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Abstract
Program debugging has almost universally been considered from
the perspective of performing detailed examination of a single
program target (application, operating system, etc.) at a single
point in time. We present an early prototype of the Tralfamadore
Debugger (TDB), a software debugger based on the Tralfamadore
offline dynamic analysis engine. Unlike conventional debuggers,
TDB presents a source-level debugging interface on a CPU-level
execution log. The system maps processor-level events back to
source-level semantics and allows developers to examine all of
execution, through time, with familiar gdb-like operations.

Categories and Subject Descriptors D.2.5 [SOFTWARE ENGI-
NEERING]: Testing and Debugging—Tracing

General Terms Human Factors, Languages, Performance

Keywords cross-layer debugging, dynamic analysis, time-travel
debugging

1. Introduction
Debuggers, as a tool in software development, have changed re-
markably little over the decades in which they have been used. Most
languages and runtime environments in use today have them; some
may offer scriptable interfaces [1, 3] to automate debugging during
regression tests or may allow developers to walk execution back in
time in search of the source of a bug [12, 16]. These are all, how-
ever, relatively simple variants on a core idea: like a microscope or
magnifying glass, the debugger is a tool that lets a developer take a
detailed look at program state at a single point in time.

In this brief position paper, we argue that this established view
of program debugging is inherently limiting. What if, as an alter-
native, the debugger had access to all states of an executing pro-
gram throughout its execution? We propose a system in which the
debugger is “unstuck in time”,1 allowing traditional debugging op-
erations, such as inserting a breakpoint, to be evaluated throughout
the entirety of a program’s execution.

Allowing analysis on the entirety of execution invites debuggers
to be thought of in an entirely different way. Developers are invited
to ask questions about the overall dynamic behavior of a software

1 This term, and the name of our analysis system, are borrowed from Kurt
Vonnegut’s novel, Slaughterhouse Five.
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system: what are the frequent values passed to this function? What
path through the OS’s I/O subsystem are traveled by requests from a
specific application? Moreover, the system facilitates questions that
begin broadly, for instance by examining all stacks that have existed
during the invocation of some function, and then progressively
refine to a narrower scope, either considering optimizations for the
common case or understanding unusual outliers.

The end goal of our system is to build a debugger that is com-
prehensive through space and time: we want to be able to explore
the behavior of software at any layer of the system (OS, appli-
cation runtime, library or application code) and at all points dur-
ing execution. Constructing a system that meets these goals has
proven to be a challenging task. The work in this paper extends
Tralfamadore [14, 15], an execution recording and offline dynamic
analysis engine that has been developed in our research lab. We de-
scribe a debugger interface that we have built atop Tralfamadore,
called TDB, that provides a gdb-like interface to execution traces.
We explore how traditional debugging commands are different
when run over an entire execution and describe our prototype im-
plementation, integrated with a browser-based IDE.

Implementing a debugger over an execution trace presents a
number of interesting technical challenges. For instance, as the
trace stream records events such as writes to memory as they
happen, answering questions such as, “What value is at address x
at time y?” may involve a complex and expensive scan through the
entire execution history. We describe extensions to Tralfamadore
that have been implemented to address issues such as these and
how they are used to build a number of useful debugging tools.

The remainder of this paper provides a snapshot of our current
TDB prototype and is intended to solicit discussion and feedback
on the tool. We begin by comparing TDB to UNIX’s gdb and
exploring how gdb’s operations change in our system. We then
describe some of the interesting technical challenges that we faced
in building the system. The paper ends with a discussion of future
work and the challenges that we anticipate.

2. TDB
Debugging through time requires both a debugger and a methodol-
ogy that are conceptually different from conventional tools. We ad-
dress the former in this section by presenting an overview of TDB
and its functionality. Prior to this discussion, however, it is perhaps
helpful to meditate on common activities in a traditional debug-
ger and how those actions map to TDB. We describe a number of
GDB–TDB equivalences in Table 1.

Traditional debugging relies on earmarking a few potentially
critical actions or events and observing the effects they have on
the entire system. On the other hand, debugging in time allows one
to watch for particular effects and track back to the causes of said
effects.

Consider running a program in an ordinary debugger and setting
a breakpoint on a commonly called function such as malloc. Each



time the breakpoint is hit, execution is suspended and control re-
turns to the debugger, where the developer can perform such tasks
as studying the call stack at that moment and inspecting what ar-
gument was passed to malloc. In TDB, however, rather than being
presented with data from n distinct breakpoint invocations, they are
aggregated into a single compound data structure. In our example,
all backtrace stacks would merge into a tree, with malloc at the
root and different code paths that led to that function call fanning
out from that point.2 An example of a so-called multi-backtrace
may be seen in Figure 1(b). Additionally, since we are considering
all calls to malloc simultaneously, the values of the argument to
the function aggregate into a histogram of all values observed over
the course of the program’s execution.

