
Optimizing Power-Performance Trade-off for Parallel
Applications through Dynamic Core and Frequency Scaling

Satoshi Imamura
Graduate School of Information Science

and Electrical Engineering
Kyushu University

s-imamura@soc.ait.kyushu-u.ac.jp

Hiroshi Sasaki
Faculty of Information Science and

Electrical Engineering
Kyushu University

sasaki@soc.ait.kyushu-u.ac.jp

Naoto Fukumoto
Graduate School of Information Science

and Electrical Engineering
Kyushu University

fukumoto@soc.ait.kyushu-u.ac.jp

Koji Inoue
Faculty of Information Science and Electrical

Engineering
Kyushu University

inoue@ait.kyushu-u.ac.jp

Kazuaki Murakami
Faculty of Information Science and Electrical

Engineering
Kyushu University

murakami@ait.kyushu-u.ac.jp

Abstract
As power consumption being the first order constraint to build
microprocessors, they are required to achieve high performance
within the strictly limited power budget. For example, capping the
peak power consumption is a strongly desired feature in large scale
data centers or massive HPC machines. Future many-core proces-
sors are expected to host a variety of workloads which have dif-
ferent characteristics and requirements. Therefore, a novel runtime
environment which can manage these applications in an energy-
efficient manner needs to be developed.

Traditional dynamic voltage and frequency scaling (DVFS)
which optimizes the trade-off between performance and power con-
sumption offers an efficient execution for single-threaded applica-
tions. However, this is not always the case for multi-threaded appli-
cations executed on many-core processors depending on their par-
allelisms. We propose dynamic core and frequency scaling (DCFS)
technique to optimize the power-performance trade-off for multi-
threaded applications. Our proposed technique adjusts core counts
and CPU frequency depending on the parallelism of applications
under the power consumption constraint. DCFS dynamically con-
trols the settings to optimize against the behavior within programs.
The evaluation results show that we can achieve 6% performance
improvement on average across ten applications from PARSEC
benchmarks and up to 35% fordedup.

1. Introduction
Recently, multi-core became the mainstream architecture to build
microprocessors because the performance of single-core processors
is now limited by power consumption, which therefore prevents the
traditional performance improvement techniques such as increas-

[Copyright notice will appear here once ’preprint’ option is removed.]

ing the operating frequency or implementing complex out-of-order
wide-issue superscalar processors. The number of cores equipped
on a single chip tends to increase as the technology shrinks, and
the many-core era is expected to arrive in the near future [5, 7, 8].
The key to achieve both high performance and low power in multi-
core processors is efficient parallel processing, and the importance
becomes more significant for many-core processors.

As power consumption has become the first order concern in
today’s microprocessors, future processors are required to achieve
high performance within the strictly limited power budget. Cap-
ping the peak power consumption is a strongly desired feature in
large scale data centers where server consolidation is becoming a
main technique to manage them, or massive HPC machines with
heavily multi-threaded applications take place. Future many-core
processors need to host a variety of workloads which have differ-
ent characteristics and requirements. Therefore, we need to have
a runtime environment which can manage these applications in an
energy-efficient manner.

A traditional approach for achieving energy-efficient execution
within a power consumption constraint is to apply dynamic volt-
age and frequency scaling (DVFS), which optimizes the trade-off
between performance and power consumption [9]. DVFS offers
an efficient execution for single-threaded applications and multi-
threaded applications running on CMPs (chip multiprocessors) [4].
However, this is not always the case for heavily multi-threaded pro-
grams being executed on many-core processors. CPU frequency
along with supply voltage is an efficient lever to control both per-
formance and power consumption by setting it to the maximum
available value considering the power budget. However, there ex-
ists another principle factor which determines the performance
for multi-threaded applications: scalability or parallelism. Multi-
threaded programs being executed on many-core processors tend
not to guarantee that neither the highest performance nor the most
energy-efficient execution realized by utilizing all the underlying
core counts.

