Using Solid-State Drives (SSDs) for Virtual Block Devices

Sang-Hoon Kim

KAIST
sanghoon@calab.kaist.ac.kr

Abstract

In a virtualized environment, the block devices on the I/O do-
main can be provided to guest domains by the virtual block de-
vice (VBD). As the VBD incurs low latency and no network access
is involved in accessing data, VBD has been used for storing in-
termediate data of data-intensive applications such as MapReduce.
To accelerate the performance further, SSD can be considered as
a backing device of the VBD because SSD outperforms HDD by
several orders of magnitude. However, the TRIM command that
plays an important role in space management of SSD has not been
discussed nor handled properly in the virtualized environment.

In this paper, we clarify the challenges in supporting the TRIM
command in the VBD configuration and propose a novel file oper-
ation, called FTRIM (file trim). The FTRIM bridges the semantic
gaps among key components of VBD and makes them to be aware
of the file deletion in the guest domain. As a result, the each com-
ponent of VBD can utilize the space of the deleted files, and the
SSD in the I/O domain can be notified by the TRIM command.
Our evaluation with a prototype shows that the proposed approach
achieves up to 3.47x speed-up and sustains the improved perfor-
mance in the consolidated VM environment.

Categories and Subject Descriptors D.4.2 [Operating Systems):
Storage Management; D.4.3 [Operating Systems]: Filesystems
Management; D.4.7 [Operating Systems]: Organization and De-
sign

General Terms Design, Performance, Measurement

Keywords SSD, trim, virtual disk image, storage, filesystem

1. Introduction

Virtualization and cloud computing have been receiving substantial
attention over the past decades. The concept of virtualization facil-
itates elastic resource management such as VM (virtual machine)
consolidation and on-demand VM instance allocation. The success
of Amazon Web Service (AWS) and Elastic Compute Cloud (EC2)
demonstrates the flexibility and versatility of cloud computing in
the IT industry.

In a virtualized environment, a guest domain has a number of
choices for its storage system. Among those options, using a vir-
tual block device (VBD) has been the primary option for the root
filesystem and the scratch disk of data-intensive applications be-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

RESOLVE ’12 3 March 2012, London, UK

Copyright © 2012 ACM ... $10.00

Jin-Soo Kim
Sungkyunkwan University
jinsookim@skku.edu

Seungryoul Maeng

KAIST
maeng@kaist.ac.kr

cause of its simplicity, mobility and ease of management. A hy-
pervisor provides a VBD to a guest domain, and block requests to
the VBD are delivered to the I/O domain'. The requests are then
translated to a set of file operations to a virtual disk image (VDI)
file which is stored in the I/O domain filesystem. A number of
formats for the VDI file have been proposed such as VMware
VMDK(Virtual Machine DisK) [36], VirtualBox VDI [33], Mi-
crosoft Virtual Server VHD (Virtual Hard Disk) [24], and QEMU
QCOW?2 [22].

In the meantime, NAND flash memory (or flash for short) be-
comes popular storage media. Solid-state drives (SSDs) use the
flash and provide the traditional block I/O interface such as SATA
or SAS. SSDs outperform hard disk drives (HDDs) by several or-
ders of magnitude because SSDs access data electronically and do
not have mechanical parts which are the primary source of latency
in HDDs. Also SSDs inherit many attractive characteristics from
flash, such as light weight, low energy consumption, shock resis-
tance, and small form factor. Note that modern SSDs support the
“TRIM” command which notifies SSDs that the specified sectors
are no longer needed. SSDs can use the hint to manage the un-
derlying flash media more efficiently. It is known that the TRIM
affects the performance and the lifetime of SSD greatly because it
effectively increases the amount of the internal buffer, which is an
important parameter for SSD performance [30].

There have been many discussions on how to deploy SSDs to
accelerate I/O-intensive applications [2, 4, 14, 16, 17]. However,
using SSDs in a virtualized environment is not trivial. As Figure 1
shows, the filesystem in the guest domain interacts with the VBD
over the block interface and the VDI emulates block requests on top
of the I/O domain filesystem. Even if a file is deleted from the guest
domain filesystem, the event of the file deletion cannot be delivered
to the VBD, and the VBD cannot instruct the I/O domain filesystem
to issue the TRIM commands to the underlying SSD. Thus, the
space associated with the deleted file cannot be reclaimed, and
the SSD cannot be informed by the TRIM commands neither. To
the best of authors’ knowledge, the use of the TRIM command
is not discussed in a virtualized environment, and no hypervisor
nor VBD implementation handles the TRIM command properly.
Consequently, the performance of SSDs cannot be fully utilized in
a virtualized environment

In this paper, we identify the challenges and advantages of
handling the TRIM command in a VBD configuration. We study
the key components of VBD and observe that the VBD driver
does not advertise the TRIM capability so that the guest domain
generates no TRIM command to the VBD. We also find out that the
current filesystems are incapable of emulating the TRIM command
because none of filesystem operations matches to the semantics
of TRIM. We introduce a new file operation called “file trim” or

' We refer to the 1/O domain as the privileged domain or VM which is
designated to perform the actual I/O, such as the Xen Isolated Driver
Domain (IDD) or the host OS of the Linux KVM.

‘ Applications ‘ -
£ File
5 v
g Filesystems -
[a] ‘ extd ‘ ‘ xfs ‘ 7
-
7]
“3’ Block Device
© Virtual Block Device Driver

Frontend
l; Block
= ‘ Virtual Block Device Driver ‘
‘T Backend
5 '
o Virtual Disk Image Formats _
Q ‘ RAW ‘ ‘ qcow2 ‘ 7
(] File
2 v
2 Filesystems -
s ‘ extd ‘ ‘ xfs ‘ 7
()
o
> Block Device
ar
ATA Block

Figure 1. System components in a guest domain and the I/O do-
main for a virtual block device (VBD)

FTRIM. It is a file-level counterpart of the TRIM command and
notifies a filesystem of an unnecessary portion of a file. By means
of the FTRIM command, VBDs can interact with the I/O domain
filesystem and the filesystem can issue TRIM to the corresponding
sectors on SSD in turn. In this way, the performance of SSDs in
a virtualized environment can be maximized. FTRIM also gives
a hint to the I/O domain filesystem that the portion of the file can
be deallocated and reclaimed, which can significantly improve the
efficiency and flexibility of space management in the I/O domain.

