 3.1 (see Figure 1), over-
all performance improves4 with the decrease of ATp, thus the best
performance is achieved with ∆p =−5. Although the performance
of application threads reduces with their priorities, there is a net
gain, as long as we do not reverse the imbalance.

Entire transaction: Figure 4c shows a solution that decreases
the priority of the application thread at the beginning of the trans-
action and maintains ∆p < 0 for the entire transaction execution.
This approach is more aggressive than the previous spin-only solu-
tion: by prioritizing auxiliary threads during the transaction compu-
tation phase, the performance of application threads considerably
reduces. This can be observed by comparing Figures 4a and 4c:
the application thread computing phase (white) takes considerably
longer than in the standard case. On the other hand, the auxil-
iary thread does not accumulate too many pending TM operations,
hence its corresponding application thread has to spin for less time
at commit phase. The net result is that, with the more aggressive ap-
proach, the performance improves with respect to both the baseline
(65%) and the safe, spin-only approach (7%). However, statically
reducing the priority of application threads also has the side effect
of reducing the rate at which application threads inject messages
into the communication channel. Consequently, auxiliary threads
might spend time waiting for the next incoming message, which
would reduce the net benefit. This situation arises especially for
large negative values of ∆p.

As we discussed above, the number of read-set validations per
TM operation depends on application characteristics, such as the

3The only way to induce read-set validations is to increase the con-
flict rate. Unfortunately, these are real conflicts that will cause the
transaction to abort, which makes it difficult to deterministically
reproduce experiments.
4In fact, there may be a slight performance degradation caused by
the lower frequency with which the application thread checks the
receive of the SIG_READYTOCOMMIT signal but we have not noticed
any measurable slowdown in our experiments.
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Figure 5: Performance impact of increasing the priority of overloaded auxiliary
threads when varying the number of read-set validations per transactional operation
and ∆p. The graph shows that the right value of ∆p is not always the same and that
aggressive settings of ∆p are only suitable when the ratio between read-set validations
and transactional operation is high.

number of concurrent writers. Figure 5 shows the impact of stat-
ically increasing AxTp (∆p < 0) at the beginning of the transac-
tion when the number of read-set validations per TM operation de-
creases. The graph also shows the performance of reducing ATp
to one (∆p = −5) when application threads wait at commit phase
(i.e., the case depicted in Figure 4b). The figure reports the per-
formance improvement over the standard STM2 when performing
read-set validation every N transactional operations (1:N) and vary-
ing the value of ∆p. Our experiments show that increasing AxTp
for transactions that require a high number of validations generally
provides higher performance improvements than by just reducing
ATp at commit phase. For example, when performing one valida-
tion for every transactional operation (1:1), increasing AxTp from
the beginning of the transaction provides a performance improve-
ment of 65% over the standard STM2 while reducing ATp to one
at commit phase provides 55% performance improvement. On the
other hand, reducing ATp when an application thread is spinning
at commit phase is a safe operation that does not introduce any
measurable performance degradation. We can, therefore, apply this
technique and use it as a fall-back mechanism in case we cannot
perfectly balance application and auxiliary threads by increasing
AxTp at the beginning of a transaction.

Note that the best value of ∆p is not always the same for all ra-
tios and that aggressive settings are only possible when the ratio
between the number of read-set validations and transactional op-
erations is high. Figure 5 shows, in fact, that incorrect setting of
ATp and AxTp when prioritizing auxiliary threads may lead to con-
siderable performance degradation (up to 70%), especially if the
number of read-set validations per transaction is low. As for the
case of reducing AxTp for frequently idle auxiliary threads (Sec-
tion 3.2.1), manually setting ATp and AxTp is a complicated task,
even for simple micro-benchmarks. This work explores opportu-
nities for performance improvement through fine-grained resource
allocation, using STM2 as a test case. We leave the design and de-
velopment of a system that automatically detects load imbalance
within transactions and the right settings of hardware thread prior-
ities as future work.
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Figure 6: Performance impact of static (best values among all combinations) re-
source partitioning for STAMP applications. EP = Embarrassingly Parallel.