In this paper, we propose dynamic core and frequency scal-
ing (DCFS) technique to optimize the power-performance trade-
off for multi-threaded applications. We believe that there are two
main knobs to control the power-performance trade-off in many-
core processors: CPU core throttling and frequency scaling. The

1 2012/2/7



Table 1. Configuration of the system for experiment (AMD
Opteron)

Processor AMD Opteron 6136
Number of processors 4
Number of cores per processor 8
Total number of available cores 32 (4 x 8)
L1 I/D cache 128 KB x 32
L2 cache 512 KB x 32
Shared L3 cache 12 MB x 4
Main memory 16 GB (DDR3-1333)
Bus speed 6.4 GT/s
Technology Size 45 nm

key idea is to distribute the precious power budget to either addi-
tional number of cores or increasing the operating frequency, de-
pending on the characteristics of the program. The characteristics
differ among and within programs, and we propose a dynamic tech-
nique which can apply the core throttling and frequency scaling
during runtime. While the traditional execution only relied on fre-
quency and voltage scaling for energy-efficient execution, DCFS is
possible to produce additional power to be distributed by appropri-
ately controlling the number of cores to be activated. Our evalua-
tion under a fixed amount of power budget shows that the proposed
technique improves the performance by up to 35% compared to the
conventional execution running with the maximum available core
counts and the minimum available frequency.

The rest of the paper is organized as follows: Section 2 shows
the experimental environment and motivates our work by show-
ing variety of characteristics of applications which have different
parallelism and different sensitivity with CPU frequency among
and within applications. Section 3 explains the overview and im-
plementation of the proposed technique. Section 4 shows evalua-
tion environment and results of the proposed DCFS technique. Sec-
tion 5 discusses the results of evaluation to understand the effect of
DCFS. Section 6 introduces related work and Section 7 concludes
our study.

2. Performance Characteristics with respect to
Core Counts and CPU Frequency

This section shows that performance characteristics with regard to
core counts and CPU frequency differ depending on the kind of
applications or executed phases under power constraint. Note that
we execute applications from PARSEC benchmark suite [2] on an
AMD Opteron based real system in this experiment.

2.1 Experimental environment

First, we explain the experimental environment. The configuration
of system used in the experiment is shown in Table 1. The sys-
tem is symmetric multi-processor (SMP) machine which includes
four processors with each processor having eight cores. There-
fore, the system has 32 cores in total. We select three applications
(blackscholes, dedup andx264) from PARSEC and use the “na-
tive” input set.

2.2 Assumption of power consumption constraint

We assume that the maximum CPU frequency is decided by the
core counts so as not to exceed the power consumption constraint.
We set the constraint to the power consumption when all cores
(32 cores) run on the minimum available CPU frequency accord-
ing to equation (1). Leta be the switching activity of the circuit,
Nallcores be the total number of cores on a chip,C be the load

Table 2. Maximum CPU frequency and supply voltage under
power constraint for each core count (AMD Opteron)

Number of cores CPU frequency [GHz] Supply voltage [V]
1 – 5 2.400 1.300
6 – 8 1.900 1.213
9 – 12 1.500 1.125
13 – 19 1.100 1.038
20 – 32 0.800 0.950

capacitance per core,fmin be the minimum CPU frequency, and
Vmin be the minimum supply voltage. We assume that the capaci-
tance of processor is proportional to the number of cores.

Pconstraint = a · Nallcores · C · fmin · V 2
min (1)

We calculated the maximum available CPU frequency for each
number of cores so that their power consumption does not exceed
Pconstraint

1. Table 2 shows the maximum CPU frequency and
supply voltage we assumed in this study depending on the number
of cores.

2.3 Variety of Characteristics among Programs

Figure 1 shows the parallelism or scalability of three applications
executed on the AMD Opteron platform. Thex-axis represents
the number of cores to be assigned to each program, and they-
axis represents the normalized performance where the value one
denotes the performance of a single core execution with the lowest
frequency which is 0.8 GHz in our experimental environment2. We
show five lines in each figure that each corresponds to execution
with different frequencies (0.8, 1.1, 1.5, 1.9, and 2.4 GHz). The
maximum number of cores that can be assigned to each frequency
is restricted by their power consumption constraint as shown in
Table 2.

