
Resource management for task-based
parallel programs over a multi-kernel

BIAS: Barrelfish Inter-core Adaptive Scheduling.

Georgios Varisteas
KTH Royal Institute of Technology

yorgos(@)kth.se

Mats Brorsson
KTH Royal Institute of Technology

matsbror(@)kth.se

Karl-Filip Faxèn
Swedish Institute of Computer Science

kff(@)sics.se

Abstract
Trying to attack the problem of resource contention, created by
multiple parallel applications running simultaneously, we propose
a space-sharing, two-level, adaptive scheduler for the Barrelfish
operating system.

The first level is system-wide, running close to the OS’ kernel, and
has knowledge of the available resources, while the second level,
integrated into the application’s runtime, is aware of its type and
amount of parallelism. Feedback on efficiency from the second-
level to the first-level, allows the latter to adaptively modify the
allotment of cores (domain), intelligently promoting space-sharing
of resources while still allowing time-sharing when needed.

In order to avoid excess inter-core communication, the system-level
scheduler is designed as a distributed service, taking advantage of
the message-passing nature of Barrelfish. The processor topology
is partitioned so that each instance of the scheduler handles an
appropriately sized subset of cores.

Malleability is achieved by suspending worker-threads. Two differ-
ent methodologies are introduced and explained, each suitable for
distinct programming models and applications.

Preliminary results are quite promising and show minimal added
overhead. In specific multiprogrammed configurations, initial ex-
periments proved significant performance improvement by avoid-
ing contention.

1. Introduction
Most research on parallel programming models has focused on run-
ning parallel applications in isolation. Although helpful in investi-
gating the fundamental properties of parallelization and multi-core
architectures, this approach neglects the major issue of contention.
In real-life situations, multiple parallel processes are running si-
multaneously which have to fight for the same system resources.

Barrelfish is a novel approach to the old idea of a distributed oper-
ating system. It follows the multi-kernel model [3], according to
which there is one micro-kernel per each physical core in the sys-
tem. These kernels work as one distributed operating system. All

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
RESoLVE ’12 March 3 2012, London, UK.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

services are shared. This design provides two great features right
away; portability, since it can be deployed on any architecture as
long as each available processor is supported and scalability. The
latter is an outcome of the OS’ most basic characteristic, it assumes
no shared memory thus employing only message passing for inter-
core communication. Hence there is no dependence on complicated
cache coherence mechanisms.

Thread scheduling in Barrelfish in currently not very evolved; each
kernel uses the RBED algorithm[6] to order the execution of the
threads that are time-sharing its underlying core. However there is
no automated mechanism for migrating threads between kernels.
Although each process is allowed to create threads arbitrarily on
a specific set of cores, which is called the domain and is change-
able, there is no inter-core scheduling done by the system, or in
other words, any intelligent control over the distribution of these
threads onto the cores of a program’s domain. So, very frequently
the combined load becomes highly unbalanced, without system-
wide knowledge and control, occasionally under-utilizing the sys-
tem. An obvious example, as depicted in figure 1, is when two
programs, of different amounts of parallelism each, request usage
of the whole system. Furthermore, it still remains a fact that most
real-life applications can not be parallelized to the extend that they
can efficiently utilize a many-core or even a multi-core system. In
most programs the amount of parallelism that exists is fluctuating
throughout their execution.

Figure 1. Highly parallel runtime 1 and not so parallel runtime 2,
are allowed to share the same amount of resources in the absence of
any inter-core, system-wide scheduling. We propose a new schedul-
ing layer which recognizes the lack of parallelism in runtime 2 and
distributes the resources accordingly.

Nevertheless, message-passing although a scalable programming
paradigm, brings a significant overhead in design and implementa-
tion. Shared-memory based programming models, and more specif-
ically task-based models, are easier to use for implementing the

most complicated programs. It is a fundamental assumption of this
project that both the message-passing foundation provided by the
operating system and various shared-memory-based programming
models for building applications can be combined in a way that
exploits the best attributes of both.