4. STAMP APPLICATIONS
In the previous section we used Eigenbench to show challeng-

ing cases in which the design of STM2 may not prove efficient.
In this section we show that those scenarios are indeed common
to more complex applications. We use some of the applications
from the STAMP benchmark suite, a set of applications widely
used to test transactional memory systems, as test cases. We se-
lected applications from the STAMP benchmark suite that expose
some of the problems mentioned in Section 3, namely Labyrinth,
Genome, SSCA2 and Vacation. Experiments are performed on a
IBM POWER7 system (8 cores, 4 hardware threads per core) equipped
with 64 GB of RAM. We compiled all applications with GCC 4.3.4
with optimization level O3 and report the average of 25 runs for
each application. In order to use all hardware priority levels, we
use a version of the Linux 2.6.33 kernel patched with the HMT
patch [3]. In all the experiments, the STAMP applications use
all the available hardware threads (32 in the tested configuration):
16 application threads and 16 auxiliary threads. Each pair appli-
cation/auxiliary thread is mapped on two hardware threads in the
same core. Finally, we use the reference (large) input sets [23].

Figure 6 shows the performance of (separately) applying our
fine-grained resource allocation techniques to STAMP applications.
For each technique, we report the best values of the pair (ATp,
AxTp) among all possible configurations. We should remark that
several configurations, especially when decreasing AxTp, do not
work, as auxiliary threads become too slow and application threads
completely fill up the communication channel (which aborts the
execution of the application). As we can see, several applications
from the STAMP benchmark suite show benefits when applying
fine-grained resource allocation, although the improvements may
be related to different reasons. This first observation proves that, in-
deed, there are cases in which partitioning hardware resources pro-
vides performance improvements even for complex applications.

All benchmarks benefit from reducing AxTp when applications
are involved in embarrassingly parallel computation (up to 11%).
Some of the benchmarks only spend a marginal fraction of their
execution time in these phases, hence, the impact on these applica-
tions is limited. The overhead of unnecessary changing the values
of ATp and AxTp also affects the performance of fine-grained re-
source allocation: if the time between two transactions is short,
for example, the overhead of invoking a system call may outweigh
the performance improvement obtained throughout embarrassingly
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Figure 7: Labyrinth’s transactions alternate a large local computation phase (white in the figure) with a burst of transactional operations (gray bars) at the end.

parallel sections. This situation does not often arise with Eigen-
bench, where we have the complete control of the application’s
structure, but it appears in some of the STAMP benchmarks (e.g.,
SSCA2 or Vacation). Inside transactions, on the other hand, it is
more difficult to select the best values of ATp and AxTp when con-
figuring STM2. For well-balanced applications, such as Vacation,
varying the values of ATp and AxTp provide performance degrada-
tion or have almost no effect (performance variation within 1%).

Among the tested STAMP applications, Labyrinth and SSCA2
are the most interesting cases for our study. Labyrinth presents very
large, back-to-back transactions with a large number of accesses to
local memory locations followed by a burst of shared memory ac-
cesses (TM operations). Figure 7a shows the execution trace of
one of Labyrinth’s transaction: the picture clearly shows that the
local computation phase (white in the trace) is predominant, which
explains why reducing AxTp provides good performance improve-
ments (Figure 6). Figure 7b shows a close-up of the final part of
the transaction, the burst of TM operations.5 Notice that, since the
burst is at the end of the transaction, the application thread has to
wait at commit phase for the auxiliary thread to complete all TM
management operations (which explains the small performance im-
provement for the spin-only case in Figure 6), though the auxiliary
thread is mainly idle during the transaction.

SSCA2 presents two separate execution phases: in the first phase,
the application generates the graph that will be solved in the second
phase. Both phases are parallel but, while the second phase uses
transactions to protect shared memory locations, the first phase is
embarrassingly parallel, as each thread works on its local portion of
the graph. The original STM2 assigns half the available hardware
threads to run auxiliary threads even in the embarrassingly paral-
lel phase: by reducing the priority of the auxiliary threads in the
first phase, we achieve 11.3% of performance improvement over
the standard STM2 design. This case is similar to the examples
shown in Section 3.1. In the second part of the application, SSCA2
performs very short and balanced transactions with a low conflict
rate and several concurrent writers. With short transactions, the
overhead of applying fine-grained resource partitioning slightly re-
duces performance. The net result is a performance improvement
of 11% over STM2.