Figure 1(a) shows the performance result ofblackscholes
which shows almost an ideal performance increase in proportion to
the number of cores and CPU frequency. In such an application, it
is generally more energy-efficient to increase the core counts rather
than increasing the CPU frequency. This is quite intuitive because
the power consumption of a CPU is proportional to the Vdd square
and the CPU frequency. For example, when we compare doubling
the CPU frequency and doubling the core counts, power consump-
tion doubles from doubling each factor in both cases, however, in-
creasing the CPU frequency consumes more power because it needs
to raise its Vdd. This can be clearly seen from the figure that the
0.8 GHz execution with 32 cores achieves the highest performance
within the power constraint.

For applications which saturate the performance by increasing
the core counts such asx264 (Figure 1(b)) ordedup (Figure 1(c)),
we can achieve higher performance within the power envelope by
restricting the number of cores and convert the surplus power into
performance by increasing the CPU frequency. As seen from the
figure, x264 performs the highest performance by 1.5 GHz exe-
cution with 12 cores. The result ofdedup is quite interesting that
the increase in CPU frequency gives much better improvement in
performance rather than increasing the core counts, which result in
2.4 GHz execution with 4 cores achieving the highest performance.

1 Our maximum CPU frequency assumption is conservative in the sense that
we considerPconstraint as a hard limit that can never be exceeded.
2 All the execution create 32 threads, and threads are packed to the number
of cores which is represented on thex-axis [3]. We use this “Thread
Packing” technique for the rest of our study.

2 2012/2/7



(a) blackscholes (b) x264 (c) dedup

Figure 1. Performance of three programs from PARSEC benchmark suite with different core counts and CPU frequencies

2.4 Variety of Characteristics within a Program

Figure 2 shows the detailed performance characteristics ofx264
application which varies time after time. The figure shows perfor-
mance results of pairs of five bars on thex-axis for different loops.
Each pair consists of bars of performance execution with five differ-
ent core counts (4, 8, 12, 16, and 32). Thex-axis expresses the time
flow by showing result for five consecutive loops handling different
frames of the input video and they-axis shows the committed IPS
(instructions per second) which corresponds to their performance.
IPS is a good indicator to measure performance because the total
number of dynamic instructions is stable among the execution with
different number of cores under Thread Packing execution [3].

In the first loop, 1.5 GHz execution with 12 cores achieves the
highest IPS among all combinations. In contrast, in the second,
the third, and the fourth loops, the best performing configuration
changes to 0.8 GHz execution with 32 cores. In the fifth loop,
1.5 GHz execution with 12 cores achieves the highest performance
again. We can see from the figure that each loop has different
characteristics with respect to its core counts and operating CPU
frequency. This suggests us that we need a runtime technique to
deal with such a variety within programs.

As seen from the discussions, Figures 1 and 2 motivate us of
developing a dynamic optimization technique which tries to max-
imize the performance by controlling the number of cores and the
operating CPU frequency within a fixed amount of power bud-
get. The key idea is to (1) detect the performance characteristics
which are the scalability and the performance sensitivity to CPU
frequency during runtime and (2) select the best configuration ap-
propriately. We describe the details of our proposed technique in
the next Section.

3. Dynamic Core and Frequency Scaling
3.1 Overview

The objective of our technique is to maximize the performance of
parallel programs executed on many-core processors under power
consumption constraint. In case of a traditional execution, we tend
to execute multi-threaded applications by creating equal or larger
number of threads than the underlying logical core counts to fully
utilize the system, and the OS allocates each thread to all the cores.
However, as we have seen in the previous section, this does not
necessarily give us the maximum performance nor the most energy-
efficient execution.