2.1 Workflow
TDB runs entirely within the developer’s Web browser. While
there already exist frontends to Tralfamadore implemented as IDE
plugins, we felt this was a more appropriate delivery vehicle given
our long-term goal of Tralfamadore acting as a distributed record
and replay mechanism, as we explain in Section 3.3.

The TDB interface can be seen in Figure 1, where debugging
actions will involve interacting with histograms, trees, graphs, and
other visual representations of trace data. A TDB debugging ses-
sion typically involves iteratively issuing queries to the debugger,
analyzing the output, and refining those queries to filter out pro-
gressively more of the execution trace. Filtering allows interesting
points of execution to be selected for subsequent comparative anal-
ysis. The programmer may want to filter based on a predicate re-
lating to the most frequent, least frequent, highest, lowest, and/or
unusual values of an argument to a function and see the state of
execution when these values are encountered. For example, Fig-
ure 1(a), a varvals query on the alloc skb function in the Linux
kernel, demonstrates that sometimes network buffers of just one
byte are allocated. Using this predicate, one can run a mbt (multi-
backtrace) query to determine that this situation arises in a very
specific code path as shown in Figure 1(c). In a conventional de-
bugger, a breakpoint set on a line of code in a library function may
be hit too often to be useful and conditional breakpoints can’t be
used unless one knows the interesting (e.g. error) conditions a pri-
ori. In TDB, conditions on breakpoints can be refined as necessary
without having to worry about reproducing the behaviour in a sub-
sequent debugging session, because the same trace is used for each
analysis. For example, the contents of 1(c) is actually a subset of
1(b), rather than being a separate run.

2.2 Desired debugger features
In the current TDB prototype, a user will often perform a se-
ries of actions like calling the TDB breakpoint command (result-
ing in a set of timestamps) and then filtering out uninteresting
results. Allowing common refinement operations such as break
line-number if condition could be beneficial both in terms
of user-friendliness and efficiency of backend operations.

Additional temporal filtering techniques would be useful (e.g.,
for detecting if a piece of memory has been accessed after a free
but before it has been reallocated) but have not been implemented
yet. Other types of filtering might be to examine only breakpoint
hits whose back trace does or does not include a particular function
or to examine only breakpoint hits where a particular variable has
or does not have a specific value. It is clearly possible to imagine
arbitrarily complex predicates involving function call containment

2 More precisely, this would form a lattice-like DAG with the bottommost
nodes corresponding to the program’s entry point. In the case of a kernel,
by virtue of being event-driven, the entry point need not be unique.

GDB TDB-equivalent
Break and Watch

breakpoint Rather than stopping and resuming execu-
tion as in GDB, breakpoints in TDB are sets
of timestamps for points of execution which
match the breakpoint target

Line Execution
step, next Not supported. In the TDB model of break-

points, stepping would occur for multiple
points of execution simultaneously. As exe-
cution can diverge along different code paths,
the results could be difficult to interpret. We
discuss this case more in Section 4.1.

until Not yet implemented, but perhaps this makes
more sense than single stepping if the devel-
oper has reason to believe the current break-
point timestamps will converge at a given
piece of code.

where Map set of timestamps back to source:line
info

Stack
backtrace mbt (multi-backtrace): Show a tree of back-

traces. In the trivial case where the user
has refined the breakpoint context to a sin-
gle timestamp, an mbt query is equivalent to
a backtrace. In the general case mbt shows
a graph of the backtraces for all selected
timestamps merged into a visualization which
shows the relative frequency of call graphs
that result in the selected/refined set of times-
tamps

info args varvals: Show a histogram of variable values
for a function argument over (the selected
subset of) the trace

Source Code
list list: Bring up the relevant source code in

the IDE with shortcuts for generating various
queries (e.g., breakpoints on any line, varvals
for function arguments, ...)

Examine Variables
print print displays values of a variable at the se-

lected timestamps. This is still in progress as
the location of the desired variable can be dif-
ferent (e.g., in a register registers vs on the
stack) at each individual timestamp. Future
work in multi-layer debugging will be to use
specified or inferred datatypes to display for-
matted structures, rather than raw data values

Start and Stop
run, kill Preliminary work has been done on buildbot-

style automation for trace collection of a VM
running a predefined workload

Table 1. GDB-TDB concept mapping.

and variable values; how exactly to usably, intuitively implement
such predicates remains open for future investigation.