For Genome, reducing AxTp causes application threads to satu-
rate the communication channel, even for ∆p = 1. In fact, in the
first application phase, Genome quickly issues a burst of TM oper-
ations at the beginning of a transaction and then reduces the rate at
which the application issues transactional operations, giving auxil-
iary threads time to complete its work before the application threads
reach the commit phase. On the other hand, statically increasing
AxTp does not increase performance either (in fact, it introduces a
performance degradation of 11%) because, in the second part of
the application, transactions with auxiliary threads mainly idle are

5Since the TM operations are very dense in this figure, it is difficult
to identify single TM operations.

dominant.
Finally Vacation shows well-balanced transactions with marginal

time spent in embarrassingly parallel sections. None of our tech-
niques provide performance improvement over the original STM2,
for main computation and STM management support operations
are already evenly distributed between application and auxiliary
threads.

5. RELATED WORK
Hardware thread prioritization [9, 20] has been introduced by

IBM in the POWER5 processor family. Hardware thread priori-
tization allows users to dynamically bias the amount of hardware
resources assigned to hardware threads in the same core. AIX [9]
provides the users with an interface to modify hardware thread pri-
orities. Linux kernels use hardware prioritization when 1) a thread
is spinning on a lock, 2) a thread is waiting for another thread to
complete a required operation (smp_call_function(), or 3) a
thread is idle. Linux resets the priority of a thread after receiving
an interrupt or an exception and does not keep a per-process priority
status. Moreover, Linux does not consider the priority of the paired
thread and, since the prioritization mechanism works with the pri-
ority difference, arbitrarily modifying the priority of one hardware
thread may invalidate the decision taken on the other. Boneti et
al. [2] characterized the use of hardware thread prioritization for
POWER5 processors running micro-benchmarks and SPEC bench-
marks. Other researchers [22] have also investigated the effect of
hardware thread priorities on the execution time of co-scheduled
application pairs on a trace-driven simulator of the POWER5 pro-
cessor. Moreover, in a follow-up work, Boneti et al. used hardware
prioritization to transparently balance high performance computing
applications [3, 4], achieving up to 18% performance improvement.

Mann et al. [19] proposed a holistic approach that aims at reduc-
ing Operating System (OS) jitter by utilizing the additional threads
or cores in a system. The authors tried to handle jitter through dif-
ferent approaches, one of the approaches is setting the hardware
priority of the primary SMT thread to priority 6 and that of the sec-
ondary SMT thread to priority 1 in order to reduce jitter caused by
SMT interference.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose to use fine-grained resource alloca-

tion to improve the efficiency and the performance of assisted-
execution systems. We used an integrated hardware/software ap-
proach to implement fine-grained resource allocation and divide
tasks between hardware, OS and runtime system. As test case,
we applied fine-grained hardware resource allocation to STM2, a
parallel software transactional memory system that offloads STM
time-consuming operations to auxiliary threads, and leverage the
IBM POWER7 hardware thread prioritization mechanism to dy-
namically partition hardware resources at runtime. We improve
performance and resource utilization for application that spend a
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considerable amount of time performing embarrassingly parallel
computation or that show load imbalance between application and
auxiliary threads within a transaction, both of which prove to be
challenging scenarios for STM2.

Our current solutions can be applied when configuring STM2:
Results obtained on a state-of-the-art, IBM POWER7 system with
32 hardware threads (8 cores, 4 hardware threads per core) show
that these techniques provide performance improvement up to 65%
over the standard STM2 design for Eigenbench, a simple and mal-
leable TM benchmark, and up to 11% for more complex applica-
tions from the STAMP benchmark suite. Our experience with the
IBM POWER7 hardware prioritization mechanism suggests that
integrated hardware/software solution are interesting and can be
employed to efficiently solving problems that may be difficult to
solve completely at one level. Moreover, we notice that large values
of ∆p can only be used for extreme cases and are unlikely to be use-
ful for complex applications. A more fine-grained hardware prior-
itization mechanism that provides more intermediate values rather
than extreme values, such as the current IBM POWER7 mecha-
nism, would further help fine tuning integrated hardware/software
solutions.

As the experiments in Sections 3 and 4 suggest, however, set-
ting the correct values of ATp and AxTp for complex applications
requires a deep understanding of the application characteristics. As
future work, we plan to extend STM2 to automatically detect load
imbalance within transactions, transparently to the programmer,
and the apply the correct settings of hardware thread priorities.

Finally, we remark that, although we applied fine-grained hard-
ware resource allocation to STM2, this approach can be used for
other auxiliary-based systems, such as dynamic check in Java Script [21]
or OS exception handlers [30].
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