Therefore, we propose a sophisticated technique to dynamically
control the number of cores and the CPU frequency according to
the characteristics of the application which we call dynamic core
and frequency scaling (DCFS). For fully parallelized applications
such asblackscholes in Figure 1(a), we should allocate greater

number of cores as possible. However, for applications with middle
or low scalability, there is room for better optimization as we have
discussed earlier. We have to appropriately provide the limited
power consumption to control the two knobs, which are CPU core
throttling and frequency scaling, to achieve efficient execution.

3.2 Determination of core counts and CPU frequency

Our DCFS technique is composed of two phases which are “Train-
ing” and “Execution”. In the Training phase, we execute the pro-
gram with different configurations (a set of combinations with dif-
ferent number of allocated cores and CPU frequency) for a short
period of time each to identify the characteristics. In this study, IPS
is used for this purpose. After the Training phase, the optimal num-
ber of cores and CPU frequency which maximize the performance
are estimated from the measured IPS values. The execution phase
simply applies this configuration to the program. This Training and
Execution phases are repeated iteratively until the end of the pro-
gram so that we can follow the dynamic behavior within a pro-
gram. Note that this is a totally dynamic technique which requires
no static information nor modifications to the application binary.
Figure 3 shows the overview of this technique and we explain the
detail.

• Training
Training phase dynamically measures the IPS by changing the
configuration to find the optimal pair of core counts and CPU
frequency. The key idea is to find the best performing number
of cores for each possible frequency and compare them to find
the best pair. It works as follows: first, the program is executed
with all the cores and the maximum possible frequency (for
example, 32 cores and 0.8 GHz as seen in Figure 1, and we
will refer the numbers from this Figure for this explanation)
and IPS is measured for a short period of time (called “Training
period”). Next, we decrease the number of cores while keeping
the CPU frequency (24 cores and 0.8 GHz) and measure the
IPS. We keep decreasing the number of cores until the IPS
decreases. At that point, we are able to find the best core counts
for that frequency (0.8 GHz). This works because we assume
a convex curve for the number of cores versus performance,
which is quite general, and it is true for almost all of the
evaluated benchmarks in our environments. Next, we increase
the frequency (1.1 GHz) and measure the IPS by starting from
the maximum available core counts considering the power cap
to the point we see a performance degradation. We repeat this
process for all the possible frequencies (0.8, 1.1, 1.5, 1.9, and
2.4 GHz) and the optimal configuration which achieves the
highest IPS is determined by comparing the IPS against each
other.

3 2012/2/7



Figure 2. Performance characteristics ofx264 for different phases

Figure 3. The overview of the proposed technique

• Execution
After the Training phase, the selected combination of core
counts and the frequency is applied to the program and is exe-
cuted with the combination. As we can see from Figure 2, the
behavior of the program changes during runtime. Therefore,
IPS is measured periodically (every one second in our work) to
detect the change and DCFS switches to Training phase again
if the current IPS increases or decreases by a certain range
compared to the previous IPS.

3.3 Implementation

We have built a prototype user level runtime system to implement
the proposed DCFS technique. The system is built on top of the
Linux perf-tools toolset to allow periodical access to the perfor-
mance counters in order to measure the IPS. Additionally, we use
sched setaffinity(2), a standard Linux API to control the
CPU affinity of the evaluated program to bind the processes to a
specific number of cores.

An important parameter for our proposed technique is how
long to set the Training phase. We measured the time it takes to
stabilize the behavior after changing both the affinity and CPU
frequency. The maximum time it took in the worst case by changing
the number of cores and the frequency from the minimum to the
maximum was 30 ms. Therefore, we ignore the first 30 ms after
changing the configuration and use the next 30 ms as the length of

the “Training period”. In the Execution phase, behavior changes of
the executed program are detected if the current IPS increases or
decreases by more than 10 % compared to the previous IPS, and
our technique switches to the Training phase.