To this end, we propose a two-level adaptive inter-core scheduler
(B.A.I.S.). As described by Feitelson [9] schedulers for parallel
systems can be designed in two levels in order to decouple resource
allocation and resource usage. This design simplifies mapping the
aforementioned duality into the implementation; a scheduler that
combines message-passing at the system-level and shared-memory
in the application layer. As shown in figure 1 we add a system-
level scheduler as a completely new scheduling layer. By knowing
the system-wide availability of resources it allots processors to
processes (called ”jobs” in [2]). The adaptive keyword is used
to describe the malleability of the scheduling. Given a significant
execution time length, the domain of each application can and
will be modified dynamically [7] during its execution, according
to the overall requirements of the system. The second level consists
mainly of the application’s runtime, augmented to provide feedback
on efficiency and resource requirements (desire) to the system-
scheduler. The desire of the application is based on its awareness
of the parallelism that the exists in the application

The runtime systems we are using are well established task-based
parallel programming models, mainly WOOL[8] but also investi-
gating Cilk++[5] and OpenMP. These are responsible for distribut-
ing a process’ threads onto its allotted processors.

Preliminary evaluation and results have been positive. At the time
of this writing we have tested a first naive and unoptimized im-
plementation which however has a very small overhead in cycles.
Also, first trials of contented configurations showed that our sched-
uler allowed applications to utilize resources better and increase
performance.

2. Two-level-adaptive scheduler
For the creation of threads and the distribution of work the user-
level scheduler employs the work-stealing task-based program-
ming paradigm [4]. Work-stealing is an effective way to implement
a thread scheduler. Threads, called workers, execute fine-grained
tasks while possibly spawning new ones. When necessary they in-
dependently acquire work by stealing available1tasks from other
workers selected at random. However there are two specific situ-
ations where such models can lead into inefficient use of various
system resources.

The efficiency of most work-stealing algorithms is theoretically not
steady. Resources are wasted when workers are trying to acquire
work while none is available (wasted-cycles). The number of algo-
rithms which expose a constant amount of parallelism throughout
their execution and thus can utilize a fixed amount of workers, is
quite small. Also, it is an open question whether it is better to have
multiple processes time-sharing system resources, or accomplish
space-sharing by reducing the number of active workers.

Finally, it is very frequent for different threads of the same pro-
cess to communicate with each other. Take for example the proce-
dure of work stealing. If the worker threads are not scheduled for
execution simultaneously on different cores, then inter-core com-
munication (for stealing work) will require context switching; this
produces delays. In the worst case scenario there can be a deadlock
if the developer is not careful with the specifics of the underlying
architecture.

1 All spawned tasks are by default marked as stealable until the worker that
spawned them initiates processing

2.1 Overall design

Figure 2 presents a snapshot of an execution of the system, indi-
rectly visualizing the proposed design of the two-level scheduler.
Each column represents one core. Going from the bottom up, the
CPU driver is the hardware-software interface, tailored to the spe-
cific architecture of the underlying processor. The ability to have
a different CPU driver for each kernel allows for Barrelfish to be
seamlessly deployed on heterogeneous architectures2; a very useful
out-of-the-box feature. The monitor is the boundary between ker-
nel and user space, responsible for executing all processes; also, it
handles all inter-core communication and it facilitates inter-service
interaction. In summary it is the monitor that transforms the set of
independent kernels into one distributed operating system. Among
all other services, the system-level scheduler exists right on top of
the monitor. In the example of figure 2 there is one instance per
two cores. In the application layer there are two processes running.
The small squares depict tasks spawned by each application. Each
is bound to its local system scheduler instance, with every worker
being able to exchange information with it if needed. The scheduler
has space-shared the system as much as possible but allowed core
1 to be time-shared. This is because in this hypothetical scenario
application two has excess amount of tasks that can utilize 3 cores
while application 1 is also efficient enough not to be deprived of its
second core. The decision policies are described in more detail in
section 2.5.

2.2 Existing scheduling in Barrelfish

The existing RBED thread scheduler in Barrelfish performs an
adequate job in deciding the execution order of the threads for each
processor. It is combined with the proposed inter-core scheduler for
handling time-sharing situations. Although the goal of this project
is to space-share the system, situations where that is not possible
can occur very easily. Section 3 presents such configurations where
time-sharing is actually used in order to accomplish positive and
successful domain alterations.

2.3 Adaptive work stealing

Each process starts with an initial desire of di processors. The
thread-scheduler counts the steal-cycles (searching for work) and
mug-cycles (stealing work); the sum of those is the amount of
wasted cycles. The thread scheduler calculates the sum of the
wasted-cycles of all of its workers, while also keeping track of
the most inefficient workers. At the end of fixed intervals (quanta)
of length qa each process forwards this metric tuple to the system
scheduler. Over larger quanta, qs, each system scheduler instance
iterates the feedbacks received from all programs pi and decides
on an allotment ai for each. The decision is based on comparing
the current wasted-cycles to the total processor cycles, classifying
the thread as inefficient or efficient. In parallel, if ai < di (the
allotment is less than desired) the process is deprived, otherwise
satisfied. This last classification speaks to the degree of contention
in the system and is independent to the performance of the applica-
tion.