The rest of this paper is organized as follows. We review the
background and related work on storage systems for a virtualized
environment and SSDs in Section 2. We explain our motivation and
approach to handling the TRIM command in Section 3. Section 4
shows the evaluation results of the proposed approach using a
working prototype and real-world benchmarks. Finally, Section 5
concludes the paper.

2. Background and Related Work
2.1 Storage Systems for a Virtualized Environment

In a virtualized environment, a number of storage systems and con-
figurations can be considered for guest domains. Using the net-
worked or distributed filesystems [6, 28, 35] is one of the options.
They allow transparent and seamless view of storage over network
even if a guest domain might be migrated to other locations, and
store data reliably by handling faults which are the norm rather than
the exception [6] in a large scale system. The I/O domain can of-
fload the burden of maintaining reliable storage environment to the
filesystems and focus on virtualizing resources. However, storage
access may incur high latency because network access might be in-
volved in accessing data, and the operational cost can be expensive
as commercial cloud service providers charge not only for the stor-
age space but also for the network traffic incurred while accessing
the storage [1]. Thus, this option is suitable for storing application’s
source data or processed results which should be kept reliably.

Using virtual block devices (VBDs) is the other storage option
for guest domains. The hypervisor provides a block device to a
guest domain, and the guest domain uses the device as if the
device were a usual block device which is attached directly to the
guest domain. Requests to the block device are translated by the
hypervisor and backed by a file in the I/O domain filesystem. As
the configuration is simple and no network access is involved in
accessing the storage, VBD has been the primary storage option
for the root filesystems of guest domains and intermediate data of
data-intensive applications.

The file storing the contents of VBD is called the virtual disk
image (VDI). A request to VBD is translated to one or more VDI
file operations by the VDI-specific translation scheme. The request
expressed in virtual block address (VBA) is translated to virtual file
address (VFA). Note that VBA is expressed by a tuple of the sector
and length in the VBD, whereas VFA is represented by a tuple of
the offset and length in the VDI file.

RAW is the basic VDI format which is usually provided by hy-
pervisors. Address translation between VBA and VFA is straight-
forward — the offset from the beginning of the block device is the
offset in the VDI file. The translation is same to the loopback de-
vice. It is simple yet effective in many cases. But storage space
must be allocated at creation timez, and the common data between
VDI files cannot be shared even if they are stored in the same 1I/O
domain. Thus, the efficiency and flexibility of space management
is limited.

For the sophisticated space management, a number of VDI for-
mats have been proposed by industries and open source communi-
ties. Several examples include VMDK(Virtual Machine DisK)[36]
for VMware, VDI [33] for VirtualBox, VHD (Virtual Hard Disk)
for Microsoft Virtual Server, and QCOW?2 [22] for QEMU. All of
them are based on the copy-on-write (COW) capability to manage
the space efficiently. A VDI data file is created instantly from a
template image which can be shared by several data files. A VBD
is virtualized on top of the data file, and writing to the VBD is
served from the newly created data file rather than the template im-
age. Read requests to the written data are served from the data file.
Otherwise, it is served from the template image. The data file only
stores the changes made after the creation time. This approach im-
proves the space efficiency, and the small size of the data file lowers
the overhead of VM instance migration [19].

QCOW?2 [22] is a copy-on-write VDI file format which is sup-
ported by QEMU. It is an enhanced version of the QCOW format
and has been used as an I/O framework in KVM and Xen-HVM.
QCOW?2 data file can be “chained” to backing image files. Block
address space is managed by two-level address translation which is
similar to the radix tree in page table. If an entry which corresponds
to the requested block address is invalid, QCOW?2 allocates space
for the block at the end of the data file. Space for the translation
index is also allocated at the end of the data file on demand.

Address translations in VBD makes the layout of the address
space in a guest domain not to coincide with the actual layout
in a storage device, and nullifies the “unwritten contract” [29]
previously made between applications and filesystems. The locality
in the VBA space might not be preserved in the VFA space, which
harms the performance of VBD. Tang [32] identifies the locality
issues of VBD and suggests Fast Virtual Disk (FVD) which tries to
preserve the locality by separating dirty-block tracking and storage
space allocation. FVD also deploys a copy-on-read policy which
copies the read blocks from a template file (copy-on-read), and an
adaptive prefetching. But FVD cannot understand the filesystem
semantics of the guest domain which lowers the space utilization.

2If the filesystem which stores the VDI file supports the sparse file, the
space allocation can be deferred until an actual write happens.

There have been discussions in optimizing the storage systems
in the I/O domain. VMware VMEFS [37] is a proprietary block-level
storage virtualization system for VMware ESX. Although the inter-
nal details of VMFS are not available publicly, it is known to be a
cluster filesystem tuned to host image files in VMDK format effi-
ciently. Parallax [23] is a distributed storage system which proposes
the similar approach to VMFS and attempts to provide advanced
storage services for virtual machines. However, both VMFS and
Parallax implement at block device layers, which have no knowl-
edge of the filesystem semantics, hence, the optimization is limited.
Ventena [25] is a virtualization-aware filesystem which effectively
virtualizes filesystem namespace and shares the contents of files
if possible. However, it forces guest domains to use the Ventana
filesystem instead of the general filesystems such as ext4.