Exploiting debugging information from multiple layers in the
system (kernel, application, etc.) could allow for easier debugging
of large systems and the ability to filter out uninteresting parts of
the whole-system execution trace. Debugging information is also
necessary to access the values of arbitrary variables which may,
over their lifetime, move between locations on the stack or in global



(a) The TDB interface with the results of a varvals query, showing the distribution of values
for the size argument of alloc skb.

(b) A multi-backtrace (mbt) query for a specified line of code reveals the many contexts in which
it was encountered. Note that the full graph is much larger than what we can reproduce in this
paper.

(c) A mbt query for the same
line of code as Figure 1(b),
but restricted to timestamps
where the alloc skb func-
tion is called with size =
1. This situation arises via a
unique call stack in the ana-
lyzed trace.

Figure 1. The TDB interface and the results of queries.

memory and registers, as well as to decode complex structures and
evaluate arbitrary expressions for display to the user.

Another tool provided by any traditional debugger is the watch
point, which halts execution whenever a particular location in mem-
ory is modified (unlike a breakpoint which halts execution when-
ever a particular location is executed). Watch points are often used
if the programmer believes a variable’s value is being corrupted,
perhaps by a stray pointer or a buffer overrun, and wants to find out
where this corruption is occurring. In TDB, the concept of a watch
point can have two distinct interpretations. First, a watch point can
be an entry point into a debugging session, similar to a breakpoint:
a programmer can simply query a list of all places where a vari-
able was modified. Second, a watch point can be used in combi-
nation with an already-executed breakpoint, to respond to such re-
quests as as, “Show me, for each of these breakpoint hits, where
this variable got its value.” This latter form involves shifting the
set of timestamps representing the current debugging session back-
wards in time; how to represent such changing debugging contexts
remains an open question. How to represent situations where lo-

cality of source code is broken is another open question: given a
breakpoint hit, for example, all timestamps in the resulting set oc-
cur on the same line of source; a watch point, on the other hand,
may, and often will, be hit on many different lines of source. Sim-
ilarly, a watch point used as entry into debugging to establish an
initial context may also result in hits on different lines of source.
Additional investigation is needed to determine how to display de-
bugging contexts containing such disparate points to the program-
mer so as to allow him or her to rapidly drill down to interesting
regions of execution while filtering out extraneous hits.

Incorporating such additional debugging features should be pos-
sible because the Tralfamadore execution trace contains complete
execution information, but the practicality and efficiency of such
queries have yet to be determined.

3. Tralfamadore
Tralfamadore is a framework for performing post-hoc dynamic
analysis of a whole system, including both the operating system



kernel and userspace applications. In Tralfamadore, the system un-
der test is first executed in a virtual machine which is instrumented
to record enough information to subsequently replay the execution.
In particular, we make records of all non-deterministic input to the
machine, such as network traffic and hardware interrupts. This so-
called deterministic replay log is sufficient to, when combined with
an initial memory snapshot, reconstruct with perfect fidelity the en-
tire execution. On replay, the log is expanded to form a trace con-
taining every CPU instruction executed during the test.3

Once the trace is present on disk, Tralfamadore provides a
number of different modules that use the trace for various purposes.
As the trace is very large, indices can be constructed allowing the
system to rapidly find interesting parts of the trace, something that
would be impractical with a linear scan. For example, an index
can be created showing each time a function is called; this index
can then be used to rapidly “hone in” on points of interest while
debugging or performing more complex but more targeted analysis.

Complex analyses are built out of several modules, called oper-
ators, that compose in a pipeline structure to incrementally add se-
mantic meaning to the trace data. For example, one common piece
of information that analyses might require is knowing about con-
text switches. Since the trace sees the whole system’s execution,
context switches could be between the user-mode application and
the kernel (due to a system call or hardware interrupt), between two
different non–interrupt handler kernel contexts (e.g., kernel threads
or system calls) via a stack switch in the Linux schedule function,
or between a kernel thread or system call and an interrupt handler
upon receipt of a hardware interrupt. The analysis begins with an
operator that parses the trace file and emits annotations, individ-
ual atomic fragments of information that flow through the pipeline,
for each basic block or hardware interrupt. These annotations can
be examined by the other operators; those operators can also inject
their own annotations of other types for use by yet further operators.
For example, the context operator watches for hardware interrupts
and invocations of the Linux context-switching function and emits
context annotations, an abstract representation of context switches.
These context annotations provide a unique context ID for each
context no matter how it was reached, allowing further operators to
track contexts and context switches easily without having to under-
stand the details of the context switching mechanism.

