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Network-centric Data Stream Processing

Challenge: Time-optimized Data Stream Processing
Objective: Optimally Decide when to Process
Funded Project: H2020/MSCA INNOVATE

0 Methodology: Delay-Tolerant Data Stream Processing

o Find the optimal time to infer: pattern classification;
concept drift; anomaly/novelty/outliers detection,...

o Principles of Optimal Stopping Theory

0 Methodology: Time-optimized Task Offloading

o Find the optimal Mobile Edge-Computing server for
task/analytics offloading

0 Methodology: Edge-centric Selective Analytics

o Engage only relevant Edge Nodes for assigning predictive
Modeling & Analytics over relevant local data
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Distributed Intelligence at the Edge

Challenge: Energy-aware Distributed Knowledge Inference
Objective: Increase network lifetime pushing Inference at the Edge
Funded Project: EU/GNFUV

) Methodology: Self-organization Algorithms for Constrained Flock of USV
Networks (e.g., UxVs, WSNs) ock o - .S.

o Particle Swarm Optimization
o Local Inference and Local Function Approximation Models
o Consensus Algorithms for Knowledge/Model Fusion

0 Methodology: Edge-centric Statistical Learning

o Exploitation: sensing & computing capability of UxVs to L
collaboratively infer knowledge D
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o Distributed Statistical Learning Models (Model Diversity, Model |

Update, & Federated Learning) :

USVs Experimentation Testbed
Skaramagas, Athens.



Predictive Computing

Challenge: Dataless Large-scale Statistical Learning
Objective: Extract Knowledge from Data without Data Access
Funded Project: EPSRC/CLDS

Data scientists
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0 Methodology: Query-driven Predictive Analytics
o Predict the query’s output by learning from past queries

Statisticians Queries
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o Benefits: avoid query execution, reduce data transfer, e
optimize network & computational resources

2 Methodology: Data Relevance (Small Data is Big Data)
o Key: identify analysts’ relevant data regions of interest
o Key: extract knowledge by interpolating only relevant data

Exploration

1 Methodology: Dataless Explanation & Exploitation of Analyti _
o Key: exploratory analytics via sequential learning

o Key: exploit the explanation space via computational
intelligence
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