

Essence: Pervasive & Distributed Intelligence

Essence *in a* Nutshell

Network-centric Data Stream Processing

Challenge: Time-optimized Data Stream Processing Objective: Optimally Decide when to Process Funded Project: H2020/MSCA INNOVATE

□ Methodology: Delay-Tolerant Data Stream Processing

- Find the optimal time to infer: pattern classification; concept drift; anomaly/novelty/outliers detection,...
- Principles of Optimal Stopping Theory

Methodology: Time-optimized Task Offloading

 Find the optimal Mobile Edge-Computing server for task/analytics offloading

□ Methodology: Edge-centric Selective Analytics

 Engage only relevant Edge Nodes for assigning predictive Modeling & Analytics over relevant local data

Distributed Intelligence at the Edge

Challenge: Energy-aware Distributed Knowledge Inference Objective: Increase network lifetime pushing Inference at the Edge Funded Project: EU/GNFUV

- Methodology: Self-organization Algorithms for Constrained Networks (e.g., UxVs, WSNs)
 - Particle Swarm Optimization
 - Local Inference and Local Function Approximation Models
 - **Consensus** Algorithms for Knowledge/Model Fusion
- □ Methodology: Edge-centric Statistical Learning
 - Exploitation: sensing & computing capability of UxVs to collaboratively infer knowledge
 - Distributed Statistical Learning Models (Model Diversity, Model Update, & Federated Learning)

USVs Experimentation Testbed Skaramagas, Athens.

Predictive Computing

Challenge: Dataless Large-scale Statistical Learning Objective: Extract Knowledge from Data without Data Access Funded Project: EPSRC/CLDS

□ Methodology: Query-driven Predictive Analytics

- **Predict** the query's output by **learning** from past queries
- Benefits: avoid query execution, reduce data transfer, optimize network & computational resources

Methodology: Data Relevance (Small Data is Big Data)

- Key: identify analysts' relevant data regions of interest
- Key: extract knowledge by interpolating only relevant data

- Key: exploratory analytics via sequential learning
- Key: exploit the explanation space via computational intelligence

ESSENCE PERVASIVE & DISTRIBUTED INTELLIGENCE

http://www.dcs.gla.ac.uk/essence/

Dr Chris Anagnostopoulos christos.anagnostopoulos@glasgow.ac.uk