3.1 Memory Reconstruction
One of the most important Tralfamadore modules for building
a debugger is the memory reconstruction module. This module
provides the ability to efficiently determine the value stored at a
particular location in memory at a particular time. This might then
be displayed to the programmer who wishes to know the value of a
variable, for example.

Because the debugger must be able to obtain the value at any ar-
bitrary point in the execution timeline, it is not sufficient to simply
construct an image of memory ahead of time and then examine it.
Instead, we determine the value in memory at a particular location
by finding the point in time at which that location was most recently
written to. To avoid a linear scan of the entire trace, it is necessary to
use an index to more quickly find these points in time. The memory
reconstruction module includes a tool that performs a single linear
scan of the trace and generates this index, which can then be used
very quickly. To construct the index, the tool first breaks the trace
into disjoint temporal subintervals, called epochs, such that each
epoch contains approximately 50,000 memory modifications. The
tool writes an index record for each epoch containing the interval
covered by the record and a run-length-encoded bitmap of which

3 In theory, a temporal subinterval of the replay log could be expanded to
save time and disk space; in practice, we always expand the entire log.

Epoch

0 2 0

Index

Trace
Addrs. Written: Addrs. Written: Addrs. Written: Addrs. Written:
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Figure 2. Memory index for a four-epoch-long trace of a hypo-
thetical computer with four memory addresses

bytes in memory were modified within the epoch. Once all of these
records are written, the tool then generates additional records cov-
ering larger intervals and forming a binary tree structure, the root
node of which represents the set of bytes of memory written to over
the entire trace.

To reconstruct the value in memory at a particular address and
time, the reconstruction module uses the binary tree to find the
epoch containing the last write to the address prior to the requested
time.4 Once the required memory write is localized to a single
epoch, a linear scan of the epoch is performed in the trace file to
find the actual write operation. The cost of this operation is thus the
cost to navigate the tree, whose height is logarithmic in the number
of epochs (and consequently in the number of writes in the trace),
plus the cost to perform a linear scan over one or, in the worst case,
two epochs of trace, each of which are of approximately constant
size regardless of the length of the complete trace.

3.2 Address Translation
x86-based operating systems available today virtualize applica-
tions’ views of the address space. The CPU does this transpar-
ently via a combination of two mechanisms: the page tables and the
translation lookaside buffer. Page tables are data structures stored
in memory that specify the translation for each virtual address. Be-
cause walking the page tables requires a number of reads from
memory, it is quite slow. To avoid slowing every memory access
by an application, translations are cached in the translation looka-
side buffer, or TLB; subsequent accesses to the same virtual page
will use the cached translation.

Naturally, one of the tasks a debugger with access to physical
memory will need to perform is translating between virtual and
physical addresses. Notably, unlike the regular CPU instruction
and data caches, the TLB does not participate in cache coherence
protocols and can become out of date with respect to the actual page
tables in memory, even if the page tables are modified by the same
CPU; instead, an explicit flush instruction is used to invalidate TLB
entries. We would like our debugger to reflect this behaviour and
use translations that are always the same as those the CPU would
have used, even if an operating system fails to promptly flush the
TLB (due to a bug or situation in which staleness is irrelevant).

To satisfy these needs, Tralfamadore includes an address trans-
lation module. This module accepts a virtual address and a point in
time and returns the corresponding physical address at the speci-

4 If the address is written to during the epoch containing the requested time,
it may be that the write actually occurred after the requested time; in this
case, a second run is used to find the next earlier write.
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Figure 3. Parallel architecture hypothetically applied to TDB

fied time (or an error if the page was marked as absent in the page
tables). For fidelity, we store information about the CPU’s TLB
activity alongside the trace while expanding the replay log. When
translating, Tralfamadore first reconstructs the TLB state at the re-
quested time to check whether the requested address appears; if not,
Tralfamadore uses the memory reconstruction module described in
Subsection 3.1 to reconstruct and walk the page tables. As address
lookups are quite common activities, for increased performance, a
preprocessing pass is executed when preparing to analyze a trace
which indexes the timestamps of TLB-related events and enables
rapid lookup.