2.2 Flash Memory and Solid-State Drives (SSDs)

NAND flash memory, or flash, is non-volatile solid-state storage
media. Flash is comprised of a number of pages, where the page
is the unit of read and program (write) operations. The size of the
page depends on the type and configuration of flash, and ranges
from 2 KB to 8 KB usually. Flash has very unique characteris-
tics. Most of all, the flash does not allow overwriting. If a page
is programmed once, the page must be erased prior to be written
again. The unit of the erase operation is called erase block and it is
composed of multiple pages. The erase operation produces a free
block which contains pages that can be written again. Flash wears
as the erase blocks are programmed and erased repeatedly. If the
number of programing / erase cycle of an erase block exceeds a
threshold, the probability of read or program failure increases, and
the block finally becomes unable to be programmed nor read [5].
Flash exhibits asymmetric operation time for read and program-
ming operations. Programming a page takes several orders of mag-
nitude longer than reading a page, and erasing a block takes even
longer than the page programming. Table 1 summarizes the opera-
tion times and parameters of flash memory chip that is available in
the market.

A solid-state drive (SSD) is a storage device that uses solid-state
memory to store persistent data [38]. As most of SSDs in the market
are built with flash because of its high density and low cost, we will
focus on flash-based SSDs in this paper. SSDs outperform hard disk
drives (HDDs) because they do not have any mechanical parts such
as rotating disk or moving arms, which are the major sources of
I/0 latency in HDDs. Modern SSDs exhibit excellent random read
performance which is comparable to sequential read performance.
Both the sequential and random write throughput is slower than the
sequential and random read throughput, yet much better than the
throughput of HDDs. The excellent performance of SSDs makes
them suitable for data-intensive workloads [2, 4, 14, 16? , 17].

Figure 2 depicts the general architecture of SSD. As flash does
not allow in-place update, the flash interface in SSD cannot be
directly exported to the host interface. To hide the limitations of

Parameter Value
Page size 4096 bytes for data
Block size 512 KB (128 pages per block)

Page read time
Page program time
Block erase time
Endurance

60 ps (maximum)
0.8 ms (typical)
1.5 ms (typical)
5K program/erase cycles
(with 4bit per 512 bytes ECC)

Table 1. Operational parameters of Samsung NAND flash memory
(K9GAGO8UOM) [27]

Block Interface
(SAS, SATA, ...)

Host Interface Controller

v

Flash Management Layer (FTL)

v v v

Flash Flash Flash
Controller | | Controller | | Controller

Tl

NAND Array

Figure 2. General architecture of flash-based SSD

int ftrim (int fd, uint offset, uint length)

int fd | File descriptor of the target file
uint offset | Offset from the beginning of the file to FTRIM
uint length | Length to FTRIM

Table 2. The interface and arguments of the FTRIM (file trim)

flash and to improve space management, SSD employs an interme-
diate layer, called flash translation layer (FTL). FTL lies between
the host interface controller and flash controllers, and manages the
space of the flash. A block operation from the host interface is
translated to a set of flash operations, and sent to one or more flash
controllers. FTL maintains mappings between block address space
(sector) and flash address space (erase block and page), and trans-
lates overwrite to the block address space to write to the free blocks.
The pages that were written once but will not be used anymore
are called invalid pages. FTL reclaims the invalid pages by erasing
the containing block (victim block). The series of flash operations
to reclaim invalid pages is called garbage collection. Many FTLs
have been proposed and discussed in the literature [3, 7, 13, 18],
which aim at maximizing the performance and lifetime of SSDs
by exploiting the inherent characteristics of flash and/or managing
address translation efficiently.

SSDs make use of overprovisioning [30]. SSDs are equipped
with extra amount of space that is not visible to outside of the
SSDs. The space is used internally as the working space for garbage
collection, the buffer to absorb bursts of write, and the reserved
space for bad blocks. The unused flash blocks in the SSDs are
also utilized as the overprovisioning space internally. It is known
that the overprovisioned space reduces the write amplification and
extends the lifetime of SSDs [9].

TRIM is an ATA command standardized as part of the AT At-
tachment (ATA) Interface standard [10, 11], led by Technical Com-
mittee T13 of the International Committee for Information Tech-
nology Standards (INCITS). TRIM notifies SSD that the specified
sectors are no longer needed by filesystems or operating systems.
SSD can invalidate the corresponding pages and avoid unneces-
sary copy of the invalid pages while performing garbage collec-
tion. Consequently, TRIM enhances the garbage collection effi-
ciency and increases the effective amount of overprovisioning in
SSD. Modern operating systems and filesystems [21, 31] enable
the use of TRIM commands if the underlying SSD supports the
TRIM capability.

3. TRIM in a Virtualized Environment
3.1 Motivation

The performance of data-intensive applications is known to be
heavily affected by the performance of the storage device for their
intermediate data [15]. As the virtual block device (VBD) incurs
low overhead in accessing data, using the VBD is the simple yet
effective solution to store the intermediate data. To accelerate data-
intensive applications even further, the VBD can be backed by
SSDs that outperforms HDDs by several orders of magnitude. The
intermediate data lives shortly, and file deletion to the filesystem
is frequent. Ideally, if a file is deleted from a guest domain, its
corresponding space in the VBD has to be reclaimed and the TRIM
commands have to be delivered all the way to the underlying SSDs.
However, the VBD is agnostic to the filesystem semantics. The
guest domain cannot deliver the filesystem semantics the VBD, and
the VBD cannot reclaim the space of the deleted file. Also, the VBD
is not implemented to handle the TRIM command, which leads
to the guest domain filesystem not to issue TRIM to the VBD.
Consequently, TRIM is not issued to SSD, and the performance
of SSD cannot be fully utilized. In fact, none of the well-known
hypervisors handles the TRIM command properly.

We revise storage system components of VBD in order to prop-
agate the event of a file deletion from a guest domain filesystem all
the way to the SSD attached to the I/O domain. We also suggest
optimizations that can be adopted to improve the performance and
efficiency of storage in a virtualized environment. Figure 3 depicts
the propagation of a file deletion event from a guest domain filesys-
tem to the SSD and address translations performed at each layer.
The figure shows that a single file deletion may issue a number of
requests to the underlying layers, and some of them can be merged
along the way. Note that the label on the leftmost side denotes the
unit of the request at each layer.

