Network-centric Data Stream Processing

Distributed Intelligence

Predictive Computing
Network-centric Data Stream Processing

Challenge: Time-optimized Data Stream Processing

Objective: Optimally Decide when to Process

Funded Project: H2020/MSCA INNOVATE

- **Methodology:** Delay-Tolerant Data Stream Processing
 - Find the **optimal time** to infer: pattern classification; concept drift; anomaly/novelty/outliers detection,…
 - Principles of **Optimal Stopping Theory**

- **Methodology:** Time-optimized Task Offloading
 - Find the **optimal** Mobile Edge-Computing server for task/analytics offloading

- **Methodology:** Edge-centric Selective Analytics
 - Engage **only relevant** Edge Nodes for assigning predictive Modeling & Analytics over **relevant** local data
Distributed Intelligence at the Edge

Challenge: Energy-aware Distributed Knowledge Inference

Objective: Increase network lifetime pushing Inference at the Edge

Funded Project: EU/GNFUV

- **Methodology:** Self-organization Algorithms for Constrained Networks (e.g., UxVs, WSNs)
 - Particle Swarm Optimization
 - Local Inference and Local Function Approximation Models
 - Consensus Algorithms for Knowledge/Model Fusion

- **Methodology:** Edge-centric Statistical Learning
 - **Exploitation:** sensing & computing capability of UxVs to collaboratively infer knowledge
 - **Distributed** Statistical Learning Models (Model Diversity, Model Update, & Federated Learning)

Flock of USVs

USVs Experimentation Testbed Skaramagas, Athens.
Predictive Computing

Challenge: Dataless Large-scale Statistical Learning

Objective: Extract Knowledge from Data **without** Data Access

Funded Project: EPSRC/CLDS

- **Methodology:** Query-driven Predictive Analytics
 - **Predict** the query’s output by **learning** from past queries
 - **Benefits:** avoid query execution, reduce data transfer, optimize network & computational resources

- **Methodology:** Data Relevance (Small Data is Big Data)
 - **Key:** identify analysts’ **relevant** data regions of interest
 - **Key:** extract knowledge by interpolating **only** relevant data

- **Methodology:** Dataless Explanation & Exploitation of Analyti
 - **Key:** exploratory analytics via sequential **learning**
 - **Key:** exploit the explanation space via **computational** intelligence
ESSENCE
PERVASIVE & DISTRIBUTED INTELLIGENCE

http://www.dcs.gla.ac.uk/essence/

Dr Chris Anagnostopoulos
christos.anagnostopoulos@glasgow.ac.uk