3.3 Parallel Execution
In addition to the use of indices, another way to speed up execution
of operations is to parallelize them. Tralfamadore’s architecture is
designed to support parallelization of queries both across proces-
sors in a machine and across multiple machines on a network. To
parallelize an analysis task, it is divided into frontend, scheduling,
and backend parts, which communicate over a network connection
and will typically run on separate computers.

The frontend component is responsible for decomposing the
analysis task into individual queries, processing the results of the
queries, maintaining any needed state from query to query, and
interacting with the user; in TDB, for example, the frontend part
would5 consist of the JavaScript running in the user’s browser plus
the Web application components running in the Web server.

The backend component is stateless for most requests and is re-
sponsible for accepting a request, processing it, and returning the
results. The backend part is not tied to the frontend; thus, TDB
and other frontends share a common backend. The backend is im-
plemented as a single network dæmon with the requests built in
as loosely-coupled modules. Many such modules do their work
by constructing a pipeline of operators and running the pipeline
against the trace, but some request handler modules do something
more complex such as invoking the memory reconstruction mod-
ule. Because the backend component is generally stateless, a typ-
ical installation will have multiple backends running on different
computers for load balancing purposes.

The scheduling component6 is responsible for accepting a re-
quest from a frontend, possibly dividing it into multiple smaller re-
quests, and then issuing the request or requests to one or more back-
ends.7 The scheduler then collects the responses from the backends
and returns them to the frontend, reorganizing them if necessary.
The scheduler is where parallelism policies are defined for each
type of request, and these policies can be constructed as needed. A

5 The current version of TDB was developed before this architecture was
designed and thus uses its own private networking architecture and not the
standard Tralfamadore parallel architecture.
6 This component has not yet been implemented; we describe later in this
section how it need only apply to Tralfamadore installations running with
multiple backends.
7 The protocol used on both sides of the scheduler is identical, so the
scheduler can be omitted in a system with one backend.

scheduler can accept a request with no specific policy, in which case
the request will be forwarded verbatim to a single backend; even
this will grant some speedup as multiple simultaneous requests can
be directed to different backends. If additional performance gains
are needed, a policy module can be written which knows how to
parallelize a particular type of request.

TDB’s “breakpoint” command provides an example of a simple
but common parallelization policy. The initial breakpoint request is
issued to find all hits on the target address within a particular time
interval. Parallelizing this request is very easy: the parallelization
policy would simply divide the requested time interval into a collec-
tion of smaller time intervals, then issue a breakpoint request over
each smaller time interval to a backend. Each backend will return
the breakpoint hits contained in its time interval; the policy module
need only interleave these hits and return them to the frontend.

The “multi-backtrace” command is also easy to parallelize,
though not in the same manner as the breakpoint command. A
multi-backtrace request carries a list of points in time for which
backtraces are desired; parallelizing it is as simple as distributing
those points to different backends. Some care should be taken, how-
ever, since it may be possible to improve performance by sending
points that are close together temporally to the same backend.

Generation of context IDs is also fairly easy to parallelize,
though it does require more work than breakpoint and multi-
backtrace commands. This is because once the trace is divided into
subintervals of time, a particular scan executed on a backend may
encounter a particular context for the first time even though that is
not the first occurrence of the context in the trace as a whole (the
prior occurrences may lie in other backends’ scan intervals). In-
stead, the backends would generate pseudo-context records which
would be stitched together by the scheduler policy module into
coherent, globally-uniquely identified context records.

3.4 Resolving debug symbols
Like all debuggers, TDB requires a mechanism by which semantic
components of the original source code, such as variable names,
function argument locations, and type information, are saved by
the compiler and stored for later access. On Linux and other sys-
tems that support executing ELF binaries, the most frequently-used
debugging format for C and C++ programs is the DWARF spec-
ification. As part of Tralfamadore, we have implemented a debug
format-agnostic dæmon that allows TDB and other frontends to the
analysis system to reconstruct human-readable components of the
original source code.

While DWARF is a language-neutral standard, it is designed to
emit debug information for languages with lexical scoping, such
as C, C++, or Fortran. As a result, the primary DWARF structure
is a tagged tree of so-called debugging information entries (DIEs),
which allows information for lexical structures such as code blocks,
functions, and object files to be composed within one another in a
manner analogous to the original program source. It also encodes
separate information such as line numbers and typedef information,
and includes a stack machine-like interpreter for resolving register
offsets at analysis time.