3.2 Key Components

The key components and their roles in virtualizing the block device
are as follows:

e Virtual block device (VBD) driver. Provides an interface to
VBD and conveys requests to the VBD to the backing VDI
layer. The interface shows a virtual block address (VBA) space
to a guest domain. If the driver is implemented as a split driver,
it consists of a frontend and a backend driver, and they are
located at the guest domain and the I/O domain, respectively.

Virtual disk image (VDI) layer. Determines the layout of
VBD contents on a VDI file in the I/O domain filesystem. The
VDI layer dispatches block requests from the VBD (backend)
driver and translates the requests to file operations to the VDI
file. The file operations are expressed in virtual file address
(VFA) which is a tuple of the offset and length in the VDI file.

Filesystem in the I/O domain. Manages a block address space
and maps the VDI file operations to block requests to the SSD.
The block address space is expressed in sector. If the SSD
supports TRIM, the filesystem composes and issues TRIM
requests to the SSD.

3.3 Virtual Block Device (VBD) Driver

Traditional VBDs which are provided by the well-known hyper-
visors emulate HDDs and do not advertise the TRIM capabil-
ity. Thus, the filesystem in a guest domain does not issue TRIM
to VBDs, and consequently no VBD implementation handles the
TRIM command. The TRIM capability of VBD can be easily
turned on by advertising the TRIM capability with the following
three parameters:

e Granularity. The granularity of a TRIM request. The offset
in the TRIM request needs to be aligned to this granularity,
and the length in the TRIM request should be expressed in a
multiple of this granularity. It forces the allowed length of the
TRIM request to be equal to or greater than the granularity.

Maximum length. The maximum length of a single TRIM
request the block device supports. The value is expressed in the
unit of the granularity.

Deterministic read. This indicates whether or not the deter-
ministic read is supported. The deterministic read means that a
read on a trimmed block is guaranteed to be same until a subse-
quent write to the block happens. Otherwise, the read contents
of the block are undefined.

A guest domain operating system will query the TRIM capability
of the VBD while initializing the VBD driver and will make use of
the capability. The parameters are used to compose a TRIM request
to the VBD. For VBD, it is sufficient to pick some reasonable
values of the parameters since the TRIM request will be processed
again by subsequent translations so that the final requests to the
SSD will conform to the actual parameters of the SSD.

The VBD driver needs to convey the TRIM request from the
guest domain to the I/O domain. Due to the simplicity of the TRIM
request which is only a tuple of the block number and length, the
TRIM request can be delivered just the same as the ordinary read
or write block requests.

3.4 Virtual Disk Image (VDI) Layer

Handling TRIM in the VDI layer is a bit more tricky than in the
VBD driver. As we discussed in Section 3.2, the VDI layer dis-
patches a block request from a VBD driver, translates the destined
blocks in VBA to VFA, and emulates the request on a VDI file.
A read and write request from the VBD backend can be emulated
with a number of read and write file operations to the VDI file eas-
ily. However, a TRIM request cannot be emulated in an obvious
way because none of filesystem operations matches to the seman-
tics of TRIM. The absence of the interface between the VDI layer
and filesystems in the I/O domain incurs semantic gap and block-
ades the event propagation of the file deletion.

To bridge the semantic gap between VDI and the filesystem, we
propose a new file operation, called “file trim” or FTRIM. FTRIM
is a file-level counterpart of TRIM and notifies a filesystem that
a portion of the file is no longer needed. Note that the TRIM
command is defined at block-level and implies that the specified
blocks are no longer needed. Table 2 summarizes the interface and
arguments of the proposed FTRIM operation. Figure 3 captures
the meaning of FTRIM in the VBD architecture. Each arrow be-
tween VDI and the I/O domain filesystem indicates the associated
FTRIM operation which enables the interaction between VDI and
the I/O domain.

The VDI layer translates the TRIM requests in VBA to VFA
of a VDI file. The translation can be carried out just same as the
ordinary read and write block requests. As a VDI layer might
employ a VDI-specific space allocation policy such as copy-on-
write, one TRIM request can be split and mapped to a number
of FTRIM invocations scattered over the VDI file. The number
of invocations can be minimized by merging adjacent FTRIM
requests.

Without TRIM, the VDI layer has no knowledge of a file dele-
tion in the guest domain, and the space associated with the file can-
not be reclaimed or deallocated even if the file is deleted. It restricts
the deployment of efficient space management and optimizations.
As the VDI layer is informed by TRIM from the VBD driver, two
optimizations can be considered to improve the efficiency and per-
formance of the VDI layer. First, the VDI layer can unmap the

Delete the file

File ‘ ‘

‘ Guest Domain Filesystem

TRIM

Virtual Block Address (VBA) ‘ ‘ 3 ‘

‘ ‘ Virtual Block Device (VBD)

Map from VBA to VFA

Virtual File Address (VFA) ‘ § ‘

‘ ‘ ‘ Virtual Disk Image (VDI)

FTRI Merg
TRI

Fiy/ | FTRM [FTRIM
v“

F|Ie ‘

‘ ‘ 1/0 Domain Filesystem

TRIM /TRI
_—
Y

Mergeii/ TRIM

Sector ‘

b B | s

Figure 3. The propagation of the file deletion event from a guest domain filesystem to SSD, and the required address translations. The
”Merged FTRIM” and ”Merged TRIM” denote that the two requests are merged and issued by one request.

deleted blocks and free the space which previously stored the map-
ping information. It enables the VDI layer to keep a compact view
of the VBA space and reduces the overhead to keep the mapping in-
formation. Second, VDI can utilize TRIM to improve the locality
of VBA space in VFA space. The mapping from VBA space to VFA
space was determined at allocation time, and the mapping was per-
manent so that the space for the VBA could not be relocated. If the
locality of VBA space in VFA space was broken once, it could not
be recovered without a time-consuming offline optimization pro-
cess. As the VDI layer becomes aware of the unnecessary portion
of VBA, VDI can reorganize the VBA space by migrating a portion
of the VDI file to the trimmed location and incrementally improve
the locality of VBA in the VFA space.