4. Evaluation
4.1 Evaluation environment

We evaluate our proposed DCFS technique with two kinds of plat-
forms: AMD Opteron and Intel Xeon. The configuration of Opteron
is already shown in Table 1 and that of Xeon is shown in Table 3.
In common with the Opteron platform, we set the dynamic power
consumption constraint as the value when all 12 cores run at the
minimum available CPU frequency (1.596 GHz) in Xeon platform.
The maximum available CPU frequency for each number of cores
is calculated similarly as shown in Table 4. Note that we invalidate
both Turbo Boost technology and Hyper-threading technology to
obtain stable results for Xeon platform.

We chose ten benchmarks from the PARSEC benchmark suite 2.1 [1]
and used the “native” input set for evaluation. We measured the
scalability of the benchmarks using our Opteron platform in order
to classify them into three types. Table 5 shows the classification of
the evaluated benchmarks according to their parallelisms by show-
ing the speedup against a single core execution to execution with
maximum number of cores.

4 2012/2/7



Table 5. Classification of the evaluated benchmarks according to the parallelisms

Parallelism Benchmark Speedup against 1 core (Opteron)Speedup against 1 core (Xeon)
blackscholes 31.6x 11.9x

High swaptions 31.6x 7.1x
vips 29.7x 11.6x
ferret 21.4x 9.4x

freqmine 18.4x 10.1x
x264 16.3x 10.0x

Middle canneal 13.0x 10.1x
bodytrack 12.4x 5.4x

streamcluster 10.4x 7.7x
Low dedup 3.1x 3.5x

Table 3. Configuration of the evaluation system (Intel Xeon)
Processor Intel Xeon X5670
Number of processors 2
Number of cores per processor 6
Total number of available cores 12 (2 x 6)
L1 I/D cache 32 KB x 12
L2 cache 256 KB x 12
Shared L3 cache 12 MB x 2
Main memory 96 GB (DDR3-1333)
Bus speed 6.4 GT/s
Technology Size 32 nm

Table 4. Maximum CPU frequency and supply voltage under
power constraint for each core count (Intel Xeon)

Number of cores CPU frequency [GHz] Supply voltage [V]
1, 2 2.927 1.350
3 2.527 1.132
4 2.261 1.023
5 2.128 0.968
6 1.995 0.914
7 1.862 0.859

8, 9 1.729 0.805
10 – 12 1.596 0.750

4.2 Evaluation Results

We compare our DCFS technique against the traditional execu-
tion using all the cores with minimum frequency. For DCFS, we
evaluate three cases with different implementations. DCFS-3 and
DCFS-10 are our proposed technique without detecting the behav-
ior changes within a program. The values 3 and 10 indicate the
length of the Execution phase, which is constant during the evalua-
tion. DCFS-WD (with detection) is our proposed technique which
dynamically detects the behavior changes within a program and
switch back to the Training phase.

4.2.1 Results of the Xeon platform

Figure 4(a) shows the performance results of the evaluation on
the Xeon platform. Thex-axis shows the benchmarks and they-
axis shows the performance normalized to the traditional execution
with 12 cores at 1.596 GHz. In this platform, DCFS cannot achieve
any speedup for all the evaluated benchmarks exceptswaptions.
The reason of this is that the performance of these benchmarks are
not saturated even if they are executed with all 12 cores, which

suggests that the traditional execution is close to the ideal case.
Moreover, DCFS has an additional overhead of the Training phase
which slows down the execution.swaptions has a characteris-
tic that achieves a higher performance when executed with core
counts which is a power of two. Therefore, DCFS detects the best
number of cores which is eight and improves the performance for
18% by our DCFS technique. DCFS-WD achieves the highest per-
formance among the DCFS techniques for all benchmarks except
swaptions. This result indicates that DCFS-WD successfully re-
duces the number of unnecessary Training phase by detecting the
behavior changes of the executed programs.

4.2.2 Results of the Opteron platform

Figure 4(b) shows the performance results of the evaluation on
the Opteron platform. The structure of the figure is the same as
Figure 4(a) except that the result of DCFS technique is much
more interesting. For four benchmarks with high parallelism
(blackscholes, swaptions, vips, andferret), DCFS cannot
improve performance as expected. The reason is the same as the
Xeon platform.canneal andstreamcluster also show almost
no or slight performance improvement, and the reason is discussed
in the next subsection.