When a TDB session is initiated by the user, Tralfamadore
opens a socket to the debugger dæmon, which forks and parses the
ELF headers of the chosen kernel that contains the debug data. Over
the same socket, the Tralfamadore backend issues CLRF-delimited
queries to the dæmon. A common use case for this subsystem is to
find correspondences between source line numbers and EIPs; for
example, setting breakpoints requires finding the latter given the
former, and visualizing multi-backtraces within TDB requires the
former given the latter.

While support for resolving preprocessor macros is present in
the DWARF standard, the difference between unprocessed source



files intended for human consumption and the rewritten ones in-
tended for compilation introduces a significant semantic gap in a
macro-heavy codebase such as the Linux kernel. We are there-
fore unable to reason about function-like macros with the same
degree of precision as first-class C functions. Emitting more de-
tailed macro debug information would be a fruitful activity, though
it would unfortunately require compiler modification.

4. Future Work
4.1 Stepping
At present, TDB is only capable of analyzing the state of the sys-
tem at a single point in code, where that point is potentially hit
multiple times throughout the course of the trace. An interesting
enhancement would be to allow the equivalent to a traditional de-
bugger’s “single step” command, which would advance all the col-
lected timestamps by one source-language statement. If a condi-
tional or indirect function call appeared in source, this might result
in a split in control flow, with some executions following one path
and some following another.

Such a command would result in an explosion of data as the
number of stepped-over branches increases; an open question is
how to best display this information. Should all the execution
contexts be displayed, and each single-step advance all the contexts
by one step independently? In the case of a loop, should only those
contexts remaining in the loop advance, in the expectation that the
contexts will eventually rejoin? Is it more useful to duplicate the
debugger interface and allow the programmer to drive each branch
of execution independently, or perhaps discard some branches if
they prove uninteresting? Perhaps different options are more useful
in different situations, and the programmer should be allowed to
choose how a branch will be handled when it appears.

4.2 Automatic Case Comparison
Given a collection of traces covering similar executions of similar
code paths (perhaps produced by running a collection of unit tests),
where one trace contains an error of some sort and the others do not,
can a tool automatically do at least some of the work of tracking
down the differences between the two traces, saving a human pro-
grammer time and effort? Tralfamadore provides a uniquely pow-
erful environment for observing both control flow and data flow as
a program runs, safe from any possible nondeterminism.

One possible approach is to generate a backtrace from the point
of failure in the failing run, then try to match subtrees in the
backtrace with particular points in the execution of the successful
runs. A failed match may indicate a point of divergence between a
successful run and a failed run. Points of divergence could be ruled
out as the cause of failure by comparing them to other successful
runs; divergences that also appear between successful runs are not
uniquely responsible for the failure. Alternatively, the system could
automatically scan all the variables in the vicinity of the failure
(perhaps the last few functions in the backtrace), find corresponding
points in the successful runs, and compare the values of all global
variables and locals within the top few functions; values that are
common to all successful runs but that differ in the failing run
may be responsible for the failure. Clearly such a tool will not
automatically fix bugs, as it at best answers the “how” but not the
“why” question, but it may significantly reduce the time spent by a
programmer on narrowing down the cause of the bug.

4.3 Userspace Applications
Currently, TDB does not support debugging userspace applications,
only the kernel. While Tralfamadore successfully records execution
in both CPU modes and our system is able to replay a deterministic
replay log comprising all layers of the software stack, debugging

userspace applications is actually significantly harder for a number
of reasons. First, multiple independent userspace processes invari-
ably exist on any given system; even an ostensibly single-purpose
system always has a number of control and helper dæmons running
in the background. Second, userspace applications are subject to
paging; the particular piece of data or code the programmer wishes
to examine at some point in time may not exist in memory.

Determining where a page of code or data is actually located be-
comes a nontrivial exercise: in the simplest case, the page is present
in physical memory and mapped into the process’s virtual address
space. Alternatively, it could have been brought into physical mem-
ory by another process but not yet mapped into the debuggee’s vir-
tual address space. In such a case, the in-memory copy can be dis-
covered by introspecting on kernel data structures. In the event the
data has been evicted from physical memory, it exists only in swap,
in the executable binary image, in a shared object, or in a memory-
mapped file; the data can then be retrieved by introspecting on ker-
nel data structures to determine the source of the data, then parsing
the partition table and filesystem structures from a reconstructed
disk image from the appropriate point in time.