The decision policy, based on work introduced in [1], is as follows:

• Inefficient: overestimation. The process is unable to utilize its
domain so the desire is decreased for the next quanta.

• Efficient and satisfied: underestimation. The process was al-
lotted its desired resources and successfully utilized them. The
desire is increased for the next quanta.

2 Currently there is no support for architecturally heterogeneous systems
in the BIAS scheduler, since it would require migrating binaries between
different architectures

Figure 2. A snapshot of the system, with two processes time-sharing the same core.

• Efficient and deprived: balanced. The process was allotted less
than desired and utilized them. The desire remains the same
for the next quanta because the system can most probably not
provide more.

When a program is characterized as efficient and deprived the de-
sire for resources remains the same irrespectively of the efficiency
of the process due to contention. If other processes become less
efficient then resources will be redistributed. If the deprived pro-
cess gets its desired amount and manages to utilize it, it will then
ask for more. This part of the algorithm is trying to balance and
space-share the system.

2.4 User-level thread scheduler

At the current stage we are investigating using customized versions
of two well-established task-based programming models. Both uti-
lize work-stealing algorithms for task distribution. The first such
model is WOOL [8], which is extremely fast and efficient in system-
resource utilization. Next, Cilk++ [5] provides sufficient speedup
but we are considering it because it provides the basis needed to
incorporate malleability of the application’s domain. These two
programming models although looking very similar in syntax and
functionality, have significant differences on how each spawns and
syncs tasks. These are introduced in more details in section 3.

Apart from porting them to the Barrelfish operating system, the
customizations done are focused in gathering and forwarding the
required efficiency statistics to the system-level scheduler. Each
worker counts its wasted-cycles. This clock is stopped on a success-
ful steal and started again after its first failure to steal. Over regular
quanta the main thread, that incorporates our augmentations, will
iterate the stored statistics and, by employing adaptive work steal-
ing as introduced in [1], calculate its average efficiency and its two

worst workers. This information is then sent to the system sched-
uler.

2.5 System-level process scheduler

The system scheduler runs on top of the monitor which allows it
to have system-wide knowledge of available resources. It collects
the efficiency statistics from all running processes and distributes
the available processors among them. Such a mechanism would
however act as a bottleneck for the system if the system scheduler
was one thread on one core.

This is why the system scheduler is implemented as a distributed
service. The processor topology is partitioned into sets of cores
called sections. This partitioning is fixed. One instance of the
system scheduler is overlooking each section, while exchanging
necessary information with all other instances; a sample execution
can be viewed in figure 4. A system scheduler instance is called
Section-Instance or simply SI.

All SIs share the knowledge of two tables. First is the ownership
table which holds the partitioning, meaning which cores are owned
by which section. Assuming that the number of cores is fixed, this
table is immutable. The second table shows which sections own
cores for which processes. This is a simple one-to-many table, map-
ping processes to cores thus sections; it is called the participation
table.

The basic principles of this service are:

1. Each section is given a priority number that doubles as its
unique ID.

2. A section should consist of at least two cores, except if only one
is present.

3. Sections are not necessarily of equal size.

4. There is only one SI per section.

5. Its process is binded to its local SI. Leader election decides it.
• A SI has primary control of a process, if it owns the majority

of the cores it uses.
• Otherwise, leader is the SI with highest priority number.

6. Processes can be allotted cores from multiple sections. Local SI
might change.

7. Thread schedulers communicate only with their local SI.

8. SIs can request information from other SIs, regarding processes
or even specific threads.

9. SIs voluntarily share only the absolute necessary amount of
information.

10. The only global knowledge is the participation table and the
immutable ownership table.

Whenever the allotment of cores for a process is changed, there are
two events that take place. First a delta is broadcasted to all SIs.
Then a simple leader election algorithm is executed for figuring
out the local SI to the process. Simple because the leader can be
predicted so no information has to be exchanged. Since each SI has
a copy of the ownership table, it knows if the change can affect its
reign and if yes who the new leader is. If it is changed then the old
leader simply forwards its process state data to the new leader.