3.5 Filesystem in the I/O Domain

A filesystem receives a FTRIM request from the VDI layer, identi-
fies the sectors which correspond to the FTRIM request, composes
TRIM requests to the sectors, and issues the requests to the SSD.
One FTRIM can be transformed to a number of TRIM requests
because of the space allocation policy of the filesystem as Figure 3
depicts. The generated TRIM requests can be merged if they are
destined to adjacent blocks.

By means of FTRIM, the filesystem becomes capable of identi-
fying an unnecessary portion of a file. The filesystem can utilize the
information in block space management just same as SSD utilizes
the TRIM command in flash space management. The filesystem
can deallocate the space where the portion of the file has occupied,
and mark the space as free. Effectively, the space usage of the file
is decreased and the free space of the filesystem is increased. It en-
ables the VDI file to be shrunk while being used. The feature is
extremely useful in the consolidated environment because the size
of the VDI file is adjusted on-the-fly and the space overhead is min-
imized. Note that the current architectures of VBD only allow the
size of the VDI file to monotonically increase as the file is being
used.

The file deallocation can be implemented with the “file hole”.
The file hole is an area in a sparse file where the space for the
area is not actually allocated. The file hole can be usually cre-
ated by writing data beyond the end of the file or truncating the
file to be larger than the current size. The hole does not occupy
filesystem space and the actual space allocation for the hole is de-
ferred until a write to the hole happens. The file deallocation can be
thought as of the reversed procedure of the space allocation of the
file hole. Filesystem can unmap the specified blocks, and reclaim
the space for the blocks. The subsequent access to the portion of

the file can be treated just same as the ordinary file hole. The deal-
location might accompany a filesystem metadata manipulation. A
filesystem keeps tracks of free blocks on a block device and the
file deallocation inevitably manipulates the metadata. Thus, recov-
ery from a sudden crash must be considered. We believe that the
journaling or write-ahead-logging is sufficient for the preparation,
just like a file deletion. If handling the file deallocation is too much
burden for a filesystem, the filesystem can simply do nothing but is-
sue TRIM to the SSD. If the SSD supports the deterministic read,
this approach does not harm the consistency of the filesystem at all.
Moreover, the FTRIM interface can be extended by adding an ar-
gument which controls the behavior of FTRIM so that the TRIM
and file deallocation can be performed selectively.

4. Evaluation
4.1 Prototype Implementation

We have implemented a prototype on a real-world environment to
evaluate the effectiveness of the proposed approach. The proto-
type is built on the Linux KVM (Kernel Based Virtual Machine)
which uses the QEMU 0.14.1 and the Linux Kernel 2.6.39. Our
implementation includes the QEMU virtio_blk virtual block device
driver, the QEMU block driver layer, RAW and QCOW?2 virtual
disk images, and the ext4 filesystem.

The QEMU virtio_blk driver is a paravirtualized block device
driver provided by the QEMU virtio framework [26]. The virtio_blk
is a split driver comprised of a frontend and a backend. The fron-
tend provides a VBD to a guest domain and delivers block requests
to the VBD to the backend in the I/O domain. We modified the
frontend so that the VBD advertises the TRIM capability. It is con-
figured with the realistic parameters obtained from Intel X-25M
SSD — 512 bytes of the trim granularity and 4,294,966,784 bytes
(OXxFFFFFFFF - 512) of the maximum length with no support for
the deterministic read. TRIM requests to the frontend are conveyed
to the backend by the virtio framework, and dispatched by the
QEMU block driver layer. The QEMU block driver layer interacts
with a number of VDI implementations which are abstracted to the
unified bdrv block driver handler interface. We define a new bdrv
handler (bdrv_trim) which is designated to handle the TRIM re-
quests to the virtio_blk device. The handler has the responsibility
to translate the TRIM requests to the FTRIM requests according
to the VDI-specific space management policy. We implemented the
bdrv_trim handler in two VDI formats, RAW and QCOW2.

In RAW, the target offset and the length of a FTRIM request
is obtained by multiplying the block number of TRIM by the

trim granularity of the VBD. As RAW does not employ any space
management policy, one TRIM is converted to a single FTRIM
request.

In QCOW2, obtaining the target offset and the length of FTRIM
becomes complicated. QCOW?2 manages the address space in an
allocation unit basis (64 KB by default). The blocks in the TRIM
request are divided by the unit into segments, and the segments are
mapped individually according to the QCOW?2 address translation
scheme. To minimize the number of the FTRIM invocations, the
mapped addresses are buffered and merged if two segments are
mapped to adjacent addresses. The buffered addresses are flushed
to the I/O domain filesystem when the entire blocks in the TRIM
request are mapped.

Filesystems translate the FTRIM requests from the handlers to
TRIM commands to the underlying SSDs. We define the FTRIM
operation as one of the Linux VFS (Virtual Filesystem) file oper-
ations and filesystems can implement its own FTRIM operation
selectively. We implement the FTRIM operation (ext4_ftrim())
on the ext4 filesystem. The offset and the length of the FTRIM re-
quest is converted to a block address on the SSD, and delivered to
blkdev_issue_discard() kernel function which composes and
issues the actual TRIM requests to the underlying devices. Note
that one FTRIM request can be split into several TRIM requests by
the ext4 space management policy. If possible, they will be merged
in the I/O scheduler of the Linux kernel.

For fast prototyping, we implemented the proposed scheme only
on the two representative VDI formats (RAW and QCOW?2) and the
ext4 filesystem. However, we believe that the other VDI formats
and filesystems can easily adopt the proposed scheme because it
is concise and straightforward. We do not implement the space
management and optimizations in the filesystem and VDI layer,
and we leave them as future work.