4.4 Debugging SMP Targets
Modern processors have reached a speed wall in which clock fre-
quencies cannot be increased any further. Hardware designers’ re-
sponse to this has been to provide parallelism in the form of hy-
perthreading, multicore CPUs, and multiple processor sockets on
motherboards. While hardware parallelism used to be the purview
of servers, it is now becoming ubiquitous in desktops and even lap-
tops. For Tralfamadore to continue to be useful into the future, it is
clearly essential that it be able to debug operating systems running
on parallel hardware, particularly since hardware parallelism often
introduces hard-to-find bugs such as race conditions.

Some work has already been done in deterministic replay of
parallel virtual guests, as will be noted in Section 5.4. Many
of these replay mechanisms work by interleaving the multiple
CPUs’ instruction streams to construct a serialized execution whose
externally-visible effects are equal to those observed during the
original recording. Given the existence of such a replay mecha-
nism, one could very easily construct an execution trace during the
replay of the serialized instruction stream; assuming the addition
of small amounts of data to the stream (e.g., on which CPU each
instruction executed), the existing architecture would be capable of
analyzing such traces.

One open question in this area is how best to display the inter-
leaved execution to the user. Although many of the replay mecha-
nisms will often generate much coarser-grained interleavings than
the original execution, displaying the interleaving is still unnatural
for a programmer, especially if the two CPUs are executing unre-
lated code. In fact, different displays may be appropriate in differ-
ent sitations; sometimes a programmer will be interested in just one
CPU executing one code path (and may want to see other CPUs’ in-
fluences on memory as akin to devices’ DMA transfers), while at
other times a programmer may be interested in the precise inter-
leaving that leads to a parallelism-related bug.

4.5 Debugging High-Level Languages
Because Tralfamadore records so much detail about system execu-
tion, it may be useful for debugging performance problems that
manifest themselves in high-level languages with managed run-
times. Performance problems in high-level, managed languages can
come from many sources, from the operating system to the native
userspace environment to the managed runtime environment to the
program itself. Given a particular operation that performs poorly, it
may be difficult to determine which of these layers is responsible
for the slowdown; furthermore, the slowdown may be caused not by



a single layer, but by the interaction of different layers. For exam-
ple, one could easily conceive of an operating system paging algo-
rithm that works well for ordinary native applications and a man-
aged runtime garbage collector that follows sound principles and
performs well on many platforms, but a deployment of the garbage
collector on top of the paging algorithm may perform poorly due to
neither algorithm having the “complete picture” of what’s going on
in memory. Tralfamadore could be extended to support the ability
to separate the managed runtime environment from the rest of the
trace and display, in a semantically-meaningful way, the state of the
high-level-language program running therein. This would enable it
to be used to debug such cross-layer issues by seamlessly follow-
ing an operation from a program, through its managed framework,
down into the lowest layers of the operating system, and back up
again.

4.6 Parallel Universes
While TDB currently considers all points in time through an ex-
ecution, it is limited to this particular unfolding of events. As the
fidelity of recording is sufficient to instantiate a complete, running
virtual machine at any point during recording, it might be inter-
esting to consider allowing the system to fork and run in multiple
directions—especially during testing. In this manner, the dynamic
analysis techniques used by TDB might take a step in the direction
of more static techniques where a more complete set of program
states can be considered. We are interested in exploring the idea
that a developer could assert some specific condition in TDB, for
instance “Find a situation where variable x is modified but lock y
is not held.” In this case, the analysis engine might realize that this
conjunction never occurred in the trace, and rather than returning
failure, would attempt to fork execution from a state that did oc-
cur, and synthesize execution in a manner that produced the desired
case.

4.7 Visualization
Although the majority of this work describes TDB, a debugger
based on Tralfamadore, this is not the only tool we intend to build
on Tralfamadore. Specifically, we would also like to investigate
“program understanding” tools which would help a new program-
mer get up to speed quickly in an unfamiliar codebase. While some
of the tools making up TDB would no doubt be useful in such a sit-
uation, such as histograms of variable values (to answer such ques-
tions as “what is the normal way in which this function is used?”)
and multi-backtraces (to answer such questions as “who usually
calls this function?”), specific purpose-built tools are likely to be
more valuable here. How to visualize a large amount of execution
trace remains an open question, and we may consider working with
software engineering and visualization researchers on these appli-
cations.

5. Related Work
5.1 Dynamic Analysis Frameworks
Our work builds upon the Tralfamadore project. While our ultimate
goals are in line with those of earlier work [15], here we more rig-
orously define mappings between the functionality of traditional
debuggers and TDB and are not merely interested in the architec-
ture of the Tralfamadore backend.