Over fixed intervals each SI has to decide on a new allotment for
each process. It iterates the ones that it knows as efficient and
satisfied trying to increase its allotment by one. This increase is
translated into a decrease for its inefficient processes. If no such
process can be found it will broadcast a request to other SIs.
The first positive reply to arrive is accepted. If none is found
then according to a configurable efficiency threshold time-sharing
will be allowed on the core that hosts the most inefficient worker
of another efficient and satisfied process. The actual algorithm is
presented in figure 3.

3. Malleable process domains
Altering the initial allotment of processors translates into dynami-
cally creating and removing workers. To avoid the excess cost of
re-creating a worker thread, removed workers are suspend and later
resumed if needed. Although seemingly simple, it encapsulates the
dangers of throwing out completed work but also deadlocking the
rest of the workers. One obvious way to treat this is by not allowing
to trim a processor from a process’ allotment before the underlying
worker has synced its current execution tree. In such a scenario
there is no need for any bookkeeping. However, when the task has
spawned numerous other tasks it is very inefficient to have to wait
for the whole tree to sync back. Thus it is mandatory to allow sus-
pending workers at certain points. We have identified two distinct
ways to accomplish this.

The first method concerns programming frameworks like WOOL,
which keep the application state in the stack. The use of the stack
makes task migration quite difficult and costly, as it involves a lot
of unwanted bookkeeping across all workers that have stolen work
from a to-be-suspended-worker. What is done instead is to migrate
the worker thread onto a different core, preferably one hosting
a rather inefficient worker thread. The worker then can continue
processing and syncing but not stealing and not spawning new
work, eventually being suspended after its tree has been synced.
This process shall be called lazy-suspension.

In contrast, programming models like Cilk++, utilize continuation
passing style (CPS) cactus stacks, or in other words keep the ap-
plication state in the heap (shared memory). This allows for actual

allot(SI)
1: for all pes ∈ {Efficient and Satisfied} do
2: r ← getAvailableCore(SI)
3: if r == NULL then
4: r ← broadcastForAvailableCore(SI)
5: end if
6: if r == NULL then
7: r ← getCoreToT imeshareWith(SI)
8: end if
9: cores(pes)← r

10: end for

broadcastForAvailableCore(SI)
1: for all SIi ∈ {{All SI} \ SI} do
2: r ← getAvailableCore(SIi)
3: end for
4: return r

getAvailableCore(SI)
1: for all pie ∈ {Inefficient} do
2: if count(cores(pie)) > 1 then
3: return mostInefficientCore(pie)
4: end if
5: end for

getCoreToTimeshareWith(SI)
1: ped ← hasMostCores({{Efficient and Satisfied} \ SI})
2: return mostInefficientCore(ped)

Figure 3: pseudocode of the algorithm used to decide the allotment
of cores for each program.

task migration since any worker can take over the queue of another
worker at any point; it is merely a matter of exchanging specific
pointers. In this scenario the worker thread can be suspended in-
stantaneous. This method shall be called immediate-suspension.

There is no better between the two approaches. Both methods
have their trade-offs. Lazy suspension is easy to implement and
maintain but is not the most effective. Immediate suspension is
much harder to implement and involves larger synchronization
complexity, while being more effective.

A useful outcome of the load balancing performed by our pro-
posed scheduler is its ability to migrate processes across the proces-
sor topology. Eventually the available resources are space-shared
in a close to optimal way. Of course for this to be apparent it
requires applications with a significant execution time, otherwise
there would be a very small window for making any changes. Such
an example as observed by our experiments is presented in figure
4.

4. Phase-lock gang scheduling
One important scheduling paradigm introduced with Barrelfish is
Phase-Lock Gang scheduling [2]. It involves an efficient gang-
scheduling algorithm, tailored to the unique nature of Barrelfish
as a distributed multi-kernel operating system.

”Core-local clocks are synchronized out-of-band and sched-
ules coordinated, so that kernels locally dispatch tasks at
deterministic times to ensure that gangs are co-scheduled

Figure 4: A 48 core processor, divided into four sections. A sce-
nario were multiple processes are initially executed in a small sub-
set of the processor topology (a). For each process, our algorithm
will try to assign cores that are local to the initial core were each
processes executed on. Given a long execution time, the possibil-
ity of contention will be avoided by migrating worker threads onto
idle cores (b), eventually achieving maximum utilization of the re-
sources. As seen in (c) the process running on the cores in the center
has spread across all sections; section 4 has primary control over it
due to owning the majority of its cores.

without the need for expensive inter-core communication on
every dispatch; this feature is being implemented as an ex-
tension to the RBED scheduler.”