4.2 Environment and Methodology

Using the working prototype, we have conducted several experi-
ments to justify the effectiveness of the proposed approach. The
evaluation is performed on a server machine equipped with one In-
tel Core i7-870 2.93GHz CPU and 16 GB RAM. We use the Intel
X25-M G2 MainStream SATA 120 GB SSD throughout the evalu-
ation.

As SSDs are easily affected by recent usage pattern, we initial-
ize the SSD before every run of evaluations as follows. We issued
TRIM requests to the entire SSD block address. Then, we build the
ext4 filesystem on it, and mount the filesystem to the I/O domain.
To trigger the garbage collection in the SSD quickly, the filesystem
is filled by a file containing zeroes until no subsequent write is pos-
sible, then the file is deleted. Finally, the SSD was left idle for 30
seconds to settle down internal activities.

Our evaluations are performed on the following three configu-
rations:

e HOST. The evaluation is carried on the I/O domain. The SSD
is not virtualized and accessed directly.

e RAW. The SSD is virtualized by the RAW VDI format. As
RAW employs a simple address translation in the VDI file, it
represents the baseline of the performance in the virtualized
environment.

e QCOW2. This configuration uses the QCOW2 VDI format. It
represents the VDI which employs an address translation and
provides the copy-on-write capability.

RAW and QCOW?2 use the ext4 filesystem as the guest domain
filesystem. The TRIM capability is controlled by the ‘discard’
mount option of the ext4 filesystem. In RAW and QCOW?2, the op-
tion is applied while mounting the filesystem in the guest domain.

In HOST, the option is applied while mounting the filesystem in the
I/O domain. We will refer to “baseline” and “trimmed” as the con-
figurations where the TRIM capability is turned off and turned on,
respectively. In the virtualized configurations (RAW and QCOW?2),
each guest domain is configured to use 2 CPUs and 1 GB of RAM.
The cache of the VDI file is turned off to minimize the effect of the
page cache in the I/O domain.

4.3 Trim Latency

First, we measure the latency of issuing the TRIM command. We
use a synthetic micro-benchmark which issues TRIM commands
to random locations of the SSD and records the latency to complete
the request. The latency is measured by varying the length of the
request.

We find that a single TRIM takes about 1.5 ms regardless of
the length of the request. We have also measured the overhead of
the QEMU block driver, the VDI handler, and the ext4 filesystem.
However, it turns out to be about 1 ps which is negligible compared
to the TRIM latency.

We conclude that the overhead of TRIM is mostly dominated
by the number of the TRIM requests rather than the size of the
requests. Thus, merging adjacent TRIM requests can reduce the
overhead significantly.

4.4 Benchmark Results

To evaluate the primary effect of TRIM and FTRIM with simple
workloads, we use two benchmarks. Postmark [12] gives the funda-
mental performance metrics of storage systems under the mailbox
workload. It fills the filesystem with a specified number of files,
then iterates a number of transactions. Each transaction is chosen
among read, delete, or write operations. Compilebench [20] mea-
sures the performance of storage system while aging the system.
The storage is filled with a predefined number of the Linux kernel
source tree, and file operations which create, patch, compile, and
clean the source tree are replayed. It generates a huge number of
file operations to the filesystem and makes the filesystem get aged.

These benchmarks are configured to use the entire SSD space
because sectors belonging to untouched areas can be used as the
overprovisioning space inside the SSD which may affect the overall
performance.

4.4.1 Postmark

Postmark is configured to fill 96 GB of the filesystem with initial
files, and to iterate transactions twice as much as the number of the
initial files. The buffered 1/O is turned off and the other parameters
including the create bias are unchanged. We evaluated the perfor-
mance by varying the file size from 128 KB to 4 MB. Figure 4
summarizes the evaluation results. Note that the value represents
the write bandwidth of the trimmed configuration normalized to its
baseline configuration (the higher, the better).

The trimmed configurations outperform the baseline configura-
tions regardless of the file size. HOST, RAW and QCOW?2 config-
urations improve the performance by 78%, 52%, and 32% respec-
tively. We can verify that TRIM affects the SSD performance in
the virtualized environment as well as in the native environment.
QCOW?2 shows diminished benefits compared to RAW. The per-
formance gap mostly comes from the QCOW?2 allocation policy
which generates more TRIM requests than the RAW configuration
by dividing a single TRIM request into several TRIM requests.

4.4.2 Compilebench

We configure Compilebench to populate 300 instances of the Linux
kernel source tree which occupy about 86 GB of the SSD. Then,
600 transactions are replayed on the source trees while measuring
the elapsed time of each transaction. The transaction is followed

35

HOST —

Normalized Throughput

Initial Create Create Patch Compile Clean

RAW = QCOW?2 mmmm

Read Tree Read Tree

Delete Tree Delete Tree Stat Tree Stat Tree
Compiled Compiled Compiled

Figure 5. Compilebench results. Note that the value is the throughput of the trimmed configuration normalized to its baseline configuration.

2.0

HOST —— RAW =3 QCOW2 mmmm

1.0 | —

Normalized Write Bandwidth

0.0

128K 256K 512K im 2m am
File size (Bytes)

Figure 4. Postmark results. Note that the value is the write band-
width of the trimmed configuration normalized to its baseline con-
figuration.

by invalidating the page cache to minimize the effect of the page
cache. Figure 5 shows the results of Compilebench. Note that the
value is the performance of the trimmed configuration normalized
to its baseline configuration.

For the write-dominant transactions, the trimmed configurations
outperform the baseline configurations. For the compile transac-
tions, the trimmed configurations of HOST, RAW, and QCOW?2
achieve 115%, 207%, and 157% better performance than the base-
line configurations, respectively. For the read-dominant transac-
tions, the trimmed configurations show comparable or better per-
formance than the baseline configurations. However, the trimmed
configurations show worse performance than the baseline configu-
rations for the delete-dominant transactions because many TRIM
requests are involved in the transactions.