DCFS improves performance of four benchmarks:freqmine,
x264, bodytrack, anddedup. As can be seen from Table 5, all
of these benchmarks does not have high parallelism. Especially,
the performance improvement ofdedup is the highest among all
the applications and show a 35% speed up. Further analysis of
the reason of this improvement is discussed in detail in the next
section with an additional experiment. The geometric mean of the
performance improvements with DCFS-WD are 6% for all the
ten benchmarks and 20% for the four benchmarks which show
performance improvements.

DCFS-WD achieves higher performance compared to DCFS-
3 for all benchmarks exceptferret. This is because DCFS-3
switches to the Training phase every three seconds which is too
short, while DCFS-WD reduces the number of unnecessary Train-
ing phase to reduce the overhead. However, compared to DCFS-
10, DCFS-WD achieves higher performance for only three bench-
marks:blackscholes, swaptions, andfreqmine. This result in-
dicates that our algorithm to detect the behavior changes within a
program is not perfect.

5. Discussions
5.1 Discussions for further improvement

We make some analyses on the applications that DCFS did not
work well and discuss how we can improve our technique for fu-
ture studies. From the result of Xeon, it is clear that our DCFS
technique is not effective for this platform because almost all the

5 2012/2/7



(a) Xeon

(b) Opteron

Figure 4. Performance normalized to the minimum frequency execution with all cores

applications show great or moderate scalability. Therefore, the tra-
ditional execution with all cores on minimum frequency achieves
the best performance. However, DCFS shows great improvement
on several benchmarks on the Opteron platform. This was expected
from Table 5 where the programs show a variety of parallelisms. It
is clear that there will be more and more variability in the scalabil-
ity of programs when the number of cores becomes larger, and the
advantage of DCFS becomes greater in such situations.

For programs such asblackscholes, swaptions, vips, and
ferret which are classified as high parallelism in Table 5, the
best configuration is to execute with all the cores in the system.
Even though our DCFS technique is able to find this configuration,
all the time spent in Training period becomes an overhead which
degrades the overall performance. Theoretically, we can avoid this
overhead by switching to the Training phase only if a behavior
change is detected such as in DCFS-WD. However, as the result
against DCFS-10 showed, our implementation is not perfect and
we need to implement a better detection technique which is left for
our future work.

Even thoughcanneal andstreamcluster does not have high
parallelism as shown in Table 5, DCFS cannot improve perfor-

mance. According to the work by Bienia et al., these two bench-
marks are the most memory-bounded applications of the ten bench-
marks we have evaluated [2]. DCFS relies on the characteristics
of a program where we can have benefit in performance by trad-
ing off the number of cores into additional CPU frequency. How-
ever, increasing the CPU frequency cannot speed up the memory-
bounded applications because CPU frequency is not the main fac-
tor to decide their performance. Figure 5 is a similar graph as Fig-
ure 1 which assists this analysis by showing the normalized per-
formance forcanneal and streamcluster. The figures tell us
that the performance improvement by increasing CPU frequency is
very small compared to applications which we have shown in Fig-
ure 1. Similar to the highly scalable applications, DCFS spend time
on searching for the best configuration which directly becomes an
overhead. This overhead can also be avoided by detecting the char-
acteristics with the number of memory accesses or last-level cache
misses (LLC). When we search the best configuration in Training
phase, we assume a convex curve for the core counts versus perfor-
mance.streamcluster is an only exception as we can see from
Figure 5(b), however, we can find the best configuration in this case
as the execution with 32 cores gives us the best performance.