This mechanism works as an extension to the integrated RBED
scheduler, accommodating for the various situations where time-
sharing resources is inevitable. Such situations are plenty, hav-
ing less physical cores than running processes or having multiple
highly parallel programs which can fully utilize the system, are
among the most obvious

5. Evaluation
This project is still ongoing and in this paper we present evaluation
of our first naive and unoptimized implementation. To conduct this
evaluation we have implemented a set of applications that exhibit
diverse types and amounts of parallelism. For these experiments
Barrelfish was run using the Qemu simulator and not real hardware.
However, since all results are comparative, the same behaviour
ought to be similar in other configurations and real hardware.

Given the currently unoptimized API of Barrelfish, there is a very
high overhead in bootstrapping both the system scheduler but also
an application. This is because of the messaging protocol that
has to be followed. Each instance of the system scheduler has
to establish a connection with each other for replication, before
accepting clients. The same applies for each application which has
to find and establish a connection with its local SI before processing
starts. For the purposes of these evaluation we are excluding this
overhead from the measurements. For all configurations the clock

starts right before calling the first task and finishes right after the
final syncing.

For each application we have used input data that require process-
ing of at least 30 seconds and up to five minutes. The user-level
scheduler quanta, qu, is fixed at 3 seconds. Each SI will calculates
new allotment over fixed quanta, qs, of 6 seconds. This configu-
ration provides enough time for the application to adapt and for
changes to be finalized before a new quanta is up.

The applications used for our evaluation are:

1. FFT: Fast Fourier Transformation, with size 120.000.

2. FIB: Fibonacci of number 32 and 40.

3. Knapsack: Simple packing problem with input of 28 items.

4. Loop(coarse): A simple multiple loop program, where the in-
ner most loop performs long sequential calculations.

5. Loop(fine): A simple multiple loop program, that spawns a big
number of fine grained tasks.

6. nQueens: The typical nQueens problem over 10x10 and 14x14
boards.

7. Stress (coarse): A simple stress program that floods the system
with coarse-grained tasks.

8. Stress (fine): A simple stress program that floods the system
with fine-grained tasks.

As presented in figures 5 and 6, executing our testing set of par-
allel applications shows that the overall cycle count is not greatly
affected by the addition of the user-level scheduler and the over-
head of the statistics gathering. All applications are run in isolation
over an 8 core emulated configuration; all spawn 8 workers, one on
each core. It is interesting to notice that highly parallel applications
perform better with our scheduler (BIAS) as it allows the WOOL
runtime to adapt better to Barrelfish while there are minimal wasted
cycles.

This adaptation comes from the fact that core 0 hosts most of the
system services thus the corresponding worker is quickly marked
as inefficient and lowers its tendency to steal work; moreover,
it is the thread of worker 0 that also runs our statistics analysis
over fixed quanta, which also makes worker 0 steal less tasks.
Hence the other workers are less dependent on the unavoidable
delay caused by that worker. Contrary to that, coarser grained
applications (larger, sequential tasks) are afflicted by this behaviour
as the aforementioned overhead cannot be compensated by stealing
less tasks.

Figure 7 presents the cycle count of running two applications simul-
taneously. Specifically, we used two sets of two; the coarse and fine
grained loop and stress applications respectively, with and without
our scheduler. The results are promising as they show noticeable
improvement in performance. Both applications initially spawn 8
workers, one on each core. Without our scheduler, there is obvi-
ous contention of resources which affects greatly processing of the
more sequential tasks. On the contrary, our scheduler will migrate
workers and eventually space-share the system producing a signif-
icant increase in performance, especially for the more sequential
tasks which are processed uninterrupted as if in isolation.

6. Conclusions
In high-load many-core systems, it is worth comparing the effi-
ciency of having threads of different processes time-share a core
in contrast to space-sharing by fluctuating the number of worker-
threads. This project combines both scheduling implementations
and because Barrelfish provides a complete, custom tailored envi-

Figure 5: The bars show the average execution cycle count for each
application, with our scheduler (BIAS) and without. The applica-
tions are run in isolation on 8 cores with 8 workers. In most cases
the results are quite similar thus revealing that the overhead of our
scheduler to the runtime is minimal.