There exist numerous binary translation-based systems for dy-
namic analysis of running programs [17, 21]. These tools differ
from ours in the sense that they do not record a trace-based history
of execution but rather perform all analysis at runtime. This is done
typically by embedding a just-in-time compiler to add lightweight
runtime callbacks [17] or heavier memory-centric analyses [2, 21].
These particular tools, however, are limited to userspace applica-

tions and therefore are unable to perform full-system analyses as
we propose in this work. More serious, however, is the runtime
overhead that such tools result in: the literature cites slowdowns of
two to three orders of magnitude, enough to potentially affect the
outcomes of non-deterministic events such as data races. Lastly,
these systems, while extensible by virtue of their plugin support,
are not intended for interactive use by a developer and instead typ-
ically output relevant data at the end of the instrumented program’s
execution.

5.2 Whole-System Analysis
Dynamic analysis of an entire running system is a tantalizing-
enough notion that numerous such systems have been built, often as
extensions of userspace tools [5]. Since the lowest levels of the soft-
ware stack must be instrumented, typical approaches either emulate
the processor [6] or run the analysis tool as a component in a vir-
tual machine monitor [7, 8]. Because of the deluge of data that re-
sults from whole-system logging, these tools share Tralfamadore’s
post-hoc analysis modus operandi. As with their userspace cousins,
these frameworks do not offer an interactive front-end as a core
component of the system and tend towards being designed to pin-
point specific classes of problems, such as intrusion detection [9]
or shared memory dependencies [20].

5.3 Time-Travelling and Omniscient Debugging
Many major open-source debuggers feature backwards-stepping
functionality [1, 3]. However, the authors state that these features
are not intended for backwards debugging so much as rolling back
near-immediate state in situations where the user has stepped too
many instructions. Additionally, backwards-stepping is not consid-
ered a first-class feature of the software; in the case of gdb, a spe-
cific record command must be explicitly invoked prior to execu-
tion. Other work has taken place building so-called omnicient de-
buggers [16] that feature arbitrary temporal traversal capabilities;
however, work in this space tends toward the safer world of man-
aged languages rather than programs running in native execution
environments.

5.4 Deterministic Record and Replay
TDB uses deterministic virtual machine (VM) record and replay [9]
to capture the execution of a complete system including the oper-
ating system kernel. The log is then replayed to generate a detailed
trace. By decoupling trace generation from execution, it is possible
to capture the execution of a single processor VM with an overhead
often below 10% [26].

Recording the execution of multi-processor systems is substan-
tially more expensive because the outcomes of memory races must
be recorded. SMP-Revirt [10] uses shadow page tables to capture
the ordering between shared memory accesses but the overhead
can be prohibitive for workloads that exhibit high-levels of shar-
ing. This technique is also prone to false sharing due to page size
granularity.

Fortunately, recording multi-processor execution is an active
area of research. Work such as PRES [22] and ODR [4] propose to
use a weaker form of recording where the order of memory races is
not recorded. This approach turns replay into a search problem and
may fail to reproduce the original execution but the fidelity might
be sufficient for a specific purpose such as reproducing a failure.
DoublePlay [24] explores the insight that data races are relatively
infrequent and uses speculative execution to predict that a serialized
version of a multi-threaded execution will produce the same final
state. If the assumption is true, the serialized version represents a
valid recording; otherwise, execution is rolled back.

Record and replay is also an active area of research in the archi-
tecture community. Earlier work such as FDR [25] and BugNet [19]



relied on directory-based cache-coherence protocols and sequen-
tial consistency. More recent work [11, 13, 18, 23] aims to sup-
port record and replay for snoop-based hardware and more relaxed
memory consistency models such as total store order, making them
potentially suitable to be implemented on modern commodity pro-
cessors (e.g., x86).

All of these projects are complementary and would be highly
beneficial to TDB and Tralfamadore as they could be used to
efficiently decouple the generation of traces for multi-processor
systems from the analysis of those traces.

6. Conclusion
Understanding program execution, whether it is with the goal of
fixing a bug or becoming familiar with a new subsystem, is a chal-
lenging task for which conventional debuggers present a mediocre
solution. In this paper we presented TDB, a IDE-based debugger
that is a front end for the Tralfamadore execution analysis en-
gine. TDB allows conventional debugging commands to be applied
across the entirety of a software system’s execution and allows
developers to interact with a complete execution trace that spans
multiple layers of software. While the work we have described is
an early prototype, the system is capable of performing interesting
new operations that are not possible with conventional debuggers.
As we solve the list of challenges described in our related work, we
believe that this will represent a novel and useful tool for software
developers.
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