The benefit of TRIM in the QCOW?2 configuration is lower than
or comparable to the RAW configuration. The reason is same to
that of the Postmark results — the space management policy of
QCOW?2 can split a single TRIM requests into many TRIM re-
quests, resulting in more TRIM requests than the RAW configura-
tion.

4.5 Hadoop MapReduce

To see the effect of the TRIM command in a consolidated VM
environment, we have conducted an evaluation with the Hadoop
MapReduce platform [34, 35]. We set up a Hadoop MapReduce
environment on the evaluation machine with the Apache Hadoop
v0.21. HDFS is configured to run a namenode on the I/O domain
and four datanodes on four VM instances on the same machine.

Application Operation Map | Reduce Total
(MB) (MB) (MB)

WORDCOUNT | Local Read 9,850 | 24,462 | 32,312
Local Write | 19,858 | 24,538 | 44,396

HDFS Read | 10,523 0| 10,523

HDFS Write 0 1,518 1,518

SORT Local Read 0| 41,819 | 41.819
Local Write | 20,718 | 41,819 | 62,537

HDFS Read | 21,024 0| 21,024

HDFS Write 0| 21,023 | 21,023

Table 3. The amount of storage access while running the MapRe-
duce application.

Each VM is configured to use 2 CPUs and 1 GB of RAM. MapRe-
duce is configured to use 2 map slots and 2 reduce slots per VM
instance. A VBD whose VDI file is stored in the SSD is provided
to each VM, and the MapReduce uses the VBD as the temporary
local storage. We run eight runs in a row and measure the time to
complete the map tasks, the reduce tasks, and the job separately.

We evaluated two MapReduce applications, WORDCOUNT and
SORT. The WORDCOUNT application represents a typical MapRe-
duce application while the SORT application represents a more
write-intensive application. Table 3 summarizes the amount of stor-
age access for each application. Note that MapReduce applications
can incur heavy storage access to the local storage which is pro-
vided by the VBD.

For WORDCOUNT, we collect 10 GB of text from a department
mailbox, and put them into HDFS. Then, we run the “wordcount”
application which is one of the default examples of the Hadoop
MapReduce. The results for the first eight runs are depicted in
Figure 6. The total running time of WORDCOUNT depends on the
running time of the reduce phase. The reduce phase is comprised
of copying, shuffling, and writing phases, and massive local storage
access is observed during the copying and shuffling phases. Hence,
the access to the local storage influences the running time of the
reduce phase.

The performance of the baseline configuration degrades as we
run the WORDCOUNT application repeatedly. It is mainly due to
the degraded garbage collection efficiency of the SSD. As the space
occupied by deleted files cannot be reclaimed, the effective amount
of the overprovisioned space in the SSD is decreased and it impairs
the performance of the garbage collection. Meanwhile, the trimmed
configurations of both RAW and QCOW?2 outperform the baseline
configurations, and show sustained performance. At the eighth
run, the trimmed configuration shows 2.80x and 3.47x speed-up

6000

Total === Map ---2--- Reduce —=—
5000 .
w
2 4000 - 1
o
Q
<2
= 3000 g
(7]
o
w
.é’ 2000 nl
=
1000
a- =]
0
1 2
Baseline Trimmed
(a) WORDCOUNT on RAW
6000
Total === Map ---2--- Reduce —=—
5000 |- i 1
7 7’7/2: ‘1/
2 4000 1
o
Q
@
= 3000 .
3
o
@
‘“g’ 2000 e =
= 'R e ‘a8
.
1000 HB DH ol Lol ledtall
0
4 5 6 7 8 1 2 3 4 5 6 7 8
Baseline Trimmed

(b) WORDCOUNT on QCOW?2

8000

Total === Map ---2--- Reduce —=—
7000 4
& 6000 |
©
<
S 5000 -]
@
<2
= 4000]
7}
&
o 3000 1
£ ol el lalts
= 2000 4
1000 gl la-f{ef{ataltat|te|{{e|q
0
5 6 7 8 1 2 3 4 5 6 7 8
Baseline Trimmed
(a) SORT on RAW
8000
Total === Map ---2--- Reduce —=—
7000 4
s
P Py
& 6000 e |
k<]
<
3 5000 4
@
@
= 4000]
I3 a-f B eE
@
® 3000 1
£
= 2000 4
1000 =] 8 a3 & - 4 =) a8 [
0
5 6 7 8 1 2 3 4 5 6 7 8
Baseline Trimmed

(b) SORT on QCOW2

Figure 6. Performance of the WORDCOUNT MapReduce applica-
tion on various VDI formats.

compared to the baseline configuration of RAW and QCOW2,
respectively.

For SORT, we prepare 20 GB of text with the “randomtex-
twriter” and run the “sort” application, where the applications are
also provided as examples. The results are similar to that of the
WORDCOUNT application. The performance of the baseline con-
figurations is degraded as the application iterates each run, yet
the trimmed configurations exhibit the sustained performance and
achieve 2.16x and 3.47x speed-up compared to the baseline config-
urations of RAW and QCOW?2, respectively.

5. Conclusion

We confirm that the performance of SSDs can be maximized and
sustained by handling the TRIM commands in a virtualized envi-
ronment properly. We introduce FTRIM which bridges the seman-
tic gap between VDI and filesystems and gives optimization op-
portunities to them. We believe that FTRIM can be used in other
domains than the virtualized environment as it becomes common
for applications to manage their own storage space on a file [8].
FTRIM can provide the applications with the opportunity to man-
age their storage space more efficiently.

We are working on implementing the file deallocation and op-
timizations that we mentioned. We plan to deploy our scheme on
a large-scale environment, and conduct quantitative analysis on the
benefits of the optimization.