Figure 6: As with figure 5, this is the average percentile difference
of cycles. The negative values show that our scheduler allowed
better performance. The diversity between each application reveals
that the nature of the application, namely the type and amount
of parallelism that it exhibits, can affect greatly performance and
resource utilization.

ronment, this project can eventually allow insight at all levels; from
the operating system all the way up to the application layer.

Moreover, the existence of two different methods for thread sus-
pension (lazy and immediate) in relation to Barrelfish, can handle
cooperatively a variety of different situations. Additionally, it dif-
ferent types of programs benefit the most from different scheduling
methods, thus this complexity if intelligently applied can lead into
various insights.

From our preliminary results it is obvious that a load balancing
mechanism is necessary for achieving meaningful performance
gains of parallel applications. This project should be considered
as a first step to adding such features on Barrelfish. Other non-
distributed operating systems like Linux, have provided system-

Figure 7: The bars show the average execution cycle count for run-
ning two applications simultaneously, with our scheduler (BIAS)
and without. A more sequential stress with a more parallel stress
and the same for the loop application. The applications are run on
8 cores with 8 workers initially each. In all cases, our scheduler
allowed significant improvement in performance by space-sharing
the system.

wide load balancing and thread migration for quite some time now,
however they lack the portability and scalability properties of Bar-
relfish. The steady increase of cores for newer processors, and the
appearance of multiple new many-core architectures, investigating
Barrelfish is surely worthwhile and with our preliminary results
seemingly promising.

The split nature of our proposed scheduler allows it to be mapped
and adapted in configurations and systems which combine multiple,
inherently distinct layers dividing the scheduling logic with the
scheduled entity. Barrelfish OS is just one example and a rather
fruitful experimental testbed.

7. Future work
Our immediate intent, is to extend our evaluation of the system
with more complicated configurations and proper benchmarking
tools. Moreover, we plan to evaluate it over real hardware. Target
architectures are the Intel i7, a 4x12-core AMD opteron system
and Tile64Pro. Porting Barrelfish to the Tile64Pro architecture is
currently under way but not yet complete.

Long term goals focus on highly optimizing the scheduler’s plat-
form and the corresponding API of the OS, while expanding its
features:

• Experiment with other task-based programming models like
Cilk++, as well as non-work-stealing like OpenMP.

• Add locality-awareness to the system scheduler for better se-
lection of workers to suspend in relation to the process that re-
quires the released resources.

• Make use of processor characteristics as criteria on the decision
of core allotment for the deployment on heterogeneous archi-
tectures.

• Handle the absence of shared-memory support by the underly-
ing architecture.

8. Acknowledgements
I would like to thank Microsoft research for sponsoring this project,
as well as everyone contributing to Barrelfish through source core
or the mailing list. Finally a special thanks ought to be given to the
Swedish Institute of Computer Science (SICS).

References
[1] K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu. Adaptive

work-stealing with parallelism feedback. ACM Transactions on
Computer Systems, 26(3):1–32, Sept. 2008. ISSN 07342071. doi:
10.1145/1394441.1394443.

[2] A. Baumann, R. Isaacs, and T. Harris. Design Principles for End-to-
End Multicore Schedulers Context : Barrelfish Multikernel operating
system. Group.

[3] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
OS architecture for scalable multicore systems. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating Systems Principles,
pages 29–44. ACM, 2009.

[4] R. Blumofe and C. Leiserson. Scheduling multithreaded computations
by work stealing. Computing, pages 1–29, 1994.

[5] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. In ACM
SigPlan Notices, volume 30, pages 207–216. ACM, 1995.

[6] S. Brandt, S. Banachowski, and T. Bisson. Dynamic integrated schedul-
ing of hard real-time, soft real-time, and non-real-time processes.
Proceedings. 2003 International Symposium on System-on-Chip (IEEE
Cat. No.03EX748), pages 396–407. doi: 10.1109/REAL.2003.1253287.

[7] S. Chiang and M. Vernon. Dynamic vs. static quantum-based parallel
processor allocation. In Job Scheduling Strategies for Parallel
Processing, pages 200–223. Springer, 1996.

[8] K. Faxén. Wool-a work stealing library. ACM SIGARCH Computer
Architecture News, 36(5):93–100, 2009.

[9] D. Feitelson. Job scheduling in multiprogrammed parallel systems
(extended version). IBM Research Report RC19790 (87657) 2nd
Revision, 16(1):104–113, May 1997. doi: 10.1145/1007771.55608.