6 2012/2/7



(a) canneal

(b) streamcluster

Figure 5. Relation among performance, core counts and CPU fre-
quency on Memory-bound application

5.2 Detailed analysis to see the benefits of DCFS

We analyze the novelty of DCFS technique with the best perform-
ing application which isdedup in detail. Figure 6 shows both the
IPS and execution time ofdedup on Opteron platform with three
different executions: 0.8 GHz execution with 32 cores, 0.8 GHz
with dynamic core scaling along with detection of dynamic be-
havior changes (DCS-WD or DCFS-WD without CPU frequency
scaling), and DCFS-WD. Thex-axis shows the execution time and
they-axis shows the IPS. The IPS values are measured every five
seconds. Additionally, values under graphs represent the number of
cores. The upper values are for DCS-WD@0.8 GHz and the lower
values are for DCFS-WD. Total execution time of DCS-WD is few
seconds longer than that of 0.8 GHz execution with 32 cores be-
cause of the training overhead. The proposed DCFS-WD achieves a
much greater performance by dynamically allocating different con-
figurations while achieving high IPS during the whole execution.
This suggests that the overhead of runtime training is well com-
pensated for the additional performance improvement which can
be obtained by DCFS-WD.

6. Related Work
We pick up three work from the literature that are close to ours and
make some comparisons and discussions against them.

6.1 Feedback-Driven Threading [10]

Feedback-Driven Threading (FDT) by Suleman et al. improves the
performance and reduce power consumption of multi-threaded ap-
plications by dynamically controlling the number of threads using
runtime information. FDT predicts the optimal number of threads
for loop iteration depending on the characteristics of the program
which are the amount of data-synchronization and the degree of
demand for bandwidth. Performance of multi-threaded application
does not always increase with the number of threads: performance

might be saturated or worsened because of data synchronization
for heavily data sharing application; performance of data-parallel
application might be restricted because of contentions for off-chip
bus bandwidth.

In FDT, compiler divides the loop iterations into two parts. One
part is for estimating the optimal number of threads by measuring
the time spent in the execution of critical sections or the amount of
off-chip bus utilization. In the other part, the program is processed
in parallel with the estimated number of threads. FDT can both
improve performance and reduce power consumption if the per-
formance of the program decreases by increasing the core counts.
However, for programs whose performance saturates at some point,
FDT can reduce power consumption by decreasing the number of
threads but cannot improve performance. With our proposed DCFS
technique, we can achieve higher performance by reallocating the
power budget which is originally allocated to non-performance
contributing cores to performance contributing cores by raising
their CPU frequency.

6.2 Intel’s Turbo Boost technology [6]

Turbo Boost technology (TB) achieves high performance through
the ability of running with a higher frequency over its base operat-
ing frequency. It automatically and dynamically allows cores to run
faster than the base frequency if the power consumption of proces-
sor is below its TDP (Thermal Design Power). CPU frequency is
changed depending on the condition of the processor by monitor-
ing the power consumption.

TB heavily depends on the number of active cores. For exam-
ple, when only one core is active, the power consumption is typi-
cally much lower than TDP. In this case, TB can increase the CPU
frequency drastically. On the contrary, when all the cores are pro-
cessing, there is not much room for improvement. Therefore, TB is
effective in cases when some number of cores are totally idle.

When we execute a multi-threaded application on a many-core
processor, TB can speed up the execution of the sequential portions
where only one core processes. However, in parallel portions, OS
allocates threads to all cores on a chip making almost no room for
TB to play an active role. DCFS can dynamically adapt the number
of active cores depending on the characteristics of the application.
For applications which does not have enough scalability to make
use of all the cores, we can let them execute on a higher frequency
by making some cores idle to achieve higher performance than
traditional execution with TB.

6.3 Pack & Cap [3]

A more recent work called Pack & Cap proposed by Cochran et
al. is the work most close to ours. They use the same two knobs:
adapting the number of cores and CPU frequency. Pack & Cap aims
to adapt these two knobs to meet the user-defined power constraints
which changes dynamically during runtime.

The main differences of their technique against ours is that (1)
they use an offline regression classifier that estimates the optimal
thread packing and CPU frequency as a function of user-defined
peak power constraints, and query this model online to dynamically
optimize the setting, while our technique is totally dynamic which
requires no static information and can find an optimal configuration
with a reasonable overhead; (2) they use a quad core platform for an
evaluation that does not meet the scalability problem that we face at
a larger number of cores shown for Opteron platform. This will be
much more important in the future when dealing with more number
of cores and the room of our optimization technique becomes larger
as shown in the evaluation results.