Acknowledgments

This work was supported by Next-Generation Information Com-
puting Development Program (No. 2011-0020520) and by Mid-

Figure 7. Performance of the SORT MapReduce application on
various VDI formats.

career Researcher Program (No. 2011-0027613) through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology. This work was also partly
supported by the IT R&D program of MKE/KEIT (KI110041244,
SmartTV 2.0 Software Platform).

References

[1] Amazon, Inc. Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2, 2011.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan. FAWN: a fast array of wimpy nodes. In Proceed-
ings of the 22th ACM Symposium on Operating Systems Principles
(SOSP’09), 2009.

[3] H. J. Choi, S. Lim, and K. H. Park. JFTL: a flash translation layer
based on a journal remapping for flash memory. ACM Transactions
on Storage, 4:14:1-14:22, Feb. 2009.

B. Debnath, S. Sengupta, and J. Li. ChunkStash: speeding up inline
storage deduplication using flash memory. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Conference, page
1616, 2010.

P. Desnoyers. Empirical evaluation of NAND flash memory perfor-
mance. In Proceedings of the 2010 USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage’10), pages 50-54, Mar. 2010.
[6] S. Ghemawat, H. Gobioff, and S. Leung. The google file system.

In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 2943, 2003.

A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level ad-
dress mappings. In Proceedings of the 14th international conference

[4

[5

=

[7

—

on Architectural support for programming languages and operating
systems (ASPLOS’99), volume 44, page 229240, Mar. 2009.

T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A file is not a file: Understanding the I/O behavior
of apple desktop applications. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11), SOSP’11,
pages 71-83, 2011.

[9] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. ~Write
amplification analysis in flash-based solid state drives. In Proceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference, 2009.

[10] INCITS. T13 ATAS draft specification 1697-d. 2010.

[11] INCITS T13. Data set management commands proposal for ATAS-
ACS?2 (revision 6),(draft specification t13/e07154r6). 2007.

[12] J. Katcher. Postmark: A new file system benchmark. http://www.
netapp.com/tech_library/3022.html, 1997.

[13] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A space-efficient
flash translation layer for CompactFlash systems. IEEE Transactions
on Consumer Electronics, 48(2):366-375, May 2002.

[14] S. Kim, D. Jung, J. Kim, and S. Maeng. HeteroDrive: reshaping the
storage access pattern of OLTP workload using SSD. In Proceedings
of 2009 4th International Workshop on Software Support for Portable
Storage (IWSSPS’09), pages 13—17, Nov. 2009.

[15] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim. A case for flash
memory SSD in enterprise database applications. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD 08, page 10751086, 2008.

[16] S. Lee, B. Moon, and C. Park. Advances in flash memory SSD
technology for enterprise database applications. In Proceedings of the
2009 international conference on Management of data (SIGMOD’09),
June 2009.

[17] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: a memory-
efficient, high-performance key-value store. In Proceedings of the 23th
ACM Symposium on Operating Systems Principles (SOSP’11), 2011.

[18] D. Ma, J. Feng, and G. Li. LazyFTL: a page-level flash translation
layer optimized for NAND flash memory. In Proceedings of the
2011 international conference on Management of data (SIGMOD’11),
pages 1-12, 2011.

[19] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai. The design and
evolution of live storage migration in VMware ESX. In Proceedings
of the 2011 USENIX Annual Technical Conference, 2011.

[20] C. Mason. Compilebench. http://oss.oracle.com/~mason/
compilebench.

[21] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier. The new ext4 filesystem: Current status and future plans. In
Proceedings of the Linux Symposium, Ottawa, Ontario, Canada, June
2007.

[22] M. McLoughlin. The QCOW2 image format. http://people.
gnome . org/~markmc/qcow-image-format.html, 2008.

[23] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley, N. C.
Hutchinson, and A. Warfield. Parallax: Virtual disks for virtual ma-
chines. In Proceedings of the 2008 3rd European Conference on Com-
puter Systems (EuroSys’08), 2008.

[24] Microsoft, Inc. Microsoft virtual hard disk overview. http://
technet.microsoft.com/en-us/bb738373.

[25] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization aware file
systems: Getting beyond the limitations of virtual disks. In Proceed-
ings of the 3rd Conference on Networked Systems Design and Imple-
mentation (NSDI’06), pages 2626, 2006.

[26] R. Russell. virtio: towards a de-facto standard for virtual i/o devices.
ACM SIGOPS Operating Systems Review, 42(5):95-103, 2008.

[27] Samsung Electronics Co. K9XXGO8UXM flash memory data sheet,
2007.

[28] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the Sun Network Filesystem. pages 119-130,
1985.

[8

[t}

[29] S. Schlosser and G. Ganger. MEMS-based storage devices and stan-
dard disk interfaces: A square peg in a round hole. In Proceedings
of the Third USENIX Conference on File and Storage Technologies
(FAST’04), pages 87-100, 2004.

[30] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High performance solid
state storage under Linux. pages 1-12, 2010.

[31] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck. Scalability in the XFS file system. In Proceedings of the
1996 USENIX Annual Technical Conference, 1996.

[32] C. Tang. FVD: a High-Performance virtual machine image format
for cloud. In Proceedings of the 2011 USENIX Annual Technical
Conference, Portland, OR, June 2011.

[33] TerryE. Tutorial: All about VDIs. https://forums.virtualbox.
org/viewtopic.php?p=29266, 2008.

[34] The Apache Software Foundation. Hadoop MapReduce. http:
//hadoop.apache.org/mapreduce, 2011.

[35] The Apache Software Foundation. Hadoop distributed file system.
http://hadoop.apache.org/hdfs, 2011.

[36] VMware, Inc. Virtual machine disk format (VMDK). http://www.
vmware.com/technical-resources/interfaces/vmdk.html, .

[37] VMware, Inc. VMware VMFS produce datasheet. http://www.
vmware.com/pdf/vmfs_datasheet.pdf, .

[38] Wikipedia, The Free Encyclopedia. Solid-state drive. http://en.
wikipedia.org/wiki/Ssd, 2011.