7 2012/2/7



Figure 6. Comparison between execution with all 32 cores and proposal technique

7. Conclusions
Industry is shifting towards many-core processors as the technol-
ogy size shrinks. Because power consumption being the first order
constraint to build microprocessors, future processors are required
to achieve high performance within the strictly limited power bud-
get. Traditional approach for this problem is to apply dynamic volt-
age and frequency scaling (DVFS), which optimizes the trade-off
between performance and power consumption. While DVFS offers
an efficient execution for single-threaded applications, this is not
always the case for multi-threaded applications executed on many-
core processors. Operating frequency is an efficient knob to control
both the performance and power consumption for single-threaded
programs, however, another important factor to consider in multi-
threaded applications is its parallelism which does not always guar-
antee us that using the whole system gives us the best performance.

We propose dynamic core and frequency scaling (DCFS) tech-
nique to optimize the power-performance trade-off for multi-
threaded applications. Our proposed technique adjusts core counts
and CPU frequency depending on the parallelism of applications
under the power consumption constraint. DCFS dynamically con-
trols the settings to optimize against the phases within programs by
having two phases: Training and Execution. Additionally, DCFS
detects the behavior changes of the executed program dynamically.
DCFS achieves performance improvement of up to 35% fordedup
and 6% on average among ten applications from PARSEC bench-
marks compared against the execution with all cores equipped on a
chip at minimum frequency.

For future work, we would like to evaluate our proposed tech-
nique under different power consumption constraints and on sev-
eral platforms to show the effectiveness of DCFS. Moreover, the
algorithm to find the best combination of core counts and CPU fre-
quency must be improved to reduce the overhead. Furthermore, we
plan to reduce the overhead of Training phase by implementing the
runtime system on the OS kernel to eliminate the overhead associ-
ated with calling the system calls.

Acknowledgment
This work was supported in part by New Energy and Industrial
Technology Development Organization (NEDO), Japan, Semicon-
ductor Technology Academic Research Center (STARC), and the
Grant-in- Aid for Young Scientists (A), 21680005.

References
[1] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quanti-

tative comparison of two multithreaded benchmark suites on chip-
multiprocessors. InWorkload Characterization, 2008. IISWC 2008.
IEEE International Symposium on, pages 47–56. Ieee, 2008.

[2] C. Bienia, S. Kumar, J. Singh, and K. Li. The parsec benchmark
suite: Characterization and architectural implications. InProceedings
of the 17th international conference on Parallel architectures and
compilation techniques, pages 72–81. ACM, 2008.

[3] R. Cochran, C. Hankendi, A. Coskun, and S. Reda. Pack & cap: Adap-
tive dvfs and thread packing under power caps. InProceedings of the
2011 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’44, pages 175–185, Washington, DC, USA, 2011.
IEEE Computer Society.

[4] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. InLow Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, pages 38–
43. IEEE, 2007.

[5] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, et al. A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos. InSolid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 108–109. IEEE, 2010.

[6] Intel R©Corporation. IntelR© turbo boost technology in intelR© core
microarchitecture (nehalem)based processors. Whitepaper, IntelR©
Corporation, November 2008.

[7] C. Ramey. Tile-gx100 manycore processor: Acceleration interfaces
and architecture. InHot Chips 23, 2011.

[8] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. InSIGGRAPH ’08, Aug. 2008.

[9] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott. Energy-efficient processor design us-
ing multiple clock domains with dynamic voltage and frequency scal-
ing. In High-Performance Computer Architecture, 2002. Proceedings.
Eighth International Symposium on, pages 29–40. IEEE, 2002.

[10] M. Suleman, M. Qureshi, and Y. Patt. Feedback-driven threading:
power-efficient and high-performance execution of multi-threaded
workloads on cmps.ACM SIGPLAN Notices, 43(3):277–286, 2008.

8 2012/